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A classification of some Finsler connections
and their applications

By BEHROZ BIDABAD (Tehran) and AKBAR TAYEBI (Tehran)

Abstract. Some general Finsler connections are defined. Emphasis is being made
on the Cartan tensor and its derivatives. Vanishing of the hv-curvature tensors of these
connections characterizes Landsbergian, Berwaldian as well as Riemannian structures.
This viewpoint makes it possible to give a smart representation of connection theory
in Finsler geometry and yields a classification of Finsler connections. Some practical
applications of these connections are also considered.

1. Introduction

There is always a hope of finding a solution to some of the unsolved problems
of Finsler geometry by developing a connection theory. This hope justifies the
introduction of new connections [2]. The study of the hv-curvature of Finsler con-
nections is by some authors thought to be rather urgent for theoretical physics, see
for instance [7], [8] and [10]. Vanishing hv-curvatures of BERWALD and CARTAN
connections characterize Berwaldian and Landsbergian structures respectively [4],
[5]. The discovery of the SHEN connection whose hv-curvature characterizes the
Riemannian structure, seems to complete their work and permits the classification
of Finsler connections into three different categories [9].

In this paper, using the vanishing property of hv-curvatures, we define three
general kinds of Finsler connections and extend the above property to a general
family of Finsler connections. This point of view enables us to define a more
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general family of Finsler connections which contains some known Finsler connec-
tions as special cases. This characterization gives rise to the classification of some
Finsler connections with respect to the Cartan tensor and its derivatives, which is
a smart representation of Finsler connections (see table of Section 5). The distin-
guishing property of this connection is the flexibility of its reduced hv-curvature,
which makes it very useful. In fact its reduced hv-curvature may be chosen to be
equal to any linear differential equation formed in terms of the Cartan tensor and
its derivatives. The above property makes the geometric interpretation of the so-
lutions of these differential equations easy. As application of this connection, we
consider some examples, especially those in which the flag curvature is constant.

2. Preliminaries

Let M be an n-dimensional C'*° manifold. T, M denotes the tangent space
of M at x. The tangent bundle of M is the union of tangent spaces TM :=
Uzerm T M. We will denote the elements of TM by (x,y) where y € T, M. Let
TMy = TM\ {0}. The natural projection 7 : TMy — M is given by 7(z,y) := x.

A Finsler structure on M is a function F' : TM — [0, 00) with the following
properties: (i) F'is C* on T' My, (ii) F is positively 1-homogeneous on the fibers
of the tangent bundle TM, and (iii) the Hessian of F? with elements g;;(z,y) :=
1[F?(z,y)]yiys is positively defined on TMy. The pair (M, F) is then called a
Finsler manifold. F is Riemannian if the g;;(x,y) are independent of y # 0.

Let us consider the pull-back tangent bundle 7#*T'M over T M, defined by
m*TM = {(u,v) € TMy x TMy | w(u) = w(v)}. Take a local coordinate sys-
tem (2%) in M, then the local natural frame {%} of T, M determines a local
natural frame 9;|, for 7;T'M the fibers of m*TM, where 0;|, = (v, 22|+), and
v = yi% « € TMy. The fiber 7;TM is isomorphic to T’ (,)M where m(v) = .
There is a canonical section ¢ of 7*T'M defined by ¢, = (v,v)/F(v).

Let TT M be the tangent bundle of TM and p the canonical linear mapping
p : TTMy — n*TM defined by p(X) = (z,m.(X)) where X € T.TM, and
z € TMy. The bundle map p satisfies p(%) = 0; and p(%) =0. Let V,TM
be the set of vertical vectors at z, that is, the set of vectors tangent to the fiber

through z, or equivalently V,TM = kerp, called the vertical space.

