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Invariance of weighted quasi–arithmetic means with
continuous generators

By JUSTYNA JARCZYK (Zielona Góra)

Abstract. Let I ⊂ R be an open interval and p, q, r ∈ (0, 1). We find all continuous

and strictly monotonic functions α, β, γ : I → R satisfying the functional equation

λα(β−1(µβ(x) + (1− µ)β(y))) + (1− λ)α(γ−1(νγ(x) + (1− ν)γ(y)))

= λα(x) + (1− λ)α(y)

generalizing the Matkowski–Sutô equation. In the proof we adopt a method elaborated

by Z. Daróczy and Zs. Páles when solving the Matkowski–Sutô equation, some results

of A. Járai on improving regularity of solutions and an extension theorem by Z. Daróczy

and G. Hajdu. We also use a theorem giving the form of all twice continuously differ-

entiable solutions of the above equation proved jointly with J. Matkowski.

1. Introduction

One of the most important classes of means consists of weighted quasi–
arithmetic ones, that is means of the form

A
[α]
λ (x, y) := α−1(λα(x) + (1− λ)α(y)),

where α is a continuous strictly monotonic function defined on a real interval and
λ ∈ (0, 1). In this paper we give a complete solution of the following invariance
problem: find all means A

[α]
λ , A

[β]
µ , A

[γ]
ν such that

A
[α]
λ ◦

(
A[β]

µ , A[γ]
ν

)
= A

[α]
λ , (1)
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that is A
[α]
λ is invariant with respect to the pair

(
A

[β]
µ , A

[γ]
ν

)
. We consider this

problem assuming that α, β, γ are continuous functions defined on a real interval.
In the class C2 of twice continuously differentiable functions it was solved jointly
with J. Matkowski in [10]. A special case of (1), namely

A
[α]
1/2 ◦

(
A

[β]
1/2, A

[γ]
1/2

)
= A

[α]
1/2,

with α being the identity function, was solved by O. Sutô [15] in the class
of analytic generators and then by J. Matkowski [12] in the class C2. All
continuously differentiable solutions were found by Z. Daróczy and Zs. Páles

in [4]. In the proof of Theorem 1 below we adopt a method elaborated by them in
[5], [6]. In [5] they presented a complete solution of the Matkowski–Sutô problem
with continuous generators. The same method was applied by them in [6] to
determine all solutions of (1) in the class of continuous generators in the case
λ = µ = ν.

The following result is the main one of the paper and plays a fundamental
role in solving our problem.

Theorem 1. Let I ⊂ R be an open interval. Continuous strictly monotonic

functions ϕ,ψ : I → R and numbers λ, µ, ν ∈ (0, 1) satisfy

λϕ−1(µϕ(x) + (1− µ)ϕ(y)) + (1− λ)ψ−1(νψ(x) + (1− ν)ψ(y))

= λx + (1− λ)y (2)

for all x, y ∈ I if and only if the following two conditions are fulfilled:

(i) λ =
ν

1− µ + ν
,

(ii) there exist a, c ∈ R \ {0} and b, d ∈ R such that

ϕ(x) = ax + b and ψ(x) = cx + d, x ∈ I,

or λ = 1/2 and

ϕ(x) = aepx + b and ψ(x) = ce−px + d, x ∈ I,

with some p ∈ R \ {0}.
Given an interval I, functions f, g : I → R and an interval J ⊂ I we say that

f and g are equivalent on J , in notation f ∼ g on J , if there are a, b ∈ R, a 6= 0,
such that

g(x) = af(x) + b, x ∈ J.
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Remark 1. Using the relation ∼ and defining χp : I → R by

χp(x) =

{
x, if x ∈ I, p = 0,

epx, if x ∈ I, p 6= 0,

for every p ∈ R, the assertion (ii) of Theorem 1 can be rewritten as follows:

(ii’) ϕ ∼ χ0 and ψ ∼ χ0 on I

or λ = 1/2 and
ϕ ∼ χp and ψ ∼ χ−p on I

with some p ∈ R \ {0}.
In what follows λ, µ, ν denote fixed numbers from (0, 1).
We start with a number of useful lemmas. The first one is a particular case

of some results of Zs. Páles [14] (cf. Corollary 6 and Example 2).

