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On the reduced height of a polynomial

By ARTŪRAS DUBICKAS (Vilnius) and JONAS JANKAUSKAS (Vilnius)

Abstract. Let P be a polynomial with real coefficients. We introduce its reduced

height by the formula H(P ) = infQ∈R[x]−monic H(PQ) and study its properties. This

problem can be restated as a problem for power series vanishing at points of a finite

symmetric set in |z| < 1 with prescribed multiplicities. Some relations of the reduced

height of a polynomial to other measures of height are also given. Most of the results

obtained in this paper show that the calculation of the reduced height of a polynomial is

not straightforward. For example, we find that H(x2−18x−82) = 63 and H((x−8/5)2) =

9216/8245, but H(x2 − 18x + 82) = 64.999999999999999999999999863 . . . which is the

sum of a certain infinite series. It seems likely that this constant is a transcendental

number.

1. Introduction

Let

P (x) = adx
d + ad−1x

d−1 + · · ·+ a0 = ad(x− α1) . . . (x− αd)

be a polynomial with real coefficients. If ad 6= 0 then d is called the degree of P .
There are also several measures of complexity (usually, called heights) of P which
take into account the size of its coefficients. The best known and most useful
are its height H(P ) := max06j6d |aj |, its length L(P ) :=

∑d
j=0 |aj |, its Euclidean

norm ‖P‖ := (
∑d

j=0 |aj |2)1/2, its Mahler measure M(P ) := |ad|
∏d

j=1 max{1, |αj |},
etc.

Mathematics Subject Classification: 11R99, 12D10, 12D99, 15A06, 15A39.
Key words and phrases: polynomials with prescribed roots, heights, power series, simplex

method.



326 Artūras Dubickas and Jonas Jankauskas

There are many diophantine applications when, for a given integer polyno-
mial P , one needs either to find or to prove the existence of a nonzero integer
polynomial G which is divisible by P and has the smallest possible height. In
other words, one needs to evaluate min H(PQ) for a given P (x) ∈ Z[x], where
the minimum is taken over every nonzero Q(x) ∈ Z[x]. This problem is known
as a special case of Siegel’s lemma (see, for instance, [4], [11]). It is known that
min H(PQ) 6 [M(P )], where [. . . ] stands for the integral part of a number. In
particular, min H(PQ) = 1 if M(P ) < 2.

A similar quantity min ‖PQ‖, where P (x) ∈ Z[x] and where the minimum is
taken over every nonzero Q(x) ∈ Z[x], was introduced and studied by Filaseta,

Robinson and Wheeler [8].
In principle, one can study similar problems for polynomials with coefficients

in an arbitrary subring of C (not just Z), for example, for polynomials with real
or complex coefficients. Of course, for P (x) ∈ R[x], one should allow Q to have
real coefficients too, whereas, for P (x) ∈ C[x], it is natural to take Q in C[x].
On the other hand, the normalization of the problem should be different. The
requirement that Q is in Z[x] can be replaced by the requirement that Q is monic
polynomial in R[x] or in C[x]. So, for any given P (x) ∈ R[x] (or in C[x]), we can
study the quantities like

inf ‖PQ‖, inf L(PQ), inf H(PQ),

where the infimum is taken over every monic Q(x) ∈ R[x] (or in C[x], respec-
tively).

The first of these three quantities can be calculated using an old result of
Szegö. For any P (x) ∈ R[x], Szegö’s theorem (see, e.g., [14]) implies that
infQ∈R[x]−monic ‖PQ‖ = M(P ). This result was generalized to other Lp norms by
Durand [7]. Lawton [10] noticed that it can be used for the practical calculation
of M(P ) by introducing Mn(P ) := min ‖PQ‖, where the minimum is taken over
monic Q(x) ∈ R[x] of degree at most n. These minima Mn(P ) can be calculated
without computing the roots of P . They tend to M(P ) as n →∞. See the papers
of Amoroso [1] and Dégot [5] for some further work on this problem.

Recently, in connection with the distribution of fractional parts of powers
of an algebraic number the first named author introduced and started to study
the second quantity l(P ) := infQ∈R[x]−monic L(PQ) (see [6]). We called l(P ) the
reduced length of a polynomial. The reduced length was then investigated in
detail by Schinzel [13]. In particular, he proved that, in principle, the reduced
length of polynomials having no roots of modulus 1 can be calculated. Schinzel’s
results show that there is no hope that a simple formula for l(P ) can be found.
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For example, the value of l(2x3 + 3x2 + 4) is not known and is left as an open
problem in [13].

In this paper, we shall study the third quantity, namely, the reduced height
of P (x) ∈ R[x] defined by the formula

H(P ) := inf
Q∈R[x]−monic

H(PQ). (1)

We begin with the following basic properties of H(P ):

Theorem 1. Suppose that P (x) ∈ R[x], c ∈ R, w ∈ C, k ∈ N. Then

(i) H(cP ) = |c|H(P ),

(ii) H((x− c)P (x)) = H(P ) if |c| 6 1,

(iii) H((x− w)(x− w)P (x)) = H(P ) if |w| 6 1,

(iv) H(x− c) = max{1, |c| − 1},
(v) H(±P (±xk)) = H(P (x)).

Theorem 1 (i) shows that in the study of H(P ) we can restrict ourselves to
monic polynomials P (x) ∈ R[x]. For monic P (x) ∈ R[x], we clearly have

1 6 H(P ) 6 H(P ).

