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On pseudorandom [0, 1) and binary sequences

By CHRISTIAN MAUDUIT (Marseille), HARALD NIEDERREITER (Singapore)

and ANDRÁS SÁRKÖZY (Budapest)

Abstract. This paper studies links between uniform pseudorandom sequences of

real numbers in [0, 1) and pseudorandom binary sequences. It is proved that good

pseudorandom [0, 1) sequences induce binary sequences that have small correlation and

well-distribution measures. On the other hand, given a binary sequence with small com-

bined well-distribution-correlation measure, it is shown how to construct a [0, 1) sequence

with small discrepancy. The special cases of linear congruential pseudorandom sequences

and of Legendre symbol sequences are analyzed in more detail.

1. Introduction

(Uniform) pseudorandom (briefly PR) sequences x1, x2, . . . of real numbers

with 0 ≤ xi < 1 (briefly PR [0, 1) sequences) play a crucial role in applications of

the Monte Carlo method and have further applications. Thus, this field has been

intensively studied in the last several decades. Surveys of this field are given in [4],

[18], [19], and [21]. On the other hand, pseudorandom binary sequences also have

many applications, in particular, they play an important role in cryptography. In

this area the pseudorandomness is usually characterized in terms of complexity

theory (see [20], [22]). In an asymptotic sense, pseudorandomness of infinite bi-

nary sequences has been considered also in the classical theory of normal numbers

(see [8] and [10]). Recently another approach has been developed [13] which is

closer to the standard approach used in the theory of PR [0, 1) sequences.
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In this paper our goal is to study the links between the two fields described

above. We hope that this leads to a better understanding in both areas and that,

consequently, the study of the constructions, methods, and tools developed in one

field can be utilized in the other field as well.

Throughout this paper we will use the following notations: N and Z denote

the set of the positive integers, respectively integers. The symbols c1, c2, . . . denote

positive absolute constants. We write e(α) = e2πiα. The integer part of x, the

fractional part of x, and the distance of x from the nearest integer are denoted by

[x], {x}, and ‖x‖, respectively, so that x = [x]+{x} and ‖x‖ = min({x}, 1−{x}).

2. The measures of pseudorandomness

In the theory of PR [0, 1) sequences we usually study infinite sequences

x1, x2, . . . , and then we use our conclusions to qualify the finite subsequences

x1, x2, . . . , xN obtained by truncating the infinite ones; observe that in practice

we always work with finite sequences. On the other hand, in the case of PR binary

sequences we always study finite sequences e1, e2, . . . , eN of a given length. To be

able to compare the two fields, here we will restrict ourselves to finite sequences

in both cases.

Let N ∈ N, X = (x1, x2, . . . , xN ) with 0 ≤ xi < 1 for 1 ≤ i ≤ N , let k ∈ N,

k ≤ N , and consider the k-dimensional vectors

xn = (xn, xn+1, . . . , xn+k−1), n = 1, 2, . . . , N − k + 1. (1)

Then as the measure of pseudorandomness of the sequence X we use the discrep-

ancy

D(x1, . . . ,xN−k+1)
def
= sup

I

∣

∣

∣

∣

A(I;x1, . . . ,xN−k+1)

N − k + 1
− V (I)

∣

∣

∣

∣

(2)

where I =
∏k

i=1[ui, vi) is a subinterval of [0, 1)k, A(I;x1, . . . ,xN−k+1) denotes the

number of n, 1 ≤ n ≤ N−k+1, with xn belonging to I, and V (I) =
∏k

i=1(vi−ui)

is the volume of the interval I. To simplify the notation, we will also write

D(x1, . . . ,xN−k+1) = D(X, N, k). (3)

Then X is considered as a “good” PR [0, 1) sequence if D(X, N, k) is “small”

(= o(1) if k is fixed and X runs over sequences with N → +∞).

In [13] the following measures of pseudorandomness for binary sequences were

proposed. We consider binary sequences of type

EN = (e1, . . . , eN ) ∈ {−1, +1}N .
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Then the well-distribution measure of EN is defined as

W (EN ) = max
a,b,t

∣

∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

∣

,

where the maximum is taken over all a, b, t ∈ N such that a ≤ a + (t − 1)b ≤ N ,

the normality measure of order k of EN is defined as

Nk(EN )

= max
X∈{−1,+1}k

max
0<M≤N+1−k

∣

∣

∣

∣

|{n : 0 ≤ n < M, (en+1, . . . , en+k) = X}| −
M

2k

∣

∣

∣

∣

,

and the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

∣

∣

∣

∣

M
∑

n=1

en+d1en+d2 · · · en+dk

∣

∣

∣

∣

,

where the maximum is taken over all D = (d1, . . . , dk) and M such that 0 ≤ d1 <

· · · < dk ≤ N − M . The combined (well-distribution-correlation) PR-measure of

order k was also defined as

Qk(EN ) = max
a,b,t,D

∣

∣

∣

∣

t
∑

j=0

ea+jb+d1ea+jb+d2 · · · ea+jb+dk

∣

∣

∣

∣

.