Lemma 1. Let J ⊂ R be an open interval and f : J → R be a strictly

increasing function such that

J 3 s 7→ f(s)− f(µs + (1− µ)t)

strictly increases for every t ∈ J . Then for every s0 ∈ J there exist numbers

δ ∈ (0,∞) and K, L ∈ (0,∞) such that (s0 − δ, s0 + δ) ⊂ J and

K ≤ f(s)− f(t)
s− t

≤ L

for every s, t ∈ (s0 − δ, s0 + δ), s 6= t.

In the case J = R the next lemma follows directly from [1; Sec. 2.2.6, The-
orem 1], (cf. also [11; Chapter XII, Sec. 10, Lemma 1]). Nevertheless, for the
convenience of the reader we give an immediate argument.

Lemma 2. Let J ⊂ R be an interval and let ϑ ∈ R \ {0, 1}. If f : J → R
satisfies

f(µs + (1− µ)t) = ϑf(s) + (1− ϑ)f(t) (3)

for all s, t ∈ J , then there exist an additive function a : R → R and a real b ∈ R
such that

f(s) = a(s) + b, s ∈ J.
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Proof. Applying the Daróczy–Páles identity (see [3])

µ

(
(1− µ)

s + t

2
+ µs

)
+ (1− µ)

(
µ

s + t

2
+ (1− µ)t

)
= µs + (1− µ)t

and (3) we obtain

ϑf(s) + (1− ϑ)f(t) = ϑ2f(s) + 2ϑ(1− ϑ)f
(

s + t

2

)
+ (1− ϑ)2f(t)

for every s, t ∈ J and, consequently,

f(s) + f(t)
2

= f

(
s + t

2

)
, s, t ∈ J,

whence the assertion follows (cf., for instance, [11; Chapter XIII, Sec. 2, Theo-
rem 1], also [1; Sec. 2.1.4]). ¤

Remark 2. We can also argue in a different way. Namely, it follows from
the general extension theorem of Zs. Páles [13; Theorem 5] that any solution
of (3) admits an extension from J to R satisfying (3) for all s, t ∈ R. Using the
Daróczy–Páles identity we see that this extension satisfies Jensen’s equation on
R and, consequently, is affine as stated in Lemma 2.

Making use of some results of A. Járai from the monograph [9] and reasoning
similarly as Z. Daróczy and Zs. Páles in [5] we prove the following

Lemma 3. Let J ⊂ R be an open interval and f, g : J → (0,∞) satisfy

f(µs + (1− µ)t)[(1− ν)g(t)− (1− µ)g(s)]

= µ(1− ν)f(s)g(t)− (1− µ)νf(t)g(s) (4)

for all s, t ∈ J . If f is Lebesgue measurable and g is of the first Baire class then

f and g are continuous on a nonempty subinterval of J .

Proof. If f is constant on an interval contained in J then, by (4), we infer
that g is also constant on the same subinterval.

Now assume that g is constant on an interval J0 ⊂ J . Then equation (4)
can be rewritten in the form

f(µs + (1− µ)t)(µ− ν) = µ(1− ν)f(s)− (1− µ)νf(t), s, t ∈ J0. (5)



Invariance of weighted quasi–arithmetic means with continuous generators 283

If µ = ν then, by (5), f is constant on J0. If µ 6= ν then (5) is equivalent to the
condition

f(µs + (1− µ)t) =
µ(1− ν)
µ− ν

f(s)− (1− µ)ν
µ− ν

f(t), s, t ∈ J0.

Let ϑ := µ(1−ν)
µ−ν . Then

f(µs + (1− µ)t) = ϑf(s) + (1− ϑ)f(t), s, t ∈ J0.

Applying Lemma 2 we obtain the existence of an additive function a : R → R
and a number b ∈ R such that

f(s) = a(s) + b, s ∈ J0.

Since f is positive a is bounded below, whence there exists a c ∈ R such that

f(s) = cs + b, s ∈ J0,

and, consequently, f is continuous on J0. (In fact, inserting the form of f into
(5) one can observe that f is constant on J0.)

Now assume that neither f , nor g is constant on a subinterval of J and let

C(g) := {v ∈ J : g is continuous at v}.