It is evident that each monic polynomial P (x) ∈ R[x] is completely deter-
mined by the list (multiset) of its roots counted with multiplicities. Suppose S
is such a list. Obviously, S must be closed under the map z → z. We shall call
any such list a symmetric set of order d if S ⊂ C satisfies S = S and contains d

elements counted with multiplicities. For instance, 1, 2, 1 + i, 1 + i, 1 − i, 1 − i is
a symmetric set of order 6. If S contains d distinct elements (so S itself is a set),
then a corresponding polynomial P in R[x] is separable, i.e., P has no multiple
roots.

Note that, by Theorem 1 (ii), (iii), we can restrict ourselves to the study of
polynomials which have all their roots in |z| > 1. The next theorem shows that
it is sufficient to consider separable polynomials.

Theorem 2. Suppose P, P1, P2, · · · ∈ R[x] are monic polynomials such that

‖PN − P‖ → 0 as N →∞. Then limN→∞H(PN ) = H(P ).

Indeed, each root α of P of multiplicity m(α) > 2 can be replaced by m(α)
distinct roots α, α+1/N, . . . , α+(m(α)−1)/N . For each N sufficiently large, say
N > N0, the polynomial PN obtained in this way from P will be separable. The
coefficients of a polynomial depend continuously on its roots. So ‖PN−P‖ → 0 as



328 Artūras Dubickas and Jonas Jankauskas

N →∞. If we would know H(PN ) for N > N0, then using Theorem 2 we would
get H(P ) = limN→∞H(PN ), where P is a polynomial having multiple roots.

Summarizing, we see that in evaluation of H(P ) it is sufficient to consider
monic separable polynomials P (x) ∈ R[x] whose roots all lie in |z| > 1. Also, if S
is a symmetric set, we can define

H(S) := inf H(G− xdeg G), (2)

where the infimum is taken over every nonzero monic polynomial G(x) ∈ R[x]
vanishing at each α ∈ S with multiplicity > m(α) if S contains m(α) copies
of α. Of course, for G(x) = xn + gn−1x

n−1 + · · ·+ g0, we have H(G− xdeg G) =
max06j6n−1 |gj |. The problem of finding H(S) is thus the problem of finding the
infimum over the heights of monic polynomials vanishing at S with prescribed
multiplicities. If P is a monic polynomial corresponding to S then

H(P ) = max{1,H(S)}. (3)

Note that (2) implies that H(S) 6 H(S ′) if S ⊂ S ′ are two symmetric sets.
Combined with (3), this yields that

H(P ) > H(Q) (4)

if P , Q are two monic polynomials in R[x] such that Q|P .
If S ⊂ {z ∈ C : 0 < |z| < 1} is a finite symmetric set then one can consider a

power series of the form 1+
∑∞

j=1 hjx
j vanishing at the points of S with respective

multiplicities. Let Hser(S) be the infimum over all h > 0 for which there exists
a power series 1 +

∑∞
j=1 hjx

j , where hj ∈ R, |hj | 6 h, vanishing at each α ∈ S
with multiplicity > m(α). (Here, m(α) is the number of copies of α in S.) Using
a standard compactness argument, we shall derive the following lemma showing
that the value Hser(S) is attained, the proof of which appears at the end of
Section 5.

Lemma 3. For any finite symmetric set S ⊂ {z ∈ C : 0 < |z| < 1}, there

exists a series 1 +
∑∞

j=1 hjx
j , where hj ∈ R, |hj | 6 Hser(S), vanishing at each

α ∈ S with multiplicity > m(α).

Evidently, S−1 (which contains elements reciprocal to those in S) is a sym-
metric set if S is a symmetric set.

Theorem 4. For any finite symmetric set S, where 0 /∈ S, we have H(S) =
Hser(S∗), where S∗ := S−1 ∩ {z ∈ C : |z| < 1}.



On the reduced height of a polynomial 329

For example, if S = {3, 4} then S∗ = {1/4, 1/3}. We will show below (see
(16)) that H((x− 3)(x− 4)) = 6. Combined with (3) and Theorem 4 this yields
Hser(S∗) = 6. The value 6 is attained for the power series 1−6x+6(x2 +x3 + . . . )
vanishing at 1/4 and 1/3.

Although the value Hser(S) is attained by some coefficients of power series,
this is not necessarily the case for H(S) and H(P ). For example, taking P (x) =
x− 2 and S = {2}, by Theorem 1 (iv), we have H(x− 2) = H(S) = 1. However,
there is no monic polynomial G divisible by x−2 for which H(G) = 1. Indeed, for
any G(x) = xn+gn−1x

n−1+· · ·+g0 satisfying G(2) = 2n+gn−12n−1+· · ·+g0 = 0,
we have

H(G) > H(G−xdeg G) = max
06j6n−1

|gj | > 2n/(1+2+· · ·+2n−1) = 1+1/(2n−1) > 1.

It follows that neither in (1) nor in (2) one can replace the infimum by the
minimum.

Some problems for power series whose interpretation can be given in terms of
Hser(S), where S ⊂ {z ∈ C : 0 < |z| < 1}, were considered by Beaucoup, Bor-

wein, Boyd and Pinner in [2] and [3]. For instance, using (3) and Theorem 4
we can restate the main problem considered in [2] as follows: for any d ∈ N,
find the maximal κ = κ(d) > 1 for which H((x − κ)d) = 1. Another problem
whose interpretation can be given in terms of the reduced height of a polynomial
was considered in [3]: given ϕ ∈ (0, π), find the largest % = %(ϕ) > 1 for which
H((x− %eiϕ)(x− %e−iϕ)) = 1. The results obtained in [2] and [3] combined with
Theorem 4 serve as an additional motivation for the study of H(P ).