Let V be a linear connection on 7*T'M, that is V : T, TMyxn*TM — 7*T M
such that V : (X, Y) — VY. Consider the linear mapping ju, : T.T My — Tr. M
defined by uz(f() = V3 F{, where X e T.,TMgy. The connection V is called a
Finsler connection if for every z € T My, u, defines an isomorphism of V,T M,
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onto Ty, M. Therefore, the tangent space TT My in z is decomposed as T, T My =
H.TM @V, TM, where H,TM = ker p1, is called the horizontal space defined by
V. Indeed, any tangent vector X e T.TM, in z decomposes to X=HX+VX
where HX € H,TM and VX € V,TM. The structural equations of the Finsler
connection V are

To(X,Y)=ViY - VX — p[X,Y], (1)

WX Y)Z=VyVZ-VyViZ =V 17, (2)
where X = p(X), Y = p(Y) and Z = p(Z). The tensors Ty and Q are called
respectively the Torsion and Curvature tensors of V. They determine two tor-
sion tensors defined by S(X,Y) := Ty (HX,HY) and T(X,Y) := Ty(VX,HY)
and three curvature tensors defined by R(X,Y) := Q(HX,HY), P(X,Y) :=
QHX,VY) and Q(X,Y) := Q(VX,VY), where X = u(X) and ¥ = pu(X).

Given a Finsler structure F on M, at each point € M, F(v) = F(yl%\gﬂ)

is a function of (y*) € R™. The fundamental tensor g is defined by g : 7*TM ®
m*TM — [0,00) with the components g(9;|v,9j|s) = ¢:j(z,y). Thus (7*T'M, g)
becomes a Riemannian vector bundle over T M. The Cartan tensor A : m*TM ®
T TM @ m*TM — R is defined by A(d;v, v, Oklv) = Aijr(z,y), where
Aiji(z,y) = L F(2,y)[F?(2,y)]yiysyr- If A=0 then F is Riemannian.

Flag curvature. A flag curvature is a geometrical invariant that generalizes
what in Riemannian geometry is called the sectional curvature. For all z € M
and 0 #y € T,M,V :=V? 5,7 18 called the transverse edge. Flag curvature is

obtained by carrying out the following computation at the point (z,y) € T My,
and viewing y and V' as sections of 7*TM:

Viy? Rj yH V¥
9y, )9V, V) = g(y, V)]*

K(y,V):=

If K is independent of the transverse edge V, then (M, F) is called the scalar flag
curvature. Denoting this scalar by A = A\(x,y), if it has no dependence on either
x or y, then the Finsler manifold is said to be of constant flag curvature.

3. General-type Finsler connection

In this section we define a general family of Finsler connections which contains
some known Finsler connections as special cases.
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Definition 3.1. A tensor S : m*TM @ m*TM @ 7*TM — R is called “com-
patible” if it has the following properties:

(1) S(X,Y, Z) is symmetric with respect to X, Y, Z.
(2) S(X,Y,0)=0.
(3) S is homogeneous, i.e., Sijix(z, ty) = Sijr(z,y), Vt € R, where S;i(z,y) =
S(0;,0;, 0).
Definition 3.2. Consider a Finsler connection D on (M, F). Let S and T be
two compatible tensors on m*1T'M.
(1) The torsion tensor Tp of D, defined by (1), should satisfy

Tp(X,Y) = F'T(u(X), p(Y))) = F'T(u(Y), p(X)), 3)

where T'(X,Y) is defined by g(T'(X,Y), Z) := T(X,Y, Z), X,Y € T,T M.

(i) Let (D4g)(X,Y) := Zg(X,Y) — 9g(D;X,Y) — g(X,D;Y). Then the con-
nection D is called almost-compatible with the Finsler structure if for all
X,Y € m*TM and Z € T,TM,,

(ng)(X, Y) = 2A(p(Z),X,Y) + 2F_1A(M(Z)7X7Y)
9S(p(2), X, Y) — 2P T(u(2), X, Y). ()

(ili) D is called metric-compatible with the Finsler structure if (D;g)(X,Y) = 0.

For torsion-free connections the bundle map p satisfies ;L(a%i) = 0; and
,u(%) = NFOy, where NF = Fffjfj and I‘fj are Christoffel symbols of the
torsion-free Finsler connection D.

We have the following general theorem of existence and uniqueness of linear
connections in different versions.