Since g is of the first Baire class C(g) is a dense Gδ subset of J . We will show
that there exist s0, t0 ∈ C(g), s0 6= t0, such that

(1− µ)g(s0) 6= (1− ν)g(t0). (6)

Suppose that
(1− µ)g(s) = (1− ν)g(t)

for all different s, t ∈ C(g). If v ∈ C(g) then g is constant on C(g) \ {v}. The
set C(g) being uncountable, contains two different points. Consequently, g is
constant on C(g), i.e. there exists a k ∈ R such that

g(t) = k for every t ∈ C(g). (7)

Therefore µ = ν and equation (4) can be rewritten in the form

f(µs + (1− µ)t)(g(t)− g(s)) = µ(f(s)g(t)− f(t)g(s)). (8)
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Thus, by (7),
µk(f(s)− f(t)) = 0, s, t ∈ C(g),

whence f is constant on C(g), i.e. there exists an l ∈ R such that f(t) = l for
every t ∈ C(g).

If there existed an s0 ∈ J such that µs0 + (1 − µ)t ∈ J \ C(g) for every
t ∈ C(g) then C(g) would be homeomorphic with a subset of J \ C(g). This,
however, is impossible since C(g) is a dense Gδ subset of J and, consequently,
J \ C(g) is of the first Baire category. Therefore for every s ∈ J there exists a
t ∈ C(g) such that µs+(1−µ)t ∈ C(g). Now if s ∈ J and t ∈ C(g) are such that
µs + (1− µ)t ∈ C(g) then, by (8), we have

l[k − g(s)] = µ[kf(s)− lg(s)].

Hence

f(s) =
kl − l(1− µ)g(s)

kµ
, s ∈ J.

Using again (8) we obtain

kl − l(1− µ)g(µs + (1− µ)t)
kµ

[g(t)− g(s)]

= µ

(
kl − l(1− µ)g(s)

kµ
g(t)− kl − l(1− µ)g(t)

kµ
g(s)

)
, s, t ∈ J,

and, consequently,

[g(t)− g(s)][k − g(µs + (1− µ)t)] = 0, s, t ∈ J. (9)

Since g is not constant on J there exists a v0 ∈ J such that m := g(v0) 6= k. Take
arbitrary v ∈ J and ε > 0 with (v − ε, v + ε) ⊂ J . Since g is not constant on
intervals there exists an s ∈ (v − ε, v + ε) such that

g(µs + (1− µ)v0) 6= k.

By (9) we have g(s) = g(v0) = m. Therefore in every neighbourhood of v there
exist an s with g(s) = m and, since C(g) is dense in J , a point u such that
g(u) = k 6= m. Thus g is not continuous at v and, consequently, C(g) = ∅ which
is impossible. This proves the existence of different s0, t0 ∈ C(g) satisfying (6).

According to (6) there exist open intervals U , V containing s0, t0, respec-
tively, and such that for every s ∈ U and t ∈ V we have (1−µ)g(s) 6= (1−ν)g(t).
Making use of (4) we obtain

f(µs + (1− µ)t) =
µ(1− ν)f(s)g(t)− ν(1− µ)f(t)g(s)

(1− ν)g(t)− (1− µ)g(s)
, s ∈ U, t ∈ V.
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Now we are going to apply [9; Theorem 8.6] by A. Járai. To this aim put n = 4,
T := J , Z = Z1 = . . . = Z4 = Y := R, X1 = X3 = A1 = A3 := U and
X2 = X4 = A2 = A4 := V . Fix an η > 0 with (t0 − η, t0 + η) ⊂ V and define

D :=
{

(v, y) ⊂ J × U : |v − (µs0 + (1− µ)t0)| < η

2
(1− µ)

and |y − s0| <
(

1
µ
− 1

)
η

2

}

and
W :=

{
(v, y, z1, z2, z3, z4) ∈ D × R4 : (1− ν)z4 6= (1− µ)z3

}
.

Put also f := f , f1 := f |U , f2 := f |V , f3 := g|U , f4 := g|V and define g1, g3 :
D → U , g2, g4 : D → V by

g1(v, y) = g3(v, y) = y, g2(v, y) = g4(v, y) =
v − µy

1− µ
,

and h : W → R by

h(v, y, z1, z2, z3, z4) =
µ(1− ν)z1z4 − ν(1− µ)z2z3

(1− ν)z4 − (1− µ)z3
.

