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Edge-counting vectors, Fibonacci cubes,

and Fibonacci triangle

By SANDI KLAVŽAR (Maribor) and IZTOK PETERIN (Maribor)

Abstract. Edge-counting vectors of subgraphs of Cartesian products are intro-

duced as the counting vectors of the edges that project onto the factors. For several

standard constructions their edge-counting vectors are computed. It is proved that the

edge-counting vectors of Fibonacci cubes are precisely the rows of the Fibonacci trian-

gle and that the edge-counting vectors of Lucas cubes are Fn−1-constant vectors. Some

problems are listed along the way.

1. Introduction

The Cartesian product of graphs is the central graph product [13]. It has nu-

merous appealing algebraic properties and is applicable in a variety of situations.

Its fundamental graph property goes back to Sabidussi [24] and Vizing [28]:

every connected graph has a unique prime factor decomposition with respect to

the Cartesian product. From the algorithmic point of view it took about 20 years

of intensive developments to finally prove that the prime factor decomposition

can be obtained in linear time [14].

The structure of subgraphs of Cartesian products has been extensively stud-

ied as well. There are many classes of graphs that are naturally defined as (metric)

subgraphs of Cartesian products, see [1], [4], [6], [17], [26] for a sample of such
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references. Graphs that are subgraphs of general Cartesian products has been

studied as well, see [2], [16], [19], [23] where several characterizations of these

graphs are proved.

In this paper we introduce edge-counting vectors for subgraphs of Cartesian

products as the vectors that count the edges that project onto the factors. This

gives only a partial information about such subgraphs but nevertheless some

interesting information can be obtained from these vectors. We demonstrate this

fact by Fibonacci cubes and Lucas cubes by considering their natural embedding

into hypercubes.

Fibonacci cubes were introduced in [11], [12] as a model for interconnection

network and extensively studied afterward, see [15], [18], [20], [22]. An O(mn)

algorithm for recognition of Fibonacci cubes is given in [27], while in [25] the

complexity has been improved to O(m log n). (As usual, n stands for the number

of vertices and m for the number of edges of a given graph.) A closely related

class of graphs is formed by Lucas cubes, see [15], [21].

The paper is organized as follows. In the next section definitions and concepts

needed in this paper are given. In the subsequent section we define the edge-

counting vectors and give several examples of such vectors. In particular we

determine the edge-counting vectors for products of subgraphs, for amalgamations

of graphs, and for the canonical metric representation of a graph. In Section 4

we consider the edge-counting vectors of the Fibonacci cubes as subgraphs of

hypercubes. This enables us to give a new interpretation to the Fibonacci triangle:

the edge-counting vectors of the Fibonacci cubes are just the rows of the triangle.

The edge-counting vectors of the extended Fibonacci cubes are also obtained.

In the last section we prove that the edge-counting vectors of Lucas cubes are

Fn−1-constant vectors. We also search for other classes of graphs with constant

edge-counting vectors and find some more interesting examples.

2. Preliminaries

The Cartesian product G� H of graphs G and H is the graph with the vertex

set V (G)×V (H) where vertices (g, h) and (g′, h′) are adjacent if gg′ ∈ E(G) and

h = h′, or g = g′ and hh′ ∈ E(H). On Figure 1 the Cartesian product of the

complete bipartite graph K1,3 with the path on four vertices P4 is shown.

Note that the Cartesian product of two edges (that is, of complete graphs on

two vertices) is the 4-cycle C4. Therefore the notation � has now been adopted
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Figure 1. Cartesian product K1,3 � P4.

by most authors in the “product graph community”. From the same reason some

authors also use the name box product for the Cartesian product, see [5].

The Cartesian product graph operation is associative, commutative, and the

one vertex graph K1 is the unit. By the associativity we can write �
k
i=1Gi for the

Cartesian product of factors G1, G2, . . . , Gk. Let v = (v1, v2, . . . , vk) be a vertex

of G = �
k
i=1Gi. A subgraph of G in which we fixed all coordinates except vi of

vertex v is isomorphic to Gi and is called Gi-fiber.

The simplest Cartesian product graphs are hypercubes. The k-cube or a

hypercube Qk is the Cartesian product of k factors K2. Hence the vertices of Qk

can be identified with all binary strings of length k, two vertices being adjacent

if they differ in precisely one position.