We shall give the proofs of Theorems 1, 2, 4 in Section 6. In the next section
we shall prove our main result which is based on Theorem 4. Its application to
quadratic polynomials is given in Section 3 (see Section 6 for the proofs). Some
practical computations and examples will be given in Section 4. Section 5 contains
the proof of Lemma 3 and some auxiliary results from linear algebra which will
be used in Section 6.

2. The main result

Let P (x) = (x − α1) . . . (x − αd) ∈ R[x] be a separable polynomial whose
roots are all in |z| > 1. Put β1 := 1/α1, . . . , βd := 1/αd. Then S = {β1, . . . , βd}
is a symmetric set with d distinct elements in 0 < |z| < 1. We shall estimate
Hser(S) from below.
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Suppose that J = {k1, . . . , kd−1} is a subset of N such that

D(J) :=

∣∣∣∣∣∣∣∣

1 βk1
1 . . . β

kd−1
1

...
1 βk1

d . . . β
kd−1
d

∣∣∣∣∣∣∣∣
6= 0. (5)

We define Sn(J) by the formula

Sn(J) :=
1

D(J)

∣∣∣∣∣∣∣∣

βn
1 βk1

1 . . . β
kd−2
1 β

kd−1
1

...
βn

d βk1
d . . . β

kd−2
d β

kd−1
d

∣∣∣∣∣∣∣∣
. (6)

Clearly, from (5) and (6) we have

S0(J) = 1, Sk1(J) = · · · = Skd−1(J) = 0. (7)

We claim that
Hser(S) > 1/

∑

j∈N\J
|Sj(J)|. (8)

Indeed, suppose that 1 +
∑∞

n=1 hnxn are arbitrary power series vanishing
at S. Put

`j :=
(−1)j−1

D(J)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

βk1
1 βk2

1 . . . β
kd−2
1 β

kd−1
1

...
βk1

j−1 βk2
j−1 . . . β

kd−2
j−1 β

kd−1
j−1

βk1
j+1 βk2

j+1 . . . β
kd−2
j+1 β

kd−1
j+1

...
βk1

d βk2
d . . . β

kd−2
d β

kd−1
d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By (6), we have `1β
n
1 + · · · + `dβ

n
d = Sn(J). Hence, multiplying each equal-

ity 1 +
∑∞

n=1 hnβn
j = 0, where j = 1, . . . , d, by `j and adding all d obtained

equalities, we find that S0(J) +
∑∞

n=1 hnSn(J) = 0. Using (7), we deduce that
1 +

∑
j∈N\J hjSj(J) = 0. Hence

sup
n∈N

|hn| > sup
j∈N\J

|hj | > 1/
∑

j∈N\J
|Sj(J)|.

This proves (8).
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Is there any chance that the inequality (8) by an appropriate choice of J

becomes an equality? In order to describe some cases when this can happen we
shall introduce the following notation. For each n ∈ N, put

δn = δn(J) := Sn(J)/|Sn(J)| ∈ {−1, 1}

and φ(x) = φ(J, x) :=
∞∑

j∈N\J
δjx

j .
(9)

Here, δn = 0 in case Sn(J) = 0. Also, for each j ∈ {1, . . . , d, d + 1}, let Dj(J)
denote the determinant of the matrix


φ(β1) 1 βk1

1 . . . β
kd−1
1

...
φ(βd) 1 βk1

d . . . β
kd−1
d


 (10)

whose jth column is omitted, so that D1(J) = D(J).
Using (6), (9) and (10) we have

D2(J) =

∣∣∣∣∣∣∣∣

φ(β1) βk1
1 . . . β

kd−1
1

...
φ(βd) βk1

d . . . β
kd−1
d

∣∣∣∣∣∣∣∣
=

∞∑

j=1

δjSj(J)D(J) = D(J)
∞∑

j∈N\J
|Sj(J)|.

So if D(J) 6= 0 then D2(J) 6= 0 and

D(J)/D2(J) = 1/

∞∑

j∈N\J
|Sj(J)|. (11)

In order to show that Hser(S) 6 1/
∑

j∈N\J |Sj(J)| for certain
J = {k1, . . . , kd−1} ⊂ N (which combined with (8) would imply the equality), we
shall look into the series

1 +
∑

j∈J

hkj x
kj +

∑

j∈N\J
δjh0x

j = 1 +
∑

j∈J

hkj x
kj + h0φ(x)

as a ‘potential’ candidate. By the definition of Dj(J) (see (9) and (10)), we derive
that the linear system





h0φ(β1) + hk1β
k1
1 + · · ·+ hkd−1β

kd−1
1 = −1,

h0φ(β2) + hk1β
k1
2 + · · ·+ hkd−1β

kd−1
2 = −1,

...

h0φ(βd) + hk1β
k1
d + · · ·+ hkd−1β

kd−1
d = −1,
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has a unique solution
h0 = −D1(J)/D2(J) = −D(J)/D2(J), hkj = (−1)jDj+2(J)/D2(J), where j =
1, . . . , d− 1. In particular, |hkj

| 6 |h0| precisely when |Dj(J)| 6 |D(J)| for each
j = 3, . . . , d + 1. By the definition of Hser(S) and (11), for S = {β1, . . . , βd} ⊂
{z ∈ C : 0 < |z| < 1}, we thus obtain that