Put K := [s0 − δ, s0 + δ], where 0 < δ <
(

1
µ − 1

)
η/2 and [s0 − δ, s0 + δ] ⊂ U .

Making use of [9; Theorem 8.6] applied to the Lebesgue measure we infer that f

is continuous on the interval

Jf :=
{

v ∈ J : |v − (µs0 + (1− µ)t0)| < (1− µ)
η

2

}
.

Fix an s∗ ∈ Jf . Since f is not constant on intervals there is a t∗ ∈ Jf

such that f(µs∗ + (1 − µ)t∗) 6= µf(s∗). By the continuity of f at t∗ we have
f(µs∗ + (1− µ)t) 6= µf(s∗) for t’s from an interval Jg ⊂ Jf . Then, by (4),

g(t) =
1− µ

1− ν

f(µs∗ + (1− µ)t)− νf(t)
f(µs∗ + (1− µ)t)− µf(s∗)

g(s∗), t ∈ Jg,

and, consequently, g is continuous on Jg. ¤

The next result is fundamental in determining the form of f and g and,
consequently, ϕ and ψ. To prove it we use another theorem of Járai as well as a
result proved jointly with J. Matkowski in [10].
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Lemma 4. Let J ⊂ R be an open interval. If continuous f, g : J → R satisfy

equation (4) then there exist a c ∈ (0,∞) such that

f(s)µ
g(s)1−ν = c, s ∈ J.

Proof. We consider two cases. In the first one assume that µ 6= ν. Then
equation (4) can be rewritten in the form

(1− µ)g(s)[f(µs + (1− µ)t)− νf(t)] = (1− ν)g(t)[f(µs + (1− µ)t)− µf(s)]

for every s, t ∈ J . Interchanging s by t here we obtain

(1− µ)g(t)[f(µt + (1− µ)s)− νf(s)] = (1− ν)g(s)[f(µt + (1− µ)s)− µf(t)]

for every s, t ∈ J . Multiplying these equalities by sides we have

(1− µ)2g(s)g(t)[f(µs + (1− µ)t)− νf(t)][f(µt + (1− µ)s)− νf(s)]

= (1− ν)2g(t)g(s)[f(µs + (1− µ)t)− µf(s)][f(µt + (1− µ)s)− µf(t)]

for every s, t ∈ J , whence dividing it by positive g(s), g(t) we get

(1− µ)2[f(µs + (1− µ)t)− νf(t)][f(µt + (1− µ)s)− νf(s)]

= (1− ν)2[f(µs + (1− µ)t)− µf(s)][f(µt + (1− µ)s)− µf(t)] (10)

for every s, t ∈ J . Put

k(s, t) := ν(1−µ)2[f(µs + (1−µ)t)− νf(t)]−µ(1− ν)2[f(µt + (1−µ)s)−µf(t)]

for every s, t ∈ J . Fix an s0 ∈ J . Then

k(s0, s0) = ν(1− µ)2[f(s0)− νf(s0)]− µ(1− ν)2[f(s0)− µf(s0)]

= (1− µ)(1− ν)(ν − µ)f(s0).

Since f(s0) > 0, µ 6= 1, ν 6= 1, µ 6= ν we have k(s0, s0) 6= 0. Thus there exists an
ε > 0 such that k(s, t) 6= 0 for all s, t ∈ (s0 − ε, s0 + ε). Let J0 := (s0 − ε, s0 + ε).
By (10)

f(s) =
(1− µ)2f(µt + (1− µ)s)[f(µs + (1− µ)t)− νf(t)]

k(s, t)

− (1− ν)2f(st + (1− µ)t)[f(µt + (1− µ)s)− µf(t)]
k(s, t)
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for every s, t ∈ J0.
Put s = k = 1, n = 3, Z := R, T := J0, Y := R, D := J0

2, C :=
[s0 − ϑ0ε, s0 + ϑ0ε] with ϑ0 := max{µ, 1− µ},

W := D × {(w1, w2, w3) ∈ R3 : ν(1− µ)2[νw1 − w2]

6= µ(1− ν)2[µw1 − w3]}.