A graph H is an isometric subgraph of G if dH(u, v) = dG(u, v) for any

vertices u, v ∈ H , where d is the distance function between vertices. Isometric

subgraphs of hypercubes are called partial cubes, see [3], [7], [8], [13]. In this paper

we always assume that a partial cube G is embedded in the smallest possible

hypercube Qn, that is, n is the so-called isometric dimension of G. It is well-

known that such an embedding is unique. Hence all the edge-counting vectors of

partial cubes considered will be unique (modulo permutations of coordinates).

A Fibonacci string is a binary string a1a2 . . . an such that ai · ai+1 = 0 holds

for i = 1, 2, . . . , n − 1. In other words, a Fibonacci string is a binary string of

length n with no two consecutive ones. The Fibonacci cube Γn, has the Fibonacci

strings as vertices, two vertices being adjacent whenever they differ in exactly

one coordinate. The Lucas cube Λn, is the graph with those Fibonacci strings of

length n as vertices in which the first and the last bit are not both 1, where two

vertices are again adjacent if they differ in exactly one bit. Note that Λ1 = K1,
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Λ2 = P3, and Λ3 = K1,3. On Figure 2 the Fibonacci cube Γ4 and the Lucas

cube Λ5 are given together with the corresponding labelings of their vertices with

Fibonacci strings.

0101

00100001

10101001
1000

0100

0000

01000

00000

10010

01010

1000000010

10100

01001

00100

00001

00101

Figure 2. Fibonacci cube Γ4 and Lucas cube Λ5.

3. Edge-counting vectors

We now introduce our central concept, the edge-counting vectors, and give

several examples of such vectors.

Let H be a subgraph of the Cartesian product G = �
k
i=1Gi, k ≥ 1. Let

e = hh′ be an edge of H , where h = (h1, h2, . . . , hk) and h′ = (h′

1, h
′

2, . . . , h
′

k).

Then there exists exactly one i such that hih
′

i ∈ E(Gi), while hj = h′

j for j 6= i.

We will say that the edge e is of type i. For i = 1, 2, . . . , k let

Ei(H ; G) = {e ∈ E(H) | e is of type i},

set ei(H ; G) = |Ei(H ; G)|, and let

v(H ; G) = (e1(H ; G), e2(H ; G), . . . , ek(H ; G))

be the edge-counting vector of the subgraph H of the Cartesian product G.

Note that v(H ; G) is well-defined since H is a fixed subgraph of a given Carte-

sian product G. In general, however, a graph H can have different embeddings

into a Cartesian product G, and a given graph G can have different representa-

tions as Cartesian product. For instance, let G = P3 � P3. Then v(P3; G) can

be any of the vectors (2, 0), (1, 1), and (0, 2), depending which subgraph P3 of
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G we select. Also, let the n-cube Qn be represented as usual: G = �
n
i=1K2.

Then the edge-counting vector v(Qn; G) = (2n−1, . . . , 2n−1) is a vector of length

n. However, if we set G = K2 � Qn−1 then the edge-counting vector becomes

v(Qn; G) = (2n−1, (n − 1)2n−1).

Unless stated otherwise, for a connected Cartesian product G we will as-

sume that its representation as a Cartesian product is the unique prime factor

decomposition of G. In particular, the n-cube Qn will be always represented as

�
n
i=1K2.

Let H be a subgraph of G = �
k
i=1Gi and H ′ a subgraph of G′ = �

ℓ
i=1G

′

i.

Then the natural product embedding of H � H ′ as a subgraph into G� G′ is defined

as follows. Let h ∈ V (H) and h′ ∈ V (H ′) correspond to (g1, . . . , gk) ∈ V (G) and

(g′1, . . . , g
′

ℓ) ∈ V (G′), respectively. Map the vertex (h, h′) of H � H ′ into the

vertex (g1, . . . , gk, g′1, . . . , g
′

ℓ) of G� G′.

Proposition 3.1. Let H be a subgraph of G = �
k
i=1Gi and H ′ a subgraph

of G′ = �
ℓ
i=1G

′

i. Then for the natural product embedding of H � H ′ into G� G′,

the edge-counting vector v(H � H ′; G� G′) equals to

(n′e1(H ; G), . . . , n′ek(H ; G), ne1(H
′; G′), . . . , neℓ(H

′; G′)),

where n = |V (G)| and n′ = |V (G′)|.