Hser(S) 6 |h0| = 1/
∑

j∈N\J
|Sj(J)| = |D(J)/D2(J)|

in case there is a J ⊂ N such that D(J) 6= 0 and |Dj(J)| 6 |D(J)| for each
j = 3, . . . , d + 1. Combined with (8) this implies that

Hser(S) = 1/
∑

j∈N\J
|Sj(J)| = |D(J)/D2(J)| (12)

when there is a J ⊂ N such that |Dj(J)| 6 |D(J)| for each j = 3, . . . , d + 1.
By Theorem 4, we have that Hser(S) = H({α1, . . . , αd}), so (3) and (12) yield

the following theorem:

Theorem 5. Suppose that P (x) ∈ R[x] is a monic separable polynomial

whose roots all lie in |z| > 1. If J ⊂ N is such that D(J) 6= 0 then

H(P ) > 1∑
j∈N\J |Sj(J)| =

|D(J)|
|D2(J)| .

Furthermore, we have equality H(P ) = max{1, |D(J)/D2(J)|} in case J is a

subset of N such that |Dj(J)| 6 |D(J)| for each j = 3, . . . , d + 1.

In particular, taking J0= {1, . . . , d−1}, we have D(J0) =
∏

16i<j6d

(βj−βi) 6=0.

If

Sn = Sn(J0) =
1

D(J0)

∣∣∣∣∣∣∣

βn
1 β1 . . . βd−2

1 βd−1
1

...
βn

d βd . . . βd−2
d βd−1

d

∣∣∣∣∣∣∣
, (13)

where n = d, d + 1, . . . , all have the same sign then φ(x) = ±xd/(1− x). Thus

D2(J0) = ±

∣∣∣∣∣∣∣

βd
1/(1− β1) β1 . . . βd−1

1
...

βd
d/(1− βd) βd . . . βd−1

d

∣∣∣∣∣∣∣
=

±β1 . . . βdD(J0)
(1− β1) . . . (1− βd)

.

Hence

|D(J0)/D2(J0)| = |(β−1
1 − 1) . . . (β−1

d − 1)| = |(α1 − 1) . . . (αd − 1)| = |P (1)|.
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It follows that
H(P ) > |P (1)|

provided that all Sn = Sn(J0), n = d, d + 1, . . . , have the same sign.
Put

R(x) := (x− 1/α1) . . . (x− 1/αd) = (x− β1) . . . (x− βd)

= xd + r1x
d−1 + · · ·+ rd = P (1/x)xd(−1)dβ1 . . . βd.

Then Sn = Sn(J0) satisfy the linear recurrence relation

Sn+d + Sn+d−1r1 + · · ·+ Snrd = 0, (14)

where S0 = 1, S1 = · · · = Sd−1 = 0. In Section 5, we shall prove the following
lemma:

Lemma 6. For each j ∈ {2, 3, . . . , d + 1} we have

∣∣∣∣∣∣∣

βd
1/(1− β1) 1 . . . βj−3

1 βj−1
1 . . . βd−1

1
...

βd
d/(1− βd) 1 . . . βj−3

d βj−1
d . . . βd−1

d

∣∣∣∣∣∣∣

= ±|D(J0)||rd + rd−1 + · · ·+ rd−j+2|
|R(1)| .

(15)

If Sn, n = d, d + 1, . . . , all have the same sign then, by (10) and Lemma 6,
we obtain that |Dj(J0)|/|D(J0)| = |rd + rd−1 + · · · + rd−j+2|/|R(1)| for j ∈
{2, 3, . . . , d + 1}. Combining this with Theorem 5 and using |D(J0)/D2(J0)| =
|R(1)/rd| = |P (1)| we derive the following corollary:

Corollary 7. Let P (x) be a separable polynomial with all roots in |z| > 1.

Suppose |rd + · · · + rd−j+1| 6 |R(1)| = |rd + · · · + r1 + 1| for each j = 1, . . . , d,

and suppose Sn, where n = d, d+1, . . . , defined by (13) or (14) all have the same

sign. Then H(P ) = |P (1)|.

3. Quadratic polynomials

In this section, we give some corollaries of Theorem 5 to quadratic polynomi-
als P . In particular, in the next two statements we compute explicitly the reduced
length of a quadratic polynomial with two positive real roots. The proofs will be
given in Section 6.
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Corollary 8. Let u > v > 1 be two real numbers, and let k be the largest

positive integer for which (1− 2u1−k)/(u− 1) > (1− 2v1−k)/(v − 1). Then

H((x− u)(x− v)) = max
{

1,
uk − vk

(uk − 2)/(u− 1)− (vk − 2)/(v − 1)

}
.

In particular, selecting k = 1 and combining this corollary with (12) (see
also (3)), we obtain that

Hser({1/v, 1/u}) = (u− 1)(v − 1) (16)

if (1− 1/v)(1− 1/u) > 1/2.
For P (x) = (x− u)2 ∈ R[x] the result is as follows:

Corollary 9. Let u > 0 be a real number. Then

H((x− u)2) =





(u− 1)2 if u > 2 +
√

2,

2u(u− 1)2/(u2 − 2u + 2) if u ∈ [2, 2 +
√

2 ],

3u2(u− 1)2/(2u3 − 3u2 + 2) if u ∈ [κ1, 2],

4u3(u− 1)2/(3u4 − 4u3 + 2) if u ∈ [κ2, κ1],

1 if u ∈ [0, κ2],

where κ1 := 1.6279 . . . and κ2 := 1.5405 . . . satisfy κ4
1 − 8κ1 + 6 = 0 and 4κ5

2 −
11κ4

2 + 8κ3
2 − 2 = 0, respectively.