Define f := f |J0 , g1, g2, g3 : D → R, by

g1(s, t) = t, g2(s, t) = µs + (1− µ)t, g3(s, t) = µt + (1− µ)s, (11)

and h : W → R by

h(s, t, w1, w2, w3) :=
(1− µ)2w3[w2 − νw1]− (1− ν)2w2[w3 − µw1]
ν(1− µ)2[w2 − νw1]− µ(1− ν)2[w3 − µw1]

. (12)

Then, according to [9; Theorem 11.6] by A. Járai, f is locally Lipschitzian
on J0. On account of [8; Theorem 3.1.9] f is almost everywhere (with respect to
the Lebesgue measure) differentiable on J0.

Now let s = k = 1, n = 3, Z1 = Z2 = Z3 = Z := R, Y = T = X1 =
X2 = X3 := J0, D := J0

2, D × R3 and take r1 = r2 = r3 = 1. Define f =
f1 = f2 = f3 := f |J0 , g1, g2, g3 : D → R by (12) and h : D × R3 → R by (13).
According to [9; Theorem 14.2] f is continuously differentiable on J0. Since s0

was chosen arbitrarily in J we have come to the differentiability of f in J . Due
to [10; Lemma 3] there exists a c ∈ (0,∞) such that f(s)µ

g(s)1−ν = c for every
s ∈ J .

If µ = ν then equation (4) can be rewritten in the form

f(µs + (1− µ)t)[g(t)− g(s)] = µ[f(s)g(t)− f(t)g(s)], s, t ∈ J.

Now it is enough to use [7; Theorem 2]. ¤

Now we will prove an extension lemma.

Lemma 5. If ϕ,ψ : I → R are continuous strictly monotonic functions

satisfying (2) and there exists a p ∈ R such that ϕ ∼ χp and ψ ∼ χ−p on an open

subinterval of I then ϕ ∼ χp and ψ ∼ χ−p on I.

Proof. Assume that ϕ ∼ χp and ψ ∼ χ−p on an open subinterval I0 ⊂ I.
Replacing the satisfying (2) ϕ and ψ by aϕ+b and cψ+d with some a, b, c, d ∈ R,
a, c 6= 0, we may additionally assume that

ϕ(x) = χp(x) and ψ(x) = χ−p(x), x ∈ I0, (13)
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and I0 is the maximal interval with this property. Let I0 = (a, b) and suppose
that I0 6= I. Then a ∈ I or b ∈ I. Consider the case when a ∈ I. Choose a
b∗ ∈ (a, b). By the continuity and strictly monotonicity of ϕ and ψ there exists a
positive δ such that (a− δ, a] ⊂ I, (b∗ − δ, b∗] ⊂ I0 and

µϕ(x) + (1− µ)ϕ(y) ∈ ϕ(I0) and νψ(x) + (1− ν)ψ(y) ∈ ϕ(I0) (14)

for all x ∈ (a− δ, a] and y ∈ (b∗ − δ, b∗].
Assume that p 6= 0. Then, inserting the form of ϕ and ψ into (2), we infer

that

(e−px)λ(µepx + (1− µ)epy)λ = (epy)1−λ(νe−px + (1− ν)e−py)1−λ

for all x, y ∈ I0, whence, by putting z := ep(y−x), we obtain

((1− µ)z + µ)λ = (νz + (1− ν))1−λ

for z’s from an interval of positive reals. This implies λ = 1−λ, i.e. λ = 1/2 and,
consequently, 1− µ = ν. Moreover,

ϕ−1(v) =
1
p

log v, v ∈ ϕ(I0), (15)

and
ψ−1(v) = −1

p
log v, v ∈ ψ(I0). (16)

Making use of (14)–(17) and (2) we have

1
p

log
(1− ν)ϕ(x) + νepy

νψ(x) + (1− ν)e−py
= x + y

for all x ∈ (a− δ, a], y ∈ (b∗ − δ, b∗]. Hence

νepy(1− epxψ(x)) = (1− ν)(epx − ϕ(x)), x ∈ (a− δ, a], y ∈ (b∗ − δ, b∗]

and, consequently, ψ(x) = e−px and ϕ(x) = epx for every x ∈ (a − δ, a] which
contradicts the maximality of I0.