In [13] it was shown that

Nk(EN ) ≤ max
1≤t≤k

Ct(EN ). (4)

Thus, it suffices to estimate the well-distribution measure W (EN ) and the corre-

lation measures of order, say, ≤ k; we obtain an upper bound for Nℓ(EN ) with

ℓ ≤ k as a consequence of these estimates. However, the study of the normality

measure Nk(EN ) can be also useful: e.g., this is the case when the construction is

of recursive type, thus we can control only the “local behavior” of the sequence,

but not the “long-range” correlation of it.

It was proved in [3] (see also [1]) that for a truly random sequence EN ∈

{−1, +1}N both PR measures W and Ck are “small”; more precisely, the order

of magnitude of W (EN ) and Ck(EN ) (for fixed k) is N1/2 and N1/2(log N)c(k),

respectively. Thus, a sequence EN ∈ {−1, +1}N can be considered as a “good”

PR sequence if both W (EN ) and Ck(EN ) (for “small” k) are small: certainly

they must be o(N) as N → +∞, and ideally they are greater than N1/2 only by

at most a power of log N ; sequences of this type were constructed, e.g., in [5],

[12], [15], and [23].

In the next sections we will show that any “good” PR [0, 1) sequence induces

a relatively (but not necessarily ideally) “good” PR binary sequence and vice

versa, and we will study two special examples in both directions.
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3. From [0, 1) sequences to binary sequences in general

Suppose a sequence X = (x1, x2, . . . , xN ) of real numbers in [0, 1) is given.

There is a natural way to assign a binary sequence EN = EN (X) to the sequence

X : for n = 1, 2, . . . , N , define en by

en =

{

+1 if 0 ≤ xn < 1/2,

−1 if 1/2 ≤ xn < 1,
(5)

and let

EN = EN (X) = (e1, e2, . . . , eN).

We may expect that if X is a “good” PR [0, 1) sequence, then the binary sequence

EN (X) also possesses strong PR properties. This is not so in terms of the PR

measures introduced in Section 2 as the following example shows.

Example 1. Let N = 2M ∈ N be an even number and assume that x1, x2, . . . ,

xM are independent random variables, each of them distributed according to the

law

(i) P (xi < 0) = P (xi ≥ 1) = 0

and

(ii) xi is uniformly distributed in [0, 1) (for i = 1, 2, . . . , M).

Moreover, for i = 1, 2, . . . , M set xM+i = xi, and let X = (x1, x2, . . . , xN ). Then

clearly, D(X, N, k) is “small” (= o(1)) with probability near 1 if k is fixed. On

the other hand, defining en by (5) we have eM+i = ei for i = 1, 2, . . . , M , whence

C2(EN (X)) ≥

∣

∣

∣

∣

M
∑

n=1

enen+M

∣

∣

∣

∣

= M =
N

2
,

so that the correlation measure of order 2 of EN (X) is large.

The explanation of this anomaly between the PR properties of X and EN (X)

is that the discrepancy D(X, N, k) introduced in Section 2 focuses on the “local”

behavior of X = (x1, x2, . . . , xN ), i.e., we are studying consecutive xn’s, while in

the case of the correlation of EN (X) we also consider “long-range” correlation,

i.e., pairs em, en with m, n far apart. One may eliminate this anomaly by also

considering “long-range” discrepancy in the case of [0, 1) sequences. Indeed, let

us extend definitions (1) and (2) in the following way.

If 0 ≤ d1 < · · · < dk < N , then write

xn(d1, . . . , dk) = (xn+d1 , . . . , xn+dk
) for 1 ≤ n ≤ N − dk
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(so that the vector in (1) can be written as xn = xn(0, 1, . . . , k − 1)), and set

D[X, N, (d1, . . . , dk)] = D(x1(d1, . . . , dk), . . . ,xN−dk
(d1, . . . , dk))

def
= sup

I

∣

∣

∣

∣

∣

A
(

I;x1(d1, . . . , dk), . . . ,xN−dk
(d1, . . . , dk)

)

N − dk
− V (I)

∣

∣

∣

∣

∣

with a notation analogous to that in (2). In particular, using the notation in (3)

we have

D(X, N, k) = D[X, N, (0, 1, . . . , k − 1)].

For a binary sequence EN = (e1, e2, . . . , eN) we will write

C
(

EN , M, (d1, . . . , dk)
)

=

∣

∣

∣

∣

M
∑

n=1

en+d1 · · · en+dk

∣

∣

∣

∣

,

so that we have

Ck(EN ) = max
M,0≤d1<···<dk≤N−M

C
(

EN , M, (d1, . . . , dk)
)

. (6)

For X = (x1, x2, . . . , xN ) and M = 1, 2, . . . , N , write XM = (x1, x2, . . . , xM ).