Proof. Consider ei(H � H ′; G� G′), where 1 ≤ i ≤ k + ℓ. Let e be an edge

of H � H ′ of type i and assume for simplicity that i = 1. Then

e = (g1, g2, . . . , gk, g′1, . . . , g
′

ℓ)(x, g2, . . . , gk, g′1, . . . , g
′

ℓ),

where g1x ∈ E(G1). Now, for any edge (g1, g2, . . . , gk)(x, g2, . . . , gk) from E1(H ; G),

the last ℓ coordinates g′1, . . . , g
′

ℓ can be arbitrarily selected. In other words,

e1(H � H ′; G� G′) = e1(H ; G)|V (G′)|.

The same argument applies to the other coordinates, hence the result. �

Let H and H ′ be isomorphic subgraphs of graphs G and G′, respectively.

Then the amalgamation of G and G′ along H and H ′ is the graph obtained from

the disjoint union of G and G′ by identifying (in view of an isomorphism H → H ′)

the subgraphs H and H ′. For our purposes, the following special amalgamations

will be useful.

Let H and H ′ be subgraphs of Cartesian products G and G′, respectively. Let

A(H, H ′) be the graph that is obtained by amalgamating an arbitrary vertex of H
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with an arbitrary vertex of H ′. (Sometimes this is called a vertex-amalgamation.)

A natural amalgamation embedding of A(H, H ′) as a subgraph into G� G′ is

defined as follows. Embed H in any G-fiber and let u be the vertex of G� G′

into which the amalgamated vertex of H is mapped. Clearly, the amalgamated

vertex of H ′ is also mapped into u. Then embed H ′ in the unique G′-fiber that

intersects u. The following result, stated for further reference, follows easily.

Proposition 3.2. Let H and H ′ be subgraphs of the Cartesian products

G and G′, respectively. Let v(H ; G) = (a1, . . . , ak) and v(H ′; G′) = (a′

1, . . . , a
′

ℓ).

Then

v(A(H, H ′); G� G′) = (a1, . . . , ak, a′

1, . . . , a
′

ℓ)

for the natural amalgamation embedding of A(H, H ′) into G� G′.

For the final example in this section consider the Graham–Winkler’s canon-

ical metric representation from [9]. So let

α : G → G/E1 � · · · � G/Ek

be the canonical metric representation of the graph G, see [9] or [13] for its

definition. Then by the definition of the embedding,

v(G; G/G1 � · · · � G/Gk) = (|E1|, . . . , |Ek|) .

We note that with a similar method induced subgraphs of Hamming graphs in

particular [17] and induced subgraphs of Cartesian graphs in general [23] can be

treated.

4. Fibonacci cubes and Fibonacci triangle

In this section we consider the edge-counting vectors of Fibonacci cubes as

subgraphs of hypercubes. Clearly, Γn is a subgraph of Qn, just identify the

vertices of Γn with the corresponding vertices of Qn. Call this embedding the

natural embedding of Γn into Qn.

In the rest we will often use the well-known fact that Γn contains Fn+2

vertices, cf. [12].

Theorem 4.1. Let n ≥ 1. Then for the natural embedding of Γn into Qn,

v(Γn; Qn) = (F1Fn, F2Fn−1, . . . , FnF1).
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Proof. Observe that e1(Γn; Qn) = |{10b3 . . . bn}|, where b3 . . . bn is an ar-

bitrary Fibonacci string. Therefore, e1(Γn; Qn) = Fn = F1Fn. We similarly

get that en(Γn; Qn) = |{b1 . . . bn−201}|, hence en(Γn; Qn) = Fn = FnF1. Let

2 ≤ i ≤ n − 1, then

ei(Γn; Qn) = |{b1 . . . bi−2010bi+2 . . . bn}|.

Since b1 . . . bi−2 is an arbitrary Fibonacci string of length i−2 and bi+2 . . . bn is an

arbitrary Fibonacci string of length n− i− 1, we conclude that for 2 ≤ i ≤ n− 1,

ei(Γn; Qn) = FiFn−i+1 and the proof is complete. �

Theorem 4.1 immediately implies the following result, cf. [15]:

Corollary 4.2. For any n ≥ 1, |E(Γn)| =
∑n

i=1
FiFn−i+1.