Now assume that p = 0. Then ψ(x) = ϕ(x) = x for all x ∈ I0. It follows
from (2) that

λ(µϕ(x) + (1− µ)y) + (1− λ)(νψ(x) + (1− ν)y) = λx + (1− λ)y (17)
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for every x ∈ (a− δ, a] and y ∈ (b∗ − δ, b∗] whence

λµϕ(x) + (1− λ)νψ(x) = λx + y(ν(1− λ)− λ(1− µ))

for every x ∈ (a− δ, a] and y ∈ (b∗− δ, b∗] and, consequently, λ = ν
1−µ+ν . By (18)

we obtain
µϕ(x) + (1− µ)ψ(x) = x, x ∈ (a− δ, a].

On the other hand, taking in (2) y ∈ (a− δ, a] and x ∈ (b∗ − δ, b∗], we get

νϕ(y) + (1− µ)ψ(y) = y, y ∈ (a− δ, a].

Then, for every x ∈ (a− δ, a], we have

µϕ(x) + (1− µ)ψ(x) = x and νϕ(x) + (1− ν)ψ(x) = x,

and, consequently,

(ν − µ)(ϕ(x)− ψ(x)) = 0, x ∈ (a− δ, a].

If µ = ν then it is enough to use [2; Theorem 3] by Z. Daróczy and G. Haj-

du. Otherwise ϕ(x) = ψ(x) = x for every x ∈ (a − δ, a] which contradicts the
maximality of I0. ¤

Proof of Theorem 1. Let J := ϕ(I). Without loss of generality we may
assume that ϕ, ψ are strictly increasing.

At first we will show that ϕ,ϕ−1, ψ, ψ−1 are locally Lipschitzian and their
derivatives do not vanish wherever they exist. Putting s = ϕ(x) and t = ϕ(y)
in (2) we get

(1− λ)ψ−1
(
νψ(ϕ−1(s)

)
+ (1− ν)ψ

(
ϕ−1(t))

)

= λϕ−1(s) + (1− λ)ϕ−1(t)− λϕ−1(µs + (1− µ)t)

for every s, t ∈ J . Since the left-hand side increases as a function of s so does the
right-hand side. Hence

J 3 s 7→ ϕ−1(s)− ϕ−1(µs + (1− µ)t)

strictly increases for every t ∈ J . For all v0 ∈ J , by Lemma 1, we can find
δ ∈ (0,∞) and K, L ∈ (0,∞) such that (v0 − δ, v0 + δ) ⊂ J and

K ≤ ϕ−1(u)− ϕ−1(v)
u− v

≤ L, u, v ∈ (v0 − δ, v0 + δ).
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Then also for every x0 ∈ I there exist δ > 0 and K, L > 0 such that

1
L
≤ ϕ(x)− ϕ(y)

x− y
≤ 1

K
, x, y ∈ (x0 − δ, x0 + δ).

Interchanging ϕ and ψ here we obtain the analogous conditions for ψ and ψ−1.
In particular, it follows that if the function ϕ [function ψ] is differentiable at a
point x0 ∈ I then ϕ′(x0) 6= 0 [ψ′(x0) 6= 0] and if the function ϕ−1 [function ψ−1]
is differentiable at v0 ∈ ϕ(I) [v0 ∈ ψ(I)] then (ϕ−1)′(v0) 6= 0 [(ψ−1)′(v0) 6= 0].

Now we will show that ϕ, ψ are differentiable on some nonempty open subin-
terval I1 ⊂ I. For every v ∈ J put

J(v) :=
1

1− µ
(J − v) ∩ 1

µ
(v − J);

observe that J(v) is an open interval containing 0. Let

G := {v ∈ J : λϕ−1(v + (1− µ)u) + (1− λ)ϕ−1(v − µu) 6= ϕ−1(v)

for a u ∈ J(v)}.

Now we consider two cases. In the first one assume that G = ∅. Then

λϕ−1(v + (1− µ)u) + (1− λ)ϕ−1(v − µu) = ϕ−1(v), v ∈ J, u ∈ J(v),

whence, putting s := v + (1− µ)u and t := v − µu, we get

λϕ−1(s) + (1− λ)ϕ−1(t) = ϕ−1(µs + (1− µ)t), s, t ∈ J.