Theorem A ([9]). Let (M, F) be a Finsler manifold. Suppose S and T are
two compatible tensors in w*T'M . Then there exists a unique almost-compatible
linear connection D with torsion Tp on 7*T M satisfying (i) and (ii).

Let ¢ denote the unique vector field in HT'M such that p(f) = ¢. We define

. m—+1
A ..., A from 7*TM @ n*TM @ m*TM to R as follows:

~A(X,Y, Dy 2), (5)
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0 1 .2 .
where A:= A, A:= A, A:= A, ... and m € N. Obviously, Vm € N, the tensors

m
A are symmetric with respect to X,Y and Z. Moreover, using D7 ¢ = 0 we have
m

A(X,Y,£) = 0. A Finsler metric is called a Berwald metric if for any standard

local coordinate system (', y") in T M, the Christoffel symbols I'j; = I'}; (z) are

functions of € M alone. A Finsler metric is called a Landsberg metric if A = 0.
By means of Theorem A, we can define the general Finsler connection.

Definition 3.3. Let (M, F) be a Finsler manifold. A general-type Finsler
connection is defined as a Finsler connection D on 7*T M such that its compatible
tensors S and T' can be defined as follows:

m

S = koA +rIA+ koA + 4+ kA and T :=r7A, (6)

where the coefficients x;, ¢ = 1,...,m and r are real constants.

4. Curvature tensors

Let D be a Finsler connection defined on M. Let {e;}}_; be a local (with
respect to g) orthonormal frame field for the vector bundle 7*T'M such that
g(eiyen) =0,i=1,...,n—1and e, = £';2;. Let {w'}1" be its dual co-frame
field. One readily finds that w™ := g—;dxi = w, which is called a Hilbert form,
and w(f) = 1. Let p = w' ® €;, De; = w;? ® e; and Qe; = 20,7 @ e;, where {;7}
and {w;7} are called, respectively, the curvature forms and connection forms of
D with respect to {e;}. We have y := DF{ = F{w,’ + d(log F)&.} @ e;. Put
W't = w,t + d(log F)§%. Tt is easy to show that {w? w"t}?  is a local basis
for T*(TMpy). The equation (2) is equivalent to

dwij — wik A wkj = sz (7)
Since the ;% are 2-forms on T'Mj, they can be expanded as
j 1 j k l j k n+l 1 j n+k n+l
Q7 = SRt Al + Pl A" 4 SQ) g™ T AW (8)
Let {&;,¢é;}"; be the local basis for T(T M), which is dual to {w® w" T} |,
ie, e € HI'M,é; € VI'M such that p(e;) = e;, u(é;) = Fe;. The objects R,

P and @ are called, respectively, the hh-, hv- and vv-curvature tensors of the
connection D with the components R(eg,e;)e; = Ri/pej, Plex,é)e; = Pilye;
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and Q(éx, é)e; = Qi/pie;. From (8) we see that Ri/y = —R;7y and Qi =
—Q7 1. Let us put

k k k +k
dgij — grjwi" — Gikw;" Gij kW + Gijaw" ", 9)
l l 1 1 1
dAiji — Ajrwi’ — Ajpw;' — Ao’ = Ay’ + Agjraw™ ™, (10)
where the slash “ | 7 and point “.” are horizontal and vertical covariant deriv-
atives with respect to the Finsler connection. In a similar way, for Vm € N we
have
m m I m I m 1 m 1 m ’n+l
dAijr — Ajrwi’ — Aiw;’ — Ajjiwr’ = Agjrpw’ + Ajjraw™ ™, (11)

m

m m m
where A;;, = A(e;, ej,e) and A’“ij = gklAijk. From (10) and (11) we see that
m m
Aijklty Aijr, Aijep and Agjrg, (Ym, 1 € N) are all symmetric with respect to 4,

J and k. By definition of the Landsberg tensor, we have A;j;y,, = Aijk. Here we

m m m m+1
use the notation A;jp, = Ajjr)sf° and Ay, = A ijx. From (10) and (11) we get

Apjikn =0, Apjrea = —Ajk,  Apjrp =0 and  Apjrag = —Ajr- (12)

Remark 4.1. In general-type connection, the horizontal and vertical covariant
derivatives of the metric tensor are given by

gijie = 2((1 — ko) Ak — K1 Aiji + -+ + K Aijr)  and  giie = 2(1 — 1) Agjp.