The minimal polynomial of 1/κ2 is 2x5 − 8x2 + 11x − 4. This polynomial
was found in [2] with respect to the above mentioned problem: find the maximal
κ = κ(d) for which H((x− κ)d) = 1. We have κ(2) = κ2 = 1.5405 . . . . See [2] for
the minimal polynomials of 1/κ(3) and 1/κ(4). We remark that the fourth line
of Corollary 9 applied to u = 8/5 ∈ (κ2, κ1) yields the equality H((x − 8/5)2) =
9216/8245 which was announced in the abstract.

Our final statement deals with quadratic polynomials having two complex
conjugate roots.

Corollary 10. Let w = |w|eiϕ be a complex number. If |w| > 2 +
√

2 then

H((x− w)(x− w)) =
|w|2

1 +
∑∞

j=1 |w|−j | sin((j + 1)ϕ)/ sin(ϕ)| . (17)

This corollary is of interest in connection with the result of Schinzel, who
proved in [13] that the reduced length l(P ) belongs to the field generated by the
coefficients of P in the case when P (x) ∈ R[x] has all zeros outside the unit
circle. It seems very likely that the value obtained at the right hand side of (17)
can be transcendental for an algebraic integer w of degree 2 having a complex
conjugate w. In the next section we shall consider the example of w = 9 + i with
minimal polynomial P (x) = x2 − 18x + 82.
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4. Practical computations

Let P (x) ∈ R[x] be a monic polynomial. Let us define

Hn(P ) := min H(PQ), (18)

where the minimum is taken through all monic polynomials Q(x) ∈ R[x] of degree
at most n. Clearly, H0(P ) > H1(P ) > H2(P ) > . . . > H(P ) and limn→∞Hn(P ) =
H(P ).

Using the simplex method of linear programming we can calculate Hn(P )
explicitly for small values of n, e.g., for n = 20.

For example, with the input P (x) = x2 − 18x− 82 the output for H20(P ) is
the polynomial x22 − g1x

21 − g2(x20 − x19 + · · · − x + 1) with

g1 =
50137491642451605831428114357948656
2638815349602990640587967031691851

= 18.999999999998023226693 . . . ,

g2 =
15128328399284752608510410114369210368
240132196813872148293504999883958441

= 63.000000000045005485157 . . . .

This suggests that
H(x2 − 18x− 82) = 63. (19)

Indeed, using Theorem 1 (v) we have H(x2− 18x− 82) = H(x2 +18x− 82). Note
that x2 + 18x− 82 = (x−α1)(x−α2), where α1 = −9−√163, α2 = −9 +

√
163.

Setting β1 = 1/α1 and β2 = 1/α2, we get R(x) = (x−β1)(x−β2) = x2−9x/41−
1/82. The inequalities 1/82 6 |R(1)| = 63/82 and 1/82 + 9/41 6 |R(1)| = 63/82
of Corollary 7 hold. Moreover, by (13),

Sn = (βn
1 β2 − βn

2 β1)/(β2 − β1) = (βn−1
2 − βn−1

1 )/2
√

163

are positive for every n > 2. Hence, by Corollary 7, we find thatH(x2+18x−82) =
|1 + 18− 82| = 63. This proves (19).

Another example is more interesting. For P (x) = x2 − 18x + 82, the output
for H20(P ) is the polynomial x22 − g3x

21 + g4(x20 + · · ·+ x + 1), where

g3 =
3956639735197550682150666401737239552
232743513835150040121292997351084209

= 17.000000000000000000381 . . . ,
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g4 =
15128328399284752608510410114369210368
232743513835150040121292997351084209

= 65.000000000000000002691 . . . .

This suggests that the limit value is 65. However, this is not true! In fact, we
have

H(x2 − 18x + 82) = 1/

∞∑

j=2

|Sj | = 64.999999999999999999999999863 . . . ,

where S0 = 1, S1 = 0 and Sn = 9Sn−1/41 − Sn−2/82 for n = 2, 3, . . . . Indeed,
since |w| = |9 + i| > 2 +

√
2, the condition of Corollary 10 is satisfied. By (25)

(see the proof of Corollary 10 below, where we took J = {1}), the right hand side
of (17) is equal to 1/

∑∞
j=2 |Sj |. It seems likely that the constant 1/

∑∞
j=2 |Sj | is

transcendental.
Finally, suppose that P (x) = (x + 3)(x + 2)(x + 1)x(x − 1)(x − 2)(x − 3).

Then, by Theorem 1 (ii), (v), (3) and (16), we find that

H(P ) = H((x2 − 9)(x2 − 4)) = H((x− 9)(x− 4)) = 8 · 3 = 24.

In other words, the minimal height of a monic polynomial with real coefficients
vanishing at −3,−2,−1, 0, 1, 2 and 3 is equal to 24.

5. Auxiliary lemmas from linear algebra

Throughout, we shall write the linear system




a1,1x1 + a1,2x2 + · · ·+ a1,dxd = b1,

a2,1x1 + a2,2x2 + · · ·+ a2,dxd = b2,
...

ad,1x1 + ad,2x2 + · · ·+ ad,dxd = bd

in the matrix form Ax = b, where A = ‖ai,j‖16i,j6d is a d × d matrix, x :=
(x1, . . . , xd)T , b := (b1, . . . , bd)T . Here and below, T stands for the transpose.