On account of Lemma 2 there exist an additive function a : R → R and a b ∈ R
such that

ϕ−1(s) = a(s) + b, s ∈ J.

Since ϕ−1 is monotonic then a is linear and, consequently, ϕ−1 is differentiable
on J .

In the second case assume that G 6= ∅. According to the continuity of ϕ

the set G is open so it contains a nonempty open interval J1. Putting x :=
ϕ−1(v + (1− µ)u) and y := ϕ−1(v − µu) in (2) we get

λϕ−1(v) = λϕ−1(v + (1− µ)u) + (1− λ)ϕ−1(v − µu)

− (1− λ)ψ−1(νh(v + (1− µ)u) + (1− ν)h(v − µu)) (18)

for every v ∈ J and u ∈ J(v), where h := ψ ◦ ϕ−1. Fix a v0 ∈ J1 and define
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functions gi : J(v0) → R, i ∈ {1, 2, 3, 4}, by

g1(u) = ϕ−1(v0 + (1− µ)u), g2(u) = ϕ−1(v0 − µu),

g3(u) = h(v0 + (1− µ)u), g4(u) = h(v0 − µu).

Let
Ngi := {u ∈ J(v0) : gi is not differentiable at u}, i = 1, . . . , 4.

By the monotonicity of gi the sets Ngi
are of measure 0 for i = 1, . . . , 4 and,

consequently, the measure of N :=
⋃4

i=1 Ngi is 0.
According to (19) the following equalities are equivalent:

λϕ−1(v + (1− µ)u) + (1− λ)ϕ−1(v − µu) = ϕ−1(v), v ∈ J, u ∈ J(v),

and
νh(v + (1− µ)u) + (1− ν)h(v − µu) = h(v), v ∈ J, u ∈ J(v).

Therefore the function hv0 : J(v0) → R, given by

hv0(u) = νh(v0 + (1− µ)u) + (1− ν)h(v0 − µu),

takes a different value from h(v0). Since hv0(0) = h(v0) then it is not constant.
Let K := hv0(J(v0)) and C := {s ∈ K : ψ−1 is not differentiable at s}. Then

K is a nonempty interval and C is of measure 0, whence K \ C has a positive
measure. Let D := hv0

−1(K \ C) ⊂ J(v0). Then hv0(D) = K \ C. If D were
of measure 0 then, since h is locally Lipschitzian, hv0(D) would be of measure 0.
Therefore D has a positive measure and so is D \N ; in particular, it is nonempty,
i.e. there exists a u0 ∈ D \ N . Then gi, i ∈ {1, . . . , 4}, are differentiable at
u0 and ψ−1 is differentiable at hv0(u0). Consequently, ϕ−1 is differentiable at
v0 + (1 − µ)u0 and v0 − µu0, so, on account of (19), also at v0. Thus we have
proved that ϕ−1 is differentiable in J1.

Since the derivative of ϕ−1 does not vanish, ϕ is differentiable on a subinterval
of ϕ−1(J1). Now, considering equation (2) on this interval and interchanging
the role of ϕ and ψ, we infer that ϕ and ψ are differentiable on an interval
I1 ⊂ ϕ−1(J1).

Define functions f, g : ϕ(I1) → (0,∞) by

f(s) = ϕ′(ϕ−1(s)), g(s) = ψ′(ϕ−1(s)).

We will show that there exist a nonempty open interval J0 ⊂ ϕ(I1) and a number
c ∈ (0,∞) such that f, g are continuous on J0 and

f(s)µ
g(s)1−ν = c, s ∈ J0.
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Differentiating both sides of equality (2) with respect to x we get

λµϕ′(x)
ϕ′(ϕ−1(µϕ(x) + (1− µ)ϕ(y)))

+
(1− λ)νψ′(x)

ψ′(ψ−1(νψ(x) + (1− ν)ψ(y)))
= λ (19)

for all x, y ∈ I1. Putting y = x in (20) we have

λ =
ν

1− µ + ν
.