The Fibonacci triangle is defined with

Fn,m = FmFn−m+1, 1 ≤ m ≤ n,

where n denotes the row and m the position in the n-th row of the entry Fn,m [10].

It follows immediately from the definition that it is centrally symmetric, that is,

Fn,m = Fn,n−m+1. The first several rows of the Fibonacci triangle are shown in

Table 1.

1

1 1

2 1 2

3 2 2 3

5 3 4 3 5

8 5 6 6 5 8

13 8 10 9 10 8 13

21 13 16 15 15 16 13 21

Table 1. The first few rows of the Fibonacci triangle

Theorem 4.1 gives the following reinterpretation of the Fibonacci triangle.

Corollary 4.3. For any n ≥ 1, the vector v(Γn; Qn) coincides with the n-th

row of the Fibonacci triangle.

Let us write Vi for V (Γi). Then it is clear that Vi+2 = 0Vi+1 ∪ 10Vi. With

this property it is natural to define the extended Fibonacci cube of order n, Γi
n,

0 ≤ i ≤ n, as follows. The vertex set V i
n of Γi

n is defined recursively by V i
n+2 =
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0V i
n+1 ∪ 10V i

n, where V i
i is the set of all binary strings of length i and V i

i+1 the

set of all binary strings of length i + 1. Note that Γi
i = Qi, Γi

i+1 = Qi+1, and

Γ0
n = Γn.

Extended Fibonacci cubes where introduced in [30]. In [29] Whitehead and

Zagaglia Salvi showed that extended Fibonacci cubes are Cartesian products of

Fibonacci cubes and hypercubes, more precisely:

Γi
n = Γ0

n−1 � Qi = Γn−1 � Qi.

As Γn−1 embeds into Qn−1, it follows that Γi
n naturally embeds into Qn−1+i.

Combining this fact with Proposition 3.1 and Theorem 4.1 we thus have:

Corollary 4.4. For any n ≥ i ≥ 0,

v(Γi
n; Qn−1+i) = (2iF1Fn−1, . . . , 2

iFn−1F1, 2
i−1Fn+1, . . . , 2

i−1Fn+1),

where the term 2i−1Fn+1 appears i times.

We close the section with the following problem.

Problem 4.5. Which partial cubes are uniquely (modulo its permutations)

determined by its edge-counting vector?

All hypercubes have this property as well as C6 and P3. This can also

be checked to be true for Fibonacci cubes for small n’s. In general we pose a

question whether Fibonacci cubes can be characterized among partial cubes by

this property. More precisely, is a partial cube G isomorphic to Γn provided that

v(G; Qn) is the n-th row of the Fibonacci triangle? Note that one can easily find

graphs that are not partial cubes but have the same edge-counting vectors as Γn,

n ≥ 4.

5. Lucas cubes and constant edge-counting vectors

Let H be a subgraph of a Cartesian product G with v(H ; G) = (ℓ, . . . , ℓ).

Then we say that v(H ; G) is a constant edge-counting vector, more precisely ℓ-

constant. In this section we first prove that the edge-counting vector of the Lucas

cube Λn (as a subgraph of Qn) is Fn−1-constant. After that several more graphs

with constant edge-counting vectors are constructed.

Vertices of the Lucas cube Λn can be obtain from the vertices of the Fibonacci

cubes Γn−1 and Γn−3 as follows: V (Λn) = 0V (Γn−1)∪10V (Γn−3)0. For the proof

that v(Λn; Qn) is Fn−1-constant we need the following easy lemma.
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Lemma 5.1. Let n ≥ 4. Then for any i with 3 ≤ i ≤ n − 3,

Fi−1Fn−i+1 + Fi−2Fn−i = Fn−1.

Proof. For i = 3 we have F2Fn−2 +F1Fn−3 = Fn−1. For the induction step

we can compute in the following way: FiFn−i+Fi−1Fn−i−1 = (Fi−1+Fi−2)Fn−i+

Fi−1Fn−i−1 = Fi−1(Fn−i + Fn−i−1) + Fi−2Fn−i = Fi−1Fn−i+1 + Fi−2Fn−i =

Fn−1. �

Theorem 5.2. Let n ≥ 2. Then for the natural embedding of Λn into Qn,

v(Λn; Qn) = (Fn−1, Fn−1, . . . , Fn−1).