Now we will prove:

Theorem 1. For any [0, 1) sequence X = (x1, . . . , xN ), k ∈ N, M ∈ N, and

0 ≤ d1 < · · · < dk ≤ N − M we have

C
(

EN (X), M, (d1, . . . , dk)
)

≤ 2kMD[XM+dk
, M + dk, (d1, . . . , dk)]. (7)

Proof. Writing EN (X) = (e1, . . . , eN ) we have

C(EN (X), M, (d1, . . . , dk)) =

∣

∣

∣

∣

M
∑

n=1

en+d1 · · · en+dk

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

(ε1,...,εk)∈{−1,+1}k

∣

∣{n : 1 ≤ n ≤ M, (en+d1 , . . . , en+dk
)=(ε1, . . . , εk)}

∣

∣ ε1 · · · εk

∣

∣

∣

∣

.

Now for any ε = (ε1, . . . , εk) ∈ {−1, +1}k and for i = 1, 2, . . . , k, set

[ui, vi) =

{

[0, 1/2) if εi = +1,

[1/2, 1) if εi = −1,
(8)
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and I(ε) =
∏k

i=1[ui, vi) so that

V (I(ε)) =
1

2k
.

Then by (5) and (8), for any n we have

(en+d1 , . . . , en+dk
) = ε

if and only if xn(d1, . . . , dk) ∈ I(ε). It follows that

C(EN (X), M, (d1, . . . , dk))

=

∣

∣

∣

∣

∑

ε∈{−1,+1}k

|{n : 1 ≤ n ≤ M, xn(d1, . . . , dk) ∈ I(ε)}| ε1 · · · εk

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

ε∈{−1,+1}k

A
(

I(ε);x1(d1, . . . , dk), . . .xM (d1, . . . , dk)
)

ε1 · · · εk

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

ε∈{−1,+1}k

M

2k
ε1 · · · εk

+
∑

ε∈{−1,+1}k

(

A (I(ε);x1(d1, . . . , dk), . . . ,xM (d1, . . . , dk)) −
M

2k

)

ε1 · · · εk

∣

∣

∣

∣

≤
∑

ε∈{−1,+1}k

∣

∣

∣

∣

A (I(ε);x1(d1, . . . , dk), . . . ,xM (d1, . . . , dk)) −
M

2k

∣

∣

∣

∣

≤
∑

ε∈{−1,+1}k

MD [XM+dk
, M + dk, (d1, . . . , dk)]

= 2kMD [XM+dk
, M + dk, (d1, . . . , dk)]

which proves (7). �

It follows from (6) and Theorem 1 that

Corollary 1. For any [0, 1) sequence X = (x1, x2, . . . , xN ), k ∈ N, and

k ≤ N we have

Ck(EN (X)) ≤ 2k max
M,0≤d1<···<dk≤N−M

MD [XM+dk
, M + dk, (d1, . . . , dk)] .

By the inequality

W (EN ) ≤ 3(NC2(EN ))1/2

proved in [13] (see also [6], [7]) and by (4) and Corollary 1, the PR measures

W (EN (X)) and Nk(EN (X)) also can be estimated from above in terms of the

discrepancies D[XU , U, (d1, . . . , dk)]. However, we may get sharper upper bounds
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if we estimate these measures directly instead of using correlation estimates. In

particular, the W measure can be estimated in the following way:

Theorem 2. For any [0, 1) sequence X = (x1, . . . , xN ) we have

W (EN (X)) ≤ 1 + c1 max
t∈N

2≤t≤N

(

t max
a,b∈N

a+(t−1)b≤N

D(xa, xa+b, . . . , xa+(t−1)b)

)

. (9)

Proof. Write again EN (X) = (e1, . . . , en) and assume that a, b, t ∈ N,

a + (t − 1)b ≤ N . Then we have

∣

∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

∣

= |ea| = 1 for t = 1, (10)

and for every t,

∣

∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

∣

=
∣

∣2|{j : 0 ≤ j < t, ea+jb = 1}| − t
∣

∣

= 2t

∣

∣

∣

∣

1

t

∣

∣

∣

∣

{

j : 0 ≤ j < t, 0 ≤ xa+jb <
1

2

}∣

∣

∣

∣

−
1

2

∣

∣

∣

∣

≤ 2tD(xa, xa+b, . . . , xa+(t−1)b). (11)

Now (9) follows from (10) and (11). �

4. From [0, 1) sequences to binary sequences in a special case

In Section 3 we studied the PR properties of the binary sequence EN (X)

induced by the [0, 1) sequence X for general sequences X . Of course, for special

sequences X one can usually go beyond the general estimates of Section 3. In

this section we will study the, perhaps, most important special family of PR [0, 1)

sequences, namely, the PR [0, 1) sequences generated by the linear congruential

method introduced by Lehmer in 1949 and analyzed later in numerous papers;

see, e.g., [11], [16], [17]. This method can be described in the following way.

Let m ∈ N, m ≥ 2, y0 ∈ Z, 0 ≤ y0 < m, λ ∈ Z, gcd(λ, m) = 1, and r ∈ Z.