5. A classification of some Finsler connections

The following results due to Berwald, Cartan and Shen determine the rela-
tion between hv-curvature and special Finsler spaces. These results enable us to
classify some non-Riemannian Finsler connections and distinguish three different
categories.

Theorem B ([4], [6]). Let (M, F) be a Finsler manifold. Then for the
Berwald connection (or Chern connection), hv-curvature vanishes if and only if F
is a Berwald metric.

Theorem C ([5]). Let (M, F) be a Finsler manifold. Then for the Cartan
connection (or Hashiguchi connection), hv-curvature vanishes if and only if F is
a Landsberg metric.
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Theorem D ([9]). Let (M, F) be a Finsler manifold. Then for the Shen
connection hv-curvature vanishes if and only if F' is Riemannian.

The remarkable property of Shen connection, proved by Theorem D, comes
from the fact that vanishing of its hv-curvature singles out Riemannian metric. In
contrast, Cartan, Berwald, Chern and Hashiguchi connections do not possess this
property. Thus we have three different types of Finsler connections. Theorems 5.1,
5.2 and 5.3 of this paper deal with a more general case and give rise to new
families of Finsler connections that we call Berwald-type, Cartan-type and Shen-
type connections and which are defined according to the behavior of their hv-
curvature.

Definition 5.1. Let (M, F) be a Finsler manifold. A Finsler connection is
called of Berwald-type (resp. of Cartan-type or Shen-type) if and only if vanishing
of its hv-curvature reduces the Finsler structure to the Berwaldian (resp. Lands-
bergian or Riemannian) one.

From this viewpoint one can compare some of the non-Riemannian Finsler
connections according to the compatibility of the tensors S and T
A classification of Finsler connections according
to their compatible tensors S and T

Compatible tensors
Connection S H T || Metric compatibility Torsion
L]
1. Berwald A+ A 0 almost compatible free
2. Chern-Rund A 0 almost compatible free
L] m
3. Berwald-type A+r1A+ -+ EmA 0 almost compatible free
4. Cartan A A metric compatible not free
L]
5. Hashiguchi A+ A A almost compatible not free
L] m
6. Cartan-type A+ Kk1A+ -+ EmA A depends on kK; not free
7. Shen 0 0 almost compatible free
L] m
8. Shen-type KiIA+ -+ rkmA 0 almost compatible free
L] m
(9. General-type HnoA +Kk1A+ -+ EmA H rA M depends on k; and 7 Mdepends onr

In this table A, A, 4,. .., TZ are Cartan tensors and their covariant derivatives,
k; and r are arbitrary real constants. The connections 1, 2 and 3 belong to the
Berwald-type category. The connections 4, 5 and 6 are Cartan-type connections.
The connections 7 and 8 belong to the Shen-type Category. The connection 9
contains all other connections. From at the freeness of torsion point of view, the
Shen connection is the one most similar to the Levi-Civita connection. But from
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the metric compatibility viewpoint, it is the Cartan connection which is closest
to the Levi-Civita connection.

Now we extend Theorem C' to Cartan-type connections and show that the hv-
curvature tensor of this type of connections characterizes Landsbergian structures.

Theorem 5.1. Let (M, F) be a Finsler manifold. Then for Cartan-type
connections hv-curvature vanishes if and only if F' is Landsbergian.

To prove Theorem 5.1, we need the following

Lemma 5.1. Let (M, F) be a Finsler manifold. Then for Cartan-type con-
nections we have
1) Rj'ti + R’y + R’ jxCl Ry ™ ki + Ch R ™1 4 Cl R ™ e,
2) Pi'u=Pi'ji+ Chypy = Chyp + Chr P — Ci P ju,
3) Q' = Qi" i +2(Cly 1 = Chy 1) +2(Cr Ot = ClC) +C, (Qn™ ki — Q™ ),
where Rijui = gsjRi®ki, Pijii = 9sjPi*kts Qi = 95jQi*kts Clp, = F1 g™ Ay jie.