Differentiating equality (2) with respect to y we have

λ(1−µ)ϕ′(y)
ϕ′(ϕ−1(µϕ(x) + (1−µ)ϕ(y)))

+
(1− λ)(1− ν)ψ′(y)

ψ′(ψ−1(νψ(x)+ (1− ν)ψ(y)))
= 1−λ (20)

for all x, y ∈ I1. Multiplying equality (19) by (1− ν)ψ′(y) and (21) by −νψ′(x),
adding the obtained equalities by sides and then using the fact that λ = ν

1−µ+ν

we have

µ(1− ν)ϕ′(x)ψ′(y)− ν(1− µ)ϕ′(y)ψ′(x)
ϕ′(ϕ−1(µϕ(x) + (1− µ)ϕ(y)))

= (1− ν)ψ′(y)− (1− µ)ψ′(x)

for all x, y ∈ I1, whence, setting here x = ϕ−1(s) and y = ψ−1(t), we obtain

f(µs + (1− µ)t)[(1− ν)g(t)− (1− µ)g(s)]

= µ(1− ν)f(s)g(t)− ν(1− µ)f(t)g(s) (21)

for every s, t ∈ ϕ(I1). Since ϕ is locally Lipschitzian and ϕ′ is measurable ϕ′ ◦
ϕ−1 is Lebesgue measurable. Moreover, ψ′ is of the first Baire class and ϕ−1 is
continuous whence ψ′ ◦ϕ−1 is of the first Baire class. Therefore, due to Lemma 3,
we infer that f, g are continuous in an open interval J0 ⊂ ϕ(I1). According to
Lemma 4 there exists a c > 0 such that

f(s)µg(s)1−ν = c, s ∈ J0. (22)

Now we will show that there exist an open interval I0 ⊂ I and a p ∈ R such
that ϕ ∼ χp and ψ ∼ χ−p on I0, and if p 6= 0 then λ = 1/2 and µ + ν = 1. Using
(23) we can rewrite (22) as

f(µs + (1− µ)t)
[
(1− ν)f(t)

−µ
1−ν − (1− µ)f(s)

−µ
1−ν

]

= µ(1− ν)f(s)f(t)
−µ
1−ν − ν(1− µ)f(t)f(s)

−µ
1−ν

, s, t ∈ J0.
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By virtue of [10; Lemma 4] we infer that either f is constant, or µ + ν = 1 and
there exists p ∈ R \ {0} and b ∈ R such that

f(s) = p(s− b), s ∈ J0.

If f is constant then, by (22), g is constant and, consequently, ϕ and ψ are affine.
In the second case, since µ + ν = 1 we get λ = 1/2 and

ϕ′(x) = p(ϕ(x)− b), x ∈ I0,

where I0 = ϕ−1(J0). Thus

ϕ(x) = aepx + b, x ∈ I0,

for an a ∈ R \ {0}. Similarly, we infer that

ψ(x) = ce−px + d, x ∈ I0,

with some c ∈ R \ {0} and d ∈ R. Hence ϕ(x) ∼ χp(x) and ψ(x) ∼ χ−p(x),
x ∈ I0. According to Lemma 5 either ϕ ∼ χ0 and ψ ∼ χ0 on I, or λ = 1/2,
µ + ν = 1 and there exists a p ∈ R \ {0} such that ϕ ∼ χp and ψ ∼ χ−p on I.

The converse implication can be easily verified. ¤

The next result is an immediate consequence of Theorem 1.

Theorem 2. Let I ⊂ R be an open interval. Continuous and strictly

monotonic functions α, β, γ : I → R and numbers λ, µ, ν ∈ (0, 1) satisfy (1) if

and only if the following two conditions are fulfilled:

(i) λ =
ν

1− µ + ν
,

(ii) there exist a, c ∈ R\{0} and b, d ∈ R such that

β(x) = aα(x) + b and γ(x) = cα(x) + d, x ∈ I,

or λ = 1/2 and

β(x) = aepα(x) + b and γ(x) = ce−pα(x) + d, x ∈ I,

with some p ∈ R \ {0}.
Remark 3. The statement (ii) of Theorem 2 can be reformulated in the fol-

lowing way:

(ii’) β ∼ α and γ ∼ α on I

or λ = 1/2 and
β ∼ χp ◦ α and γ ∼ χ−p ◦ α on I

with some p ∈ R \ {0}.
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