Define the sequence y0, y1, . . . by the linear recursion yn+1 ≡ λyn+r (mod m) and

0 ≤ yn+1 < m for n = 0, 1, . . . . Write xn = yn

m for n = 0, 1, . . . so that xn ∈ [0, 1)

for all n. Then the sequence x0, x1, . . . is considered as a PR [0, 1) sequence

generated by the linear congruential method. Here we will restrict ourselves to
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the most important special case when m = p is a prime number, λ = g is a

primitive root modulo p, y0 6= 0, and r = 0 (the “homogeneous case”), so that

now we have

yn+1 ≡ gyn (mod p), 0 < yn < p for n = 0, 1, . . . ,

whence

yn ≡ y0g
n (mod p), 0 < yn < p for n = 0, 1, . . . ,

and

xn =
yn

p
, 0 < xn < 1 for n = 0, 1, . . . .

Then clearly, the [0, 1) sequence x0, x1, . . . is periodic with least period length

p − 1, so that we may restrict ourselves to the study of the sequence X =

(x0, x1, . . . , xp−2).

Niederreiter [16] proposed the serial test to study the pseudorandomness

of this [0, 1) sequence X . This test consists of taking an s ∈ N, s ≥ 2, then con-

sidering the s-dimensional vectors xn = (xn, . . . , xn+s−1) with n = 0, 1, . . . , p−2,

and computing the discrepancy D(x0,x1, . . . ,xp−2); if the discrepancy is “small”,

then we say that X passes the s-dimensional serial test. He showed that X passes

the s-dimensional serial test if g is an optimal coefficient mod p for this s, which

means that the nontrivial solutions of the congruence

h1 + h2g + h3g
2 + · · · + hsg

s−1 ≡ 0 (mod p)

in integers h1, h2, . . . , hs are such that the lattice point (h1, h2, . . . , hs) is far from

the origin. We will need the following notations: for m, h ∈ Z, m ≥ 2, we set

r(h, m) =

{

1 if m | h,

m sin π‖h/m‖ if m ∤ h,

and for a lattice point h = (h1, h2, . . . , hs) ∈ Zs we write

r(h, m) =

s
∏

j=1

r(hj , m).

(Note that r(h, m) > 0 for all h ∈ Zs.) Furthermore,
∑

h (mod m)

denotes summation

over all h = (h1, h2, . . . , hs) ∈ Zs with −m
2 < hj ≤ m

2 for 1 ≤ j ≤ s and
∑∗

h (mod m)
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denotes summation over all h = (h1, h2, . . . , hs) ∈ Zs with −m
2 < hj ≤ m

2 for

1 ≤ j ≤ s and h 6= 0 = (0, 0, . . . , 0). We write

G = (1, g, g2, . . . , gs−1) ∈ Zs, (12)

and h · G denotes the scalar product of h and G. Niederreiter [16, Corol-

lary 3.3] proved:

Theorem A. The discrepancy of the points x0,x1, . . . ,xp−2 ∈ [0, 1)s defined

above satisfies

D(x0,x1, . . . ,xp−2) <
s

p
+

1

p − 1

((

2

π
log p +

7

5

)s

− 1

)

+
p − 2

p − 1

∑∗

h (mod p)
h·G≡0 (mod p)

1

r(h, p)
. (13)

Moreover, denoting the last sum in (13) by

Rs(g, p) =
∑∗

h (mod p)
h·G≡0 (mod p)

1

r(h, p)
, (14)

he proved (Theorem 3.4 in [16]):

Theorem B. For any prime p and any s ≥ 2, there exists a primitiveroot

g0 mod p with

Rs(g0, p) <
s − 1

ϕ(p − 1)

((

2

π
log p +

7

5

)s

− 1

)

,

where ϕ is Euler’s totient function.

Combining Theorems A and B we obtain (see Corollary 3.5 in [16]):

Theorem C. For any prime p and any s ≥ 2, there exists a primitive root

g0 mod p such that the associated sequence X = (x0, x1, . . . ) satisfies

D(x0,x1, . . . ,xp−2) <
1

p − 1

(

1 +
(p − 2)(s − 1)

ϕ(p − 1)

)(

2

π
log p +

7

5

)s

.

Thus, we may conclude that for fixed p and s there is a well-characterized

non-empty set of primitive roots mod p for which the [0, 1) sequence X possesses

“good” PR properties in the sense that it passes the s-dimensional serial test. In
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the rest of this section we will be looking for the answer to the following questions:

What can one say about the PR properties of the associated binary sequences

Ep−1(X)? Is it true that there are primitive roots g for which Ep−1(X) possesses

strong PR properties? How well can we control the PR properties of these binary

sequences? In answering these questions, we will restrict ourselves to the most

important PR measures of binary sequences, namely, to the measures W and Ck.

The following four lemmas will be needed in the proofs of our main results.

The first two lemmas are Lemma 2.2 and Lemma 2.3 in [16].