Lemma 11. Let A = ‖ai,j‖16i,j6d be a d× d matrix with complex entries,

b1, . . . , bd ∈ C, and ε > 0. Suppose that the linear system Ax = b has at least one

real solution, and that there exist y1, . . . , yd ∈ R such that |ai,1y1 + ai,2y2 + · · ·+
ai,dyd− bi| < ε for each i = 1, . . . , d. Then there is a constant c = c(A) > 0 and a

real vector x = (x1, . . . , xd)T , where xj ∈ (yj − εc, yj + εc) for each j = 1, . . . , d,

such that Ax = b.
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Proof. By the condition of the lemma, there exist ε1, . . . , εd ∈ C of
moduli < ε such that ai,1y1 + ai,2y2 + · · ·+ ai,dyd = bi + εi for i = 1, . . . , d. Take
any real vector x satisfying Ax = b. Then z := (y1 − x1, . . . , yd − xd)T is a real
solution of Az = (ε1, . . . , εd)T . If the matrix A is non-singular, namely, detA 6= 0,
then Az = (ε1, . . . , εd)T has a unique solution zj = det Aj/ detA (j = 1, 2, . . . , d),
where Aj is the matrix A whose jth column is replaced by (ε1, . . . , εd)T . This
yields that for each j ∈ {1, . . . , d} we have |yj − xj | < εc, where c depends on A

only (and not on b1, . . . , bd). Since yj − xj ∈ R, the proof of the lemma in this
(non-singular) case is completed.

In the alternative case, when det A = 0, the equation Az = (ε1, . . . , εd)T has
infinitely many solutions. We may suppose without loss of generality that the
largest nonzero minor corresponds to the matrix A′ = ‖ai,j‖16i,j6r. Selecting
xj = yj for j = r + 1, . . . , d, by the above argument applied to the non-singular
matrix A′ and to the vector (x1, . . . , xr) (instead of (x1, . . . , xd)), we derive that
xj ∈ (yj−εc, yj +εc) for i = 1, . . . , r, where c depends on A′ only. This completes
the proof of the lemma. ¤

For z ∈ C we set
V (z) := (z, z2, . . . , zd).

Likewise, let V (m)(z) be the vector whose each entry is mth derivative of the
respective entry in V (z). Given a symmetric set S of order d = m1 + · · · + ms

(which is, say, a list of m1 copies of β1, . . . , ms copies of βs), we define the matrix
A(S) by its d consecutive rows

V (β1), . . . , V (m1−1)(β1), V (β2), . . . , V (m2−1)(β2), . . . , V (βs), . . . , V (ms−1)(βs).

Its determinant is known as a version of confluent Vandermonde determinant. It
is nonzero if the numbers β1, . . . , βs are distinct and βj 6= 0 for j = 1, . . . , s (see,
e.g., [9]).

Lemma 12. Let S ⊂ {z ∈ C : 0 < |z| < 1} be a finite symmetric set. Then

H(S−1) 6 Hser(S).

Proof. Suppose f(x) = 1+
∞∑

j=1

hjx
j , where h1, h2, · · · ∈ R and h := sup

j>1
|hj |,

satisfies f(β1) = · · · = f (m1−1)(β1) = · · · = f(βs) = · · · = f (ms−1)(βs) = 0. Set
d = m1 + · · · + ms. By (2), we see that it suffices to show that, for each ε > 0,
there is a monic polynomial G(x) = xn + gn−1x

n−1 + · · · + g0 ∈ R[x] satisfying
H(G−xdeg G) = max06j6n−1 |gj | 6 h+ε which vanishes at 1/βj with multiplicity
> mj (j = 1, . . . , d). Here, βj 6= 0.
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Put β := max16j6s |βj | < 1 and m := max{m1, . . . , ms}. Take n so large
that ∞∑

j=n+1

|hj |jm−1βj−m+1 < ε.

Set fn(x) := 1 + hd+1x
d+1 + · · ·+ hnxn. Note that

h1x + · · ·+ hdx
d = f(x)− fn(x)−

∞∑

j=n+1

hjx
j .

On applying Lemma 11 to the matrix A = A(S), the real vector (x1, . . . , xd) =
(h1, . . . , hd) and

(b1, . . . , bd) = (−fn(β1), . . . ,−f (m1−1)
n (β1), . . . ,−fn(βs), . . . ,−f (ms−1)

n (βs)),

we find that there is a constant c depending on S only and gj ∈ (hj − εc, hj + εc)
(j = 1, . . . , d) such that

A(S)(g1, . . . , gd)T = (b1, . . . , bd)T .

This means that the polynomial 1 + g1x + · · · + gdx
d + hd+1x

d+1 + · · · + hnxn

vanishes at βj with multiplicity > mj (j = 1, . . . , s). Its reciprocal polynomial
G(x) = xn+g1x

n−1+· · ·+gdx
n−d+hd+1x

n−d−1+· · ·+hn satisfies H(G−xdeg G) 6
h + ε and, for each j ∈ {1, . . . , s}, vanishes at 1/βj with multiplicity > mj . It
follows that H(S−1) 6 Hser(S) + ε. Since ε can be taken arbitrarily small, this
completes the proof. ¤

The next lemma shows that the minimum in (18) is attained.

Lemma 13. Let P (x) ∈ R[x] be a monic polynomial of degree d, and let n

be a nonnegative integer. Then there is a monic polynomial Qn(x) = xn +
bn−1x

n−1 + · · ·+ b0 such that Hn(P ) = H(PQn).