Proof. Since Λ2 = P3 and Λ3 = K1,3 we have v(Λ2; Q2) = (1, 1) = (F1, F1)

and v(Λ3; Q3) = (1, 1, 1) = (F2, F2, F2). Assume in the rest that n ≥ 4.

Observe first that e1(Λn; Qn) = |{10b3 . . . bn−10}|, where b3 . . . bn−1 is an

arbitrary Fibonacci string. Therefore e1(Λn; Qn) = Fn−1. By symmetry we have

en(Λn; Qn) = |{0b2 . . . bn−201}|, hence en(Λn; Qn) = Fn−1. Similarly we have

e2(Λn; Qn) = |{010b4 . . . bn}| = Fn−1 and again by symmetry en−1(Λn; Qn) =

Fn−1.

For 3 ≤ i ≤ n− 3 use the fact that V (Λn) = 0V (Γn−1) ∪ 10V (Γn−3)0. Then

ei(Λn; Qn) = |{0b2 . . . bi−2010bi+2 . . . bn}| + |{10b3 . . . bi−2010bi+2 . . . bn−10}|,

where b2 . . . bi−2, bi+2 . . . bn, b3 . . . bi−2, and bi+2 . . . bn−1 are arbitrary Fibonacci

strings of length i − 3, n − i − 1, i − 4, and n − i − 2, respectively. Therefore for

3 ≤ i ≤ n − 3, ei(Λn; Qn) = Fi−1Fn−i+1 + Fi−2Fn−i. The proof is complete by

Lemma 5.1. �

Theorem 5.2 and the Proposition 7 of [15] immediately imply:

Corollary 5.3. For any n ≥ 2,

Fn−1 =
1

n

n−1
∑

i=1

FiLn−1−i.

Propositions 3.1 and 3.2 suggest how to obtain many subgraphs with constant

edge-counting vectors. This is done in the next two corollaries, respectively.

Corollary 5.4. Let H ⊆ G and H ′ ⊆ G′ be as in Proposition 3.1. Then

v(H � H ′; G� G′) is a constant edge-counting vector if and only if v(H ; G) is

an i-constant edge-counting vector, v(H ′; G′) is a j-constant edge-counting vec-

tor, and j|H | = i|H ′|. Moreover, in this case we have v(H � H ′; G� G′) =

(j|H |, . . . , j|H |).
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Corollary 5.5. Let A(H, H ′) be an amalgam of H and H ′ where both H

and H ′ have ℓ-constant edge-counting vectors. Then A(H, H ′) has an ℓ-constant

edge-counting vector as well.

In the rest we give some more partial cubes with constant edge-counting

vectors. First two trivial examples: the edge-counting vector of an arbitrary tree

is 1-constant, and the edge-counting vector of an even cycle is 2-constant.

A nice class of partial cubes is formed by bipartite wheels BWn, n ≥ 3. BWn

is a graph obtained from the cycle C2n and the central vertex v by joining every

second vertex of the cycle with v. Note that Λ5 = BW5. It is straightforward to

verify that v(BWn; Qn) is 3-constant.

We define extended bipartite wheels, EBW ℓ
n, n ≥ 3, 0 ≤ ℓ ≤

⌈

n
2

⌉

− 2, as

follows. For ℓ = 0 we set EBW 0
n = BWn. For ℓ > 0 connect on the i-th step,

i = 1, . . . , ℓ, vertices x and y by path of length 2, if d(x, y) = 2 and x and y are on

maximum distance from v in EBW i−1
n . Note that EBW ℓ

n is not a partial cube

anymore if ℓ >
⌈

n
2

⌉

− 2. See Figure 3 where EBW 1
7 and EBW 2

7 are shown. It is

not difficult to verify that v(EBW ℓ
n; Qn) = (3 + 2ℓ, . . . , 3 + 2ℓ).

Figure 3. Extended wheels EBW
1
7 and EBW

2
7

It seems an interesting project to classify all partial cubes (or all median

graphs) with constant edge-counting vectors.
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[17] S. Klavžar and I. Peterin, Characterizing subgraphs of Hamming graphs, J. Graph The-

ory 49 (2005), 302–312.
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