Lemma 1. Let y0, . . . ,yN−1 be N lattice points in Zs. Then, for any integer

m ≥ 2, the discrepancy DN of the fractional parts of the points (1/m)y0, . . . ,

(1/m)yN−1 satisfies

DN ≤
s

m
+

∑∗

h (mod m)

1

r(h, m)

∣

∣

∣

∣

1

N

N−1
∑

n=0

e(h · yn/m)

∣

∣

∣

∣

.

Lemma 2. For any integer m ≥ 2, we have

∑

h (mod m)

1

r(h, m)
<

(

2

π
log m +

7

5

)s

.

Lemma 3. Let h ∈ Z be of multiplicative order T modulo a positive integer

m and let a ∈ Z with gcd(a, m) = 1. Then

∣

∣

∣

∣

T
∑

n=1

e(ahn/m)

∣

∣

∣

∣

≤ m1/2.

Proof. This is the special case b = 0 of [9, Chapter 1, Theorem 10]. �

Lemma 4. Let h ∈ Z be of multiplicative order T modulo a positive inte-

ger m. Then, for any integers X < Y and any integer a with gcd(a, m) = 1,

∣

∣

∣

∣

∑

X<n≤Y

e(ahn/m)

∣

∣

∣

∣

< c3

(

Y − X

T
+ 1

)

m1/2 log m.

Proof. This is Lemma 2.2 of Banks, Conflitti, Friedlander, and Sh-

parlinski [2]. �

Now we will show that the well-distribution measure W (Ep−1(X)) is always

small:
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Theorem 3. For any prime p and primitive root g mod p we have

W (Ep−1(X)) < c2p
1/2(log p)2. (15)

Proof. In order to be able to use Theorem 2, we need an upper bound on

D(x0, xa+b, . . . , xa+(t−1)b). This can be obtained by first using Lemma 1 with

s = 1, m = p, and yn = y0g
a+nb for n = 0, 1, . . . , t − 1. We can assume p ≥ 3,

and then we get

D(xa, xa+b, . . . , xa+(t−1)b) = D

({

y0g
a

p

}

,

{

y0g
a+b

p

}

, . . . ,

{

y0g
a+(t−1)b

p

})

≤
1

p
+

∑

0<|h|<p/2

1

p sin π‖h/p‖

∣

∣

∣

∣

∣

1

t

t−1
∑

n=0

e

(

hy0g
a+nb

p

)

∣

∣

∣

∣

∣

≤
1

p
+ 2

∑

0<h<p/2

1

p(2h/p)

∣

∣

∣

∣

1

t

t−1
∑

n=0

e

(

hy0g
a(gb)n

p

) ∣

∣

∣

∣

. (16)

The multiplicative order T of gb modulo p is

T =
p − 1

gcd(b, p − 1)
≥

p − 1

b
. (17)

By using Lemmas 3 and 4 and also (17), we obtain from (16) that

D(xa, xa+b, . . . , xa+(t−1)b) ≤
1

p
+

∑

0<h<p/2

1

h

∣

∣

∣

∣

1

t

[ t−1
T ]−1
∑

j=0

(j+1)T−1
∑

n=jT

e

(

hy0g
a(gb)n

p

)

+
1

t

t−1
∑

n=[ t−1
T ]T

e

(

hy0g
a(gb)n

p

) ∣

∣

∣

∣

≤
1

p
+

∑

0<h<p/2

1

h

(

1

t

[

t − 1

T

]

p1/2 + c3(1 + 1)
1

t
p1/2 log p

)

<
1

p
+

(

∑

0<h<p/2

1

h

)(

b

p − 1
p1/2 + c4

1

t
p1/2 log p

)

<
1

p
+ c5

(

b log p

p1/2
+

p1/2(log p)2

t

)

. (18)

If 2 ≤ t ≤ p − 1 and a + (t − 1)b ≤ p − 1, then we have

tb ≤ 2(t − 1)b < 2(p − 1) < 2p.
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Thus, it follows from Theorem 2 and (18) that

W (Ep−1(X))

≤ 1 + c1 max
t∈N

2≤t≤p−1



t max
a,b∈N

a+(t−1)b≤p−1

(

1

p
+ c5

(

b log p

p1/2
+

p1/2(log p)2

t

))





< 1 + c6 max
t∈N

2≤t≤p−1





t

p
+
(

max
a,b∈N

a+(t−1)b≤p−1

bt
) log p

p1/2
+ p1/2(log p)2





< 1 + c7 max
t∈N

2≤t≤p−1

(

1 + p1/2 log p + p1/2(log p)2
)

< c8p
1/2(log p)2,

which completes the proof of Theorem 3. �

Next we will show that, on the other hand, the correlation C2 is always large:

Proposition 1. For any prime p and any primitive root g mod p we have

C2(Ep−1(X)) ≥
p − 1

2
. (19)

Proof. We can again assume p ≥ 3. For n = 0, 1, . . . we have

yn+(p−1)/2 ≡ y0g
n+(p−1)/2 = y0g

ng(p−1)/2 ≡ yn · (−1) = −yn (mod p),

whence
yn+(p−1)/2 = p − yn,

so that

xn+(p−1)/2 =
yn+(p−1)/2

p
=

p − yn

p
= 1 − xn.