Proof. Let P (x) = xd + ad−1x
d−1 + · · · + a0. Each monic polynomial

divisible by P (x) has the form (xd+ad−1x
d−1+· · ·+a0)(xn+bn−1x

n−1+· · ·+b0).
We need to minimize the maximum of the following n + d + 1 numbers |a0b0|,
|a0b1 + a1b0|, . . . , |ad−1 + bn−1|, 1. Writing each inequality |a| 6 H as two
inequalities H − a > 0 and H + a > 0, we get a system of 2(n + d) inequalities in
n + 1 unknowns b0, . . . , bn−1,H. It is clear that the minimum H for which this
system has a solution exists, so the quantity Hn(P ) is equal to max{1, H}. This
completes the proof of the lemma. ¤
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In fact, by the fundamental theorem of linear programming, if a linear pro-
gramming problem has a solution, then at least one of the solutions always occurs
at a corner point. We can thus find the polynomial G(x) = P (x)Qn(x) = xn+d +
gn+d−1x

n+d−1 + · · ·+ g0, where Qn is the polynomial of Lemma 13, such that at
most d− 1 of the numbers |gn+d−1|, . . . , |g0| are smaller than max{|gn+d−1|, . . . ,
|g0|}. In other words, |gj | = H(G − xn+d) for all but at most d − 1 indices
j ∈ {0, 1, . . . , n + d − 1}. This explains our strategy used in the proof of The-
orem 5. We just need to find the ‘correct’ set of d − 1 ‘small’ coefficients, be-
cause, for any symmetric set S of order d in 0 < |z| < 1, there exist a series
h(x) = 1 +

∑∞
j=1 hjx

j vanishing at S with each (except for at most d− 1 coeffi-
cients) hj equal to ±Hser(S).

Proof of Lemma 6. Let us multiply both sides of (15) by R(1) = (1− β1)
. . . (1− βd). We need to show that

∣∣∣∣∣∣∣

1− β1 β1 − β2
1 . . . βj−3

1 − βj−2
1 βj−1

1 . . . βd
1

...
1− βd βd − β2

d . . . βj−3
d − βj−2

d βj−1
d . . . βd

d

∣∣∣∣∣∣∣

= ±|D(J0)
d∑

k=d−j+2

rk|. (20)

Notice that the left hand side of (20) is equal to
∣∣∣∣∣∣∣

1− βj−2
1 β1 − βj−2

1 . . . βj−3
1 − βj−2

1 βj−1
1 . . . βd

1
...

1− βj−2
d βd − βj−2

d . . . βj−3
d − βj−2

d βj−1
d . . . βd

d

∣∣∣∣∣∣∣

for each j ∈ {3, . . . , d + 1}. Using the next well-known formula (see, e.g., Prob-
lem 346 in [12])

∣∣∣∣∣∣∣

1 β1 . . . βk−1
1 βk+1

1 . . . βd
1

...
1 βd . . . βk−1

d βk+1
d . . . βd

d

∣∣∣∣∣∣∣

= (β1 . . . βd−k + · · ·+ βk+1 . . . βd)
∏

16i<j6d

(βj − βi) = (−1)d−krd−kD(J0),

where k = 0, . . . , d− 1, we can expand the left hand side of the next determinant
by its first j − 2 columns:
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∣∣∣∣∣∣∣

1− βj−2
1 β1 − βj−2

1 . . . βj−3
1 − βj−2

1 βj−1
1 . . . βd

1
...

1− βj−2
d βd − βj−2

d . . . βj−3
d − βj−2

d βj−1
d . . . βd

d

∣∣∣∣∣∣∣

= (−1)d−j+2D(J0)
d∑

k=d−j+2

rk.

This implies (20) and completes the proof of the lemma. ¤

We conclude this section with the proof of Lemma 3:
By the definition of Hser(S), for any N ∈ N, there exist a power series 1 +∑∞

j=1 hj,Nxj vanishing at S such that |hj,N | 6 Hser(S) + 1/N . Put h := Hser(S).
We can choose a sequence N1 < N2 < N3 < . . . of positive integers such that
h1,Nk

→ h1 ∈ [−h, h] as k → ∞. Then, we choose its subsequence (denoted by
N1 < N2 < N3 < . . . again) such that h2,Nk

→ h2 ∈ [−h, h] as k →∞ and so on.
We claim that the series 1+

∑∞
j=1 hjx

j vanishes at S with required multiplicities.
Indeed, suppose that β ∈ S (so |β| < 1), but B := 1 +

∑∞
j=1 hjβ

j 6= 0. Take
M ∈ N so large that

3max{1, h}|β|M+1/(1− |β|) < |B|/2.

Next, take N ∈ N which is, e.g., an element of the above sequence N1 < N2 < . . .

after M steps are taken and is so large that

|h1 − h1,N | < |B|/2M, |h2 − h2,N | < |B|/2M, . . . , |hM − hM,N | < |B|/2M.

Since 1 +
∑∞

j=1 hj,Nβj = 0 for any N ∈ N, using |hj − hj,N | 6 3max{1, h}, we
obtain that

|B| = |
∞∑

j=1

(hj − hj,N )βj | <
M∑

j=1

|hj − hj,N |

+
∞∑

j=M+1

|(hj − hj,N )βj | < |B|/2 + |B|/2 = |B|,

a contradiction. It follows that B = 0. The case when β is a multiple root can
be treated in the same manner. This completes the proof of the lemma. ¤
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6. Proofs

Proof of Theorem 1. Clearly, H(cP ) = |c|H(P ) implies (i). Using (i) we
can assume that P in (ii), (iii), (v) is monic. Hence (4) implies that H((x − c)
P (x)) > H(P ). On the other hand, suppose that Q(x) ∈ R[x] is such that
H(PQ) < H(P )+ε. Take n > deg(PQ). Since (xn−cn)P (x)Q(x) is a polynomial
of height H(PQ) divisible by (x−c)P (x), we obtain that H((x−c)P (x)) 6 H(P ).
This proves (ii).