PROOF. Let us consider the Cartan-type connection with compatible tensors

S=A+rA+ - +knAand T = A. By (3) and (4), there exist connection
1-forms {w;} satisfying the following torsion and almost compatibility conditions:

dw' = W Awt — CE WP AW (13)

dgij = grjwi® + gipw;® — 2k Agjpw® — - — QHmZijkwk. (14)
Differentiating (13) and using (7) and (10), we get:

w N = (C’,illjwj+C’,il.jw”+j)/\wk/\w"+l—Cliij’-’,;wj/\w"+k/\w"+l—C,ilwk/\ﬂln.

Replacing Q; by (8), we prove the Lemma. ([l

PROOF OF THEOREM 5.1. Let (M, F) be a Finsler manifold with Cartan-
type connection and compatible tensors S = A+ S and T = A, where § =

. m
k1A 4+ -+ KA. Then the almost compatibility condition (14) becomes
dgij = gkjwik + gikwjk — 2§,’jkwk. (15)
Differentiating this relation leads to

gkaik + giijk = 2(§ijk|sws + g@jk.swn+s) AwF + 2O£U§ijkwu Aw™T.
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From this relation and (8) we have

Rijri + Rjint = 2(Sijije — Sijrlr)s (16)
Pijii + Py = *2(§ijk.z - C’;?lguij), (17)
Qijkt + Qjirt = 0. (18)

Permuting 4, j and k in (17) and using Lemma 1 yields
Pijri = =Sijk1 + (CipSuij + CiiSujk — CjiSuki) + (Crjii — Cijuyy)
+ (CrivPrj — Cirw Piy)- (19)
. ~ . m
Multiplying this relation by y* and replacing S = k1A + -+ + K, A, we get
Pt = Cijie + {k1diji + - + kmAijr ). (20)
If F' is a Landsbergian manifold, then from the above relation we have P, ;i = 0.
Therefore by replacing this value in (19) we find Pjjr; = Cpjij; — Criyjj- In the case
of Landsbergian manifolds, Cjjy; is totally symmetric in all of its four indices and
we have P;j,; = 0. Conversely, let the hv-curvature be zero. Then by Lemma 1
we have C’,i”j = C;l|k7 therefore M is Landsbergian. (|

Theorem 5.2. Let (M, F) be a Finsler manifold. Then for Berwald-type
connections the hv-curvature vanishes if and only if F' is a Berwaldian metric.

PRrROOF. The complete proof of this theorem will not be given, only a sketch
of the proof will be presented. For a Berwald-type connection, the hv-curvature is

Pijri = —{m1Aijra + -+ kmAna} — (Aiue + A — Aparlj)

+ Ak:ispnsjl - AjksPnSil - AijsPnskl~ (21)

Therefore, we have
Pt = {k1Aju + - 4 kmAj ) — Ajn. (22)
Using these relations, the theorem will follow. (I

Theorem 5.3. Let (M, F) be a Finsler manifold. Then for Shen-type con-
nections, the hv-curvature vanishes if and only if F' is Riemannian.

PROOF. The proof of this theorem is analogous to that of Theorem 5.1 and
is not presented here. O

Theorem 5.4. Let (M, F') be a Finsler manifold. Then the hv-curvature of
general-type (respectively Berwald-type, Cartan-type or Shen-type) connections
vanishes if and only if F' is Berwaldian, Landsbergian or Riemannian.
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6. Some applications of general-type connections

Much of the practical importance of this kind of connections results from
the fact that it is adaptable, in the sense that it is useful for getting a geometric
interpretation for a given system of differential equations formed by the Cartan
tensor and its derivatives. Suppose that we are given a differential equation of
this kind and we want to find a geometric meaning for its solutions. It would
suffice to consider a Finsler connection — by fixing the compatible tensors S and
T — for which the reduced hv-curvature coincides with the differential equation
in question. We then apply one of the Theorems 5.1, 5.2 or 5.3 as applicable.
6.1. Application of Shen-type connections. Here we define Shen-type con-
nection D as Sijr = (1 — k)Ays + kAijjp — Agjp and Tijp = 0 for which the
reduced hv-curvature Py := 0 Piji is equal to the given differential equation
P = Ajjg + kAjp.