It follows that, writing Ep−1(X) = (e1, . . . , ep−1), we have

en+(p−1)/2 = −en for n = 1, . . . , p − 1,

and thus

C2(Ep−1(X)) ≥ C

(

Ep−1(X),
p − 1

2
,

(

0,
p − 1

2

))

=

∣

∣

∣

∣

(p−1)/2
∑

n=1

enen+(p−1)/2

∣

∣

∣

∣

=

∣

∣

∣

∣

(p−1)/2
∑

n=1

en(−en)

∣

∣

∣

∣

=

∣

∣

∣

∣

−

(p−1)/2
∑

n=1

1

∣

∣

∣

∣

=
p − 1

2
(20)

which proves (19). �
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In the proof above, C2 is made large by a long-range correlation. On the

other hand, we will be able to give nontrivial upper bounds for the short-range

correlations. First we extend the notations (12) and (14): for a fixed primitive

root g mod p and for D = (d1, . . . , dk), 0 ≤ d1 < · · · < dk, write

G(D) = (1, gd2−d1 , . . . , gdk−d1) ∈ Zk

and

Rk(g, p,D) =
∑∗

h (mod p)
h·G(D)≡0 (mod p)

1

r(h, p)
.

Note that in the last sum the vector h is k-dimensional. We will prove:

Theorem 4. If p is a prime, g is a primitive root mod p, k ∈ N, M ∈ N,

and D = (d1, . . . , dk) with 0 ≤ d1 < · · · < dk ≤ p − 1 − M , then we have

C(Ep−1(X), M,D) < c9p
1/2(log p)

(

4

π
log p +

14

5

)k

+ 2kMRk(g, p,D).

(Note that if we consider “short-range” correlation, i.e., dk − d1 is small,

then the number of terms in the sum in the definition of Rk(g, p,D) is also small,

which makes the upper bound in the theorem sharper.)

Proof. By Theorem 1 it suffices to estimate D[XM+dk
, M + dk,D]. By

Lemma 1 with m = p and

(1/p)yn = xn(d1, . . . , dk) = (xn+d1−1, . . . , xn+dk−1)

≡ (1/p)
(

y0g
n+d1−1, . . . , y0g

n+dk−1
)

(mod 1)

for n = 1, . . . , M , we have

D
[

XM+dk
, M + dk,D

]

≤
k

p

+
∑∗

h (mod p)

1

r(h, p)

∣

∣

∣

∣

1

M

M
∑

n=1

e
(

h · xn(d1, . . . , dk)
)

∣

∣

∣

∣

. (21)

For fixed h = (h1, . . . , hk) 6= 0, the absolute value of the inner sum is

∣

∣

∣

∣

M
∑

n=1

e
(

h · xn(d1, . . . , dk)
)

∣

∣

∣

∣

=

∣

∣

∣

∣

M
∑

n=1

e

( k
∑

j=1

hjxn+dj−1

)∣

∣

∣

∣

=

∣

∣

∣

∣

M
∑

n=1

e

(( k
∑

j=1

hjy0g
n+dj−1

)

/

p

)∣

∣

∣

∣

=

∣

∣

∣

∣

M−1
∑

n=0

e

(

y0g
d1

( k
∑

j=1

hjg
dj−d1

)

gn/p

)∣

∣

∣

∣

.
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If

h ·G(D) =

k
∑

j=1

hjg
dj−d1 ≡ 0 (mod p),

then the absolute value of the inner sum in (21) is equal to M . If h · G(D) 6≡ 0

(mod p), then we may use Lemma 4 (note that M ≤ M + dk < p) to obtain

∣

∣

∣

∣

M−1
∑

n=0

e

(

y0g
d1

( k
∑

j=1

hjg
dj−d1

)

gn/p

)∣

∣

∣

∣

< 2c3p
1/2 log p.

Thus, it follows from (21) that

D
[

XM+dk
, M + dk,D

]

≤
k

p

+
∑∗

h (mod p)
h·G(D)≡0 (mod p)

1

r(h, p)
+ 2c3

p1/2 log p

M

∑∗

h (mod p)

1

r(h, p)
. (22)

From Theorem 1, (22), and Lemma 2 we obtain

C(Ep−1(X), M,D) ≤ 2kMD
[

XM+dk
, M + dk,D

]

<
k2k

p
M + 2kMRk(g, p,D) + c32

k+1p1/2(log p)

(

2

π
log p +

7

5

)k

< 2k

(

k + 2c3p
1/2(log p)

(

2

π
log p +

7

5

)k
)

+ 2kMRk(g, p,D)

< c10p
1/2(log p)

(

4

π
log p +

14

5

)k

+ 2kMRk(g, p,D)

which completes the proof of Theorem 4. �

We remark that a theorem of type Theorem B, but with Rk(g0, p,D) (for

fixed D) in place of Rs(g0, p), could be proved similarly to the proof of The-

orem 3.4 in [16], and the result obtained in this way could be combined with

Theorem 4 above to get a “correlation analog” of Theorem C. However, the up-

per bounds would depend on D and, in particular, on dk − d1; if this difference

is small, i.e., we are considering “short-range” correlation, then these bounds are

relatively sharp, while if dk − d1 increases they get weaker, and if dk − d1 is large,

i.e., we are considering “long-range” correlation, then they become trivial (as it

is to be expected by (20) in the proof of Proposition 1).
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5. From binary sequences to [0, 1) sequences

Suppose a binary sequence EN = (e1, . . . , eN) ∈ {−1, +1}N is given. Then

the most natural way to assign a [0, 1) sequence to it is the following. Consider a

number t ∈ N which is “much smaller” than N (we will return to the size of it).

Then let

yi =
t
∑

j=1

2j−1 e(i−1)t+j + 1

2
for i = 1, 2, . . . ,

[

N

t

]

(so that 0 ≤ yi < 2t for all i),

xi =
yi

2t
for i = 1, 2, . . . ,

[

N

t

]

(so that 0 ≤ xi < 1 for all i), and

X = X(EN , t) = (x1, x2, . . . , x[N/t]).

One may hope that if EN is a “good” PR binary sequence, then, at least for certain

values, the [0, 1) sequence X = X(EN , t) also possesses strong PR properties. The

question is how to choose the parameter t? If t is much smaller than log N
log 2 , say,

t = o(log N), then we may expect that a value j
2t occurs with a large frequency

amongst the numbers xi, so that X is certainly not of random type, its discrepancy

is “not very small”. On the other hand, if t is “much greater” than log N
log 2 , then in

general it is too difficult, usually hopelessly difficult to estimate the discrepancy.

Thus, the optimal choice of t is about log N
log 2 (which is still difficult to handle).

The next question is: can one estimate the discrepancy D(X(EN , t)) in terms

of W (EN ) and the Ck(EN ), i.e., is it true that “small” W (EN ) and Ck(EN ) imply

“small” D(X(EN , t))? Consider the following example:

Example 2. Let ε = (ε1, . . . , εt) ∈ {−1, +1}t and η = (η1, . . . , η[N/t]) ∈

{−1, +1}[N/t] be two truly random binary sequences, and then define EN =

(e1, . . . , eN ) ∈ {−1, +1}N by

en = e(i−1)t+j = ηiεj for 1 ≤ n = (i − 1)t + j ≤ N, 1 ≤ i ≤ [N/t], 1 ≤ j ≤ t.

It is easy to see that for almost all of these sequences EN , both W and, for all

fixed k, Ck are “very small” (< N1/2+ε). On the other hand, X(EN , t) contains

only at most two distinct real numbers, namely, the numbers

1

2
−

1

2t+1
±

1

2t+1

t
∑

j=1

2j−1εj ;

thus clearly, D(X(EN , t)) is “very large” (greater than a positive constant).
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This example shows that it may occur that both W (EN ) and the Ck(EN )

are small, however, D(X(EN , t)) is large.

On the other hand, in this example we clearly have

∣

∣

∣

∣

[N/t]
∑

i=1

e(i−1)t+1e(i−1)t+2

∣

∣

∣

∣

=

∣

∣

∣

∣

[N/t]
∑

i=1

(ηiε1)(ηiε2)

∣

∣

∣

∣

= |[N/t]ε1ε2| = [N/t]

for t ≥ 2, whence

Q2(EN ) ≥ [N/t],

so that the combined PR measure of order 2 is large. (This is a fact of independent

interest: there exist binary sequences EN such that their W and Ck measures are

small, but Qk is large for some k.)

This last remark inspires the following question: is it true that “small”

Qk(EN ) imply “small” discrepancy D(X(EN , t))? This time we will give an

affirmative answer, i.e., we will give an upper bound for the discrepancy

D(X) = D(X(EN , t)) = D(x1, x2, . . . , x[N/t])

in terms of the combined PR measures. (The higher-dimensional discrepancies of

the type occurring in the serial test can be handled similarly, but the formulas

and the computation become much longer and more complicated, thus we restrict

ourselves to the study of the one-dimensional discrepancy.)

Theorem 5. For any binary sequence EN and any t ∈ N, t < N , we have

D(X) = D(X(EN , t)) <
1

2t−1
+

2

[N/t]

t
∑

v=1

Qv(EN ).

Proof. Note that each xi, i = 1, . . . , [N/t], has the dyadic representation

xi =

t
∑

j=1

eit+1−j + 1

2
2−j.