Theorem 6.1. Let (M,F) be a Finsler manifold with constant flag curvature
A such that Pj; = 0. Then F' is Riemannian.

PROOF. Let us consider the Shen-type connection D with S;j,=(1—k)Ai;x+
kAijr — Aijk, k # X and T = 0. Replacing S and T in (4) and by an argument
similar to the one used in the proof of Theorem 1, we get

Pijii + Pjiry = —2{Agjrs + Aijes} — 2k{ Aijis — Akt = 2A5im P k. (23)
From (23) we have
Pijri = —{Aijea + Agjia} — kAgjia + k{— Ay + Aty — Apargj}

- 2Aijmpnmkl + 2Ak7mpnmjl - 2Ajkm ngl (24>

Therefore Pji; = Ajii + kAjr. The equation Pjp; = 0 holds, from which we have
A+EA=0. (25)
Since (M, F) is a Finsler manifold with constant flag curvature A,
A+ra=0. (26)

From (25) and (26) one has (A — k)A = 0, which means that F' is a Riemannian
metric. O

Using the above special Shen-type connection again together with a hypoth-
esis on the topology of M, we have the following
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Theorem 6.2. Let (M,F) be a complete Finsler manifold with bounded
Cartan tensor. Then (M, F') is a Riemannian manifold if and only if Pji; = 0.

PROOF. Let us consider the above Shen-type connection on the complete
Finsler manifold (M, F). Then from the last theorem we have that the hv-
curvature of this connection reduces to Pj; = Ajkl + kA, Fix any XY, 7 €
™TMatv e LM ={weT, M, F(w)=1}. Let ¢ : R — M be the unit speed ge-
odesic in (M, F) with 9¢(0) = v and ¢ := % be the canonical lift of ¢ to TMy. Let
X(t), Y(t) and Z(t) denote the parallel sections along ¢ with X (0) = X, Y (0) =Y
and Z(0) = Z. Put A(t) = A(X(t),Y(t), Z(t)), A(t) = A(X(t),Y (t), Z(t)) and

A(t) = A(X(t),Y(t), Z(t)). Now along geodesics we have %‘f = A and from

Ajkl + kAjkl =0 we get
A(t) = (cq sinh Vkt + ¢, cosh \/Et)A(O). (27)

For v € TMjy, let us define ||A||, := sup A(X,Y,Z) where the supremum is
taken over all unit vectors of ;T M. Let us put ||A| = sup,eras [|Allo where
IM = U,cp I M. Since M is complete and [|A|| < oo, by letting t — +o0o and
t — —oo, we have ¢; = 0 and ¢o = 0. Therefore A = 0, and F' is Riemannian. [

6.2. Application of Berwald-type connections. Here we consider a special
Berwald-type connection for which the hv-curvature is equal to the given differ-
ential equation.

Theorem 6.3. Let (M, F) be a complete Finsler manifold with bounded
Landsberg tensor. Then F' is a Landsberg metric if and only if Pji; = 0.

PROOF. If we put kK1 = k3 = -+ = Ky, = 0 and kg # 0 in (22), then
we find a special Berwald-type connection for which the hv-curvature is equal to
P = KgAjkl —Ajkl. Let F be a Landsberg metric, then from the above equation
we get Py = 0. Conversely, if Pji; = 0 we will have

K/QAjk»l - Ajkl = 0. (28)

By an argument like the one presented in the proof of the last theorem, we have
along the geodesics
A(t) = et A(0). (29)

For v € T My, let us define ||AHU = sup A(X,Y, Z) and HAH = SUP,ernr HAHv
Using completeness of M, ||A| < oo and letting t — 400 we have A(0) =
A(X, Y, Z) = 0. From (29) we get A =0, that is, F is a Landsberg metric. O
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Corollary 6.1. Every compact Finsler manifold is Landsbergian if and only
if Pji; vanishes.