Now we apply Theorem 3.12 in [18] in the special one-dimensional case. This

theorem provides an upper bound on the star discrepancy D∗(X) of the sequence

X = X(EN , t), and together with the well-known inequality D(X) ≤ 2D∗(X)

(see [18, Proposition 2.4]) this yields

D(X) ≤
1

2t−1
+

2

[N/t]

∑

h∈{0,1}t

h 6=0

2−d(h)

∣

∣

∣

∣

∣

[N/t]
∑

i=1

(−1)
P

t
j=1 hj(eit+1−j+1)/2

∣

∣

∣

∣

∣

.
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Here, for a nonzero h = (h1, . . . , ht) ∈ {0, 1}t, we define d(h) to be the largest

value of j such that hj = 1. We have

(−1)
P

t
j=1 hj(eit+1−j+1)/2 =

t
∏

j=1

(−eit+1−j)
hj ,

and so
∣

∣

∣

∣

∣

[N/t]
∑

i=1

(−1)
Pt

j=1 hj(eit+1−j+1)/2

∣

∣

∣

∣

=

∣

∣

∣

∣

[N/t]
∑

i=1

t
∏

j=1

e
hj

it+1−j

∣

∣

∣

∣

.

Therefore

D(X) ≤
1

2t−1
+

2

[N/t]

t
∑

d=1

2−d
∑

h∈{0,1}t

d(h)=d

∣

∣

∣

∣

∣

[N/t]
∑

i=1

t
∏

j=1

e
hj

it+1−j

∣

∣

∣

∣

∣

.

For h = (h1, . . . , ht) ∈ {0, 1}t with d(h) = d, let 1 ≤ j1 < · · · < jv = d be those

values of j with hj = 1. Then
∣

∣

∣

∣

∣

[N/t]
∑

i=1

t
∏

j=1

e
hj

it+1−j

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

[N/t]
∑

i=1

eit+1−j1 · · · eit+1−jv

∣

∣

∣

∣

∣

≤ Qv(EN ).

It follows that

D(X) ≤
1

2t−1
+

2

[N/t]

t
∑

d=1

2−d
d
∑

v=1

(

d − 1

v − 1

)

Qv(EN )

=
1

2t−1
+

2

[N/t]

t
∑

v=1

Qv(EN )

t
∑

d=v

(

d − 1

v − 1

)

2−d.

For the last inner sum we obtain
t
∑

d=v

(

d − 1

v − 1

)

2−d = 2−v
t−v
∑

d=0

(

d + v − 1

v − 1

)

2−d < 2−v
∞
∑

d=0

(

d + v − 1

v − 1

)

2−d.

Note that for |z| < 1 and any v ∈ N we have
∞
∑

d=0

(

d + v − 1

v − 1

)

zd = (1 − z)−v,

and so
∞
∑

d=0

(

d + v − 1

v − 1

)

2−d = 2v.

This yields
t
∑

d=v

(

d − 1

v − 1

)

2−d < 1,

and the proof is complete. �
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6. From binary sequences to [0, 1) sequences in a special case

The most important PR binary sequences are, perhaps, the Legendre symbol

sequences Ep−1 = {e1, e2, . . . , ep−1} defined by

en =

(

n

p

)

for n = 1, 2, . . . , p − 1, (23)

where p is a prime number. These sequences were also studied by Mauduit and

Sárközy in [13] who proved [13, Theorem 1] that

Theorem D. There is a number p0 such that if p > p0 is a prime number,

k ∈ N, k < p, and Ep−1 is the Legendre symbol sequence defined above, then we

have

Qk(Ep−1) ≤ 9kp1/2 log p.

We will give the following upper bound for the discrepancy of the [0, 1) se-

quence induced by the Legendre symbol sequence:

Theorem 6. If p > p0 is a prime and t < p− 1, then for the sequence Ep−1

defined by (23) we have

D(X) = D(X(Ep−1, t)) <
1

2t−1
+ 72t3

log p

p1/2
.

Taking here

t =

[

1

2 log 2
log p −

4

log 2
log log p

]

(24)

(approximatively this gives the best upper bound for D(X)), we obtain with a

little computation (we leave the details to the reader) that

Corollary 2. For any prime p and for the t defined by (24) we have

D(X) = D(X(Ep−1, t)) < c11
(log p)4

p1/2
.

Proof of Theorem 6. It follows from Theorem 5 by using Theorem D

that

D(X) = D(X(Ep−1, t)) <
1

2t−1
+

2

[(p − 1)/t]

t
∑

v=1

Qv(Ep−1)

≤
1

2t−1
+

4

(p − 1)/t

t
∑

v=1

9vp1/2 log p ≤
1

2t−1
+

36t

(p − 1)
p1/2(log p)

t
∑

v=1

v

≤
1

2t−1
+ 72t3

log p

p1/2

which completes the proof of Theorem 6. �
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[3] J. Cassaigne, C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences
VII: The measures of pseudorandomness, Acta Arith. 103 (2002), 97–118.

[4] J. E. Gentle, Random Number Generation and Monte Carlo Methods, 2nd ed., Springer,
New York, 2003.
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