Next we consider another special Berwald-type connection and give a proof
of the following well-known result due to AKBAR-ZADEH [1].

Corollary 6.2. Let (M, F) be a complete Finsler manifold with negative
constant flag curvature A\ and bounded Cartan tensor. Then F' is Riemannian.

PROOF. Letusput ko = kg =+ =Ky, =0, k1 =2 and k3 = % #01in (21).
We obtain a connection for which the hv-curvature becomes

. 1...
Pijri = — {2Aijk.l + /\Aijk.l} — (Aijyr + Ajripi — Arayj)
+ AkisPnSjl - AjksPnsil - AijsPnZl~ (30)
From this Pl = % A'jkl + Ajkl- As M has constant flag curvature we have

A+ XA = 0. So by the same argument as in the above theorem we find
A(t) = (cl + gV @,e’mt)A(O). (31)

Using the boundary assumption on the Cartan tensor and letting ¢t — oo and
t — —o0, we get co = c3 = 0. Therefore A = c¢; and A = 0. It is easy to see that
A=0. O

7. Relation between some connections

There is a well-known result which can be used as a definition for Landsberg
spaces, see for example [3].

Theorem E. Let (M, F) be a Finsler manifold. Then M is a Landsberg
manifold if and only if the Berwald connection coincides with the Chern connec-
tion.

In this context we prove the following

Theorem 7.1. Let (M, F) be a complete Finsler manifold with bounded
Cartan tensor. Then M is a Riemannian manifold if and only if the Berwald
connection coincides with the Shen connection.
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Proor. Simple calculation shows that bfz-k =T + Al + A;k, where bF;.k
and °I';; are the Christoffel coefficients of the Berwald and Shen connections
respectively. If bF% = Sfék, then Aék + Agk = 0. By the same argument as
in the above theorems, we find A + A = 0 whose solution is A(t) = e~*A(0).
Completeness of M and the bounded Cartan tensor hypothesis imply that A=0.

O

Lemma 7.1. The Christoffel symbols for Berwald-type, Cartan-type and
Shen-type connections denoted by BT, “T' and °T respectively, are given by:

BFi _ ﬁ {593_7 5gjk 5gks } m
ik —

oxk oxs oxd

2 + Al (AT AT,

i 918{5933‘ 0gik | OGks

Jjk

dxk oxs oxd

} + C;SN;ﬁ + (’flAijk 4+ 4 IimAijk);

ST 928{5953' 0gik  OGks

.. m .
} + (R A%+ -+ B A ),

ik = oxk  dxs oxd
6 ._ 9 _ pni_0
where 505 1= 525 — N; By

PrOOF. We prove this lemma for Cartan-type connections only. In local

coordinates (z%,y’) for TMy, we write D o 0; = Cf‘fjﬁk and D » 0; = FZ;-(?;C.
Oxt oy’

Put N} = Tyl = F{yf09 — AfyL, 020"} where f; = %gkl{% + Qau %}.

For Cartan-type connections we consider the compatible tensors S and 71" defined

by S =A+Sand T = A, where S = IilA—‘r“-—i-IimiZ. From (3) and (4) we have

Crk _ Crk sk s~k
T = °T% 4+ NpCE, — N2Ck, (32)
FZ; = Czkj +y ;lcfm (33)
o -
@(gm‘) = 91 “Th; — 91, ki + 2850, (34)
a l l
G (9i5) = 9j1Fip — Gl 1j- (35)

Permuting 4, j and k in (34) and using (32), one obtains

c s m TS &
T =5 + N;CE — ¢"" N3, Cije + S35 (36)

Since %S{fﬁ? — %‘;jf + %} = 7;% — g"™Ng,Cjks, we get the desired Christoffel
symbols. For other connections the same method can be used. ([
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Corollary 7.1. Let (M, F) be a Finsler manifold. The Berwald-type con-
nection coincides with the Shen-type connection if and only if F' is Riemannian.
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