Similarly, by (4), we have H((x − w)(x − w)P (x)) > H(P ) for any w∈C.
Suppose that Q(x) ∈ R[x] is a polynomial for which H(PQ) < H(P ) + ε. We
claim that, for |w| 6 1, there is n > deg(PQ) such that the polynomial (xn −
wn)(xn − wn) = x2n − 2<(wn)xn + |w|2 is of height 1. This would imply (iii) as
above. Writing w = |w|eiϕ, where ϕ ∈ (0, π), we have 2<(wn) = 2|w|n cos(nϕ).
Its modulus is at most 1 if | cos(nϕ)| 6 1/2 which is equivalent to cos(2nϕ) 6 −1/2
and to ‖nϕ/π‖ > 1/3. (Here, ‖x‖ denotes the distance from x ∈ R to the nearest
integer, whereas in the proof of Theorem 2 the same notation is used for the
Euclidean norm of a polynomial.) The inequality ‖nϕ/π‖ > 1/3 clearly holds for
infinitely many n ∈ N if ϕ/π is irrational. For ϕ/π ∈ Q, namely, ϕ/π = u/v with
integer u < v, where v > 2, by taking n = vk + r, where ur ≡ [v/2] (mod v), we
have ‖(vk + r)u/v‖ = ‖ru/v‖ = [v/2]/v > 1/3. This completes the proof of (iii).
(The example ϕ = π/3 shows that the constant 1/3 in ‖nϕ/π‖ > 1/3 cannot be
improved.)

Obviously, H(P (x)) = H(P (−x)), so in the proof of (iv) we can assume that
c > 0. Since xn − cn is divisible by x − c, we have H(x − c) = 1 for c ∈ (0, 1].
Suppose c > 1. Note that x − c divides the polynomial xn − ((c − 1)/(1 −
c−n))(xn−1 + · · · + x + 1) of height max{1, (c − 1)/(1 − c−n)}. Since c−n tends
to zero as n → ∞, we have H(x − c) 6 max{1, c − 1}. On the other hand, each
polynomial xn + cn−1x

n−1 + · · · + c0 vanishing at c has at least one coefficient
ci whose modulus is greater than or equal to (c − 1)/(1 − c−n), since otherwise
cn 6 |c0| + · · · + |cn−1|cn−1 < (cn − 1)(c − 1)/(c − 1)(1 − c−n) = cn, which is a
contradiction. Thus Hn(x − c) > max{1, (c − 1)/(1 − c−n)}. This implies that
H(x− c) > max{1, c− 1} and proves (iv).

The proof of (v) is exactly the same as the proof of Proposition (iv) in [13].
The upper bound H(P (xk)) 6 H(P (x)) is trivial by (1). For the lower bound
H(P (xk)) > H(P (x)), we write P (xk)Q(x) in the form

P (xk)Q0(xk) + xP (xk)Q1(xk) + · · ·+ xk−1P (xk)Qk−1(xk).

Here, Qj(xk) = x−j
∑

i≡j (mod k) qix
i, where Q(x) =

∑n
i=0 qix

i, is a polyno-
mial in xk. Observing that H(P (xk)Q(x)) > H(P (xk)Q0(xk)) we obtain that
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H(P (xk)) > H(P (x)). So H(P (xk)) = H(P (x)). Combined with H(±P (±x)) =
H(P (x)) this completes the proof of (v). ¤

Proof of Theorem 2. Since ‖PN − P‖ → 0 as N →∞ and P, P1, P2, . . .

are all monic, we can assume without loss of generality that PN (x) = xd +
aN,d−1x

d−1 + · · · + aN,0 for N = 1, 2, . . . and P (x) = xd + ad−1x
d−1 + · · · + a0.

It follows that limN→∞ aN,j = aj as N →∞ for each j ∈ {0, 1, . . . , d− 1}.
Let ε be a fixed positive number. Since H(P ) = limn→∞Hn(P ), there is

a positive integer n so large that Hn(P ) > H(P ) > Hn(P ) − ε. Lemma 13
implies that Hn(P ) = H(PQn) for some monic polynomial Qn of degree n, thus
H(P ) > H(PQn) − ε. Next, take N so large that H(PNQn) − H(PQn) 6 ε.
These inequalities show that H(PNQn) 6 H(P ) + 2ε. But H(PN ) 6 H(PNQn),
so H(PN ) 6 H(P ) + 2ε. Hence

lim sup
N→∞

H(PN ) 6 H(P ).

It remains to show that, for any ε > 0, there is a positive integer N0 such that
H(P ) 6 H(PN )+ε for each N > N0. This would imply that lim infN→∞H(PN ) >
H(P ). So combined with the upper bound for the largest limit point we will be
able to conclude that limN→∞H(PN ) = H(P ).

By Theorem 1 (ii), (iii), we can assume that the roots of P are all in
|z|> r > 1. Since the roots of a monic polynomial depend continuously on its
coefficients, there is no loss of generality to assume that the roots of PN are all
in |z| > r1 > 1.

Let S = {β1, . . . , βd} and SN = {βN,1, . . . , βN,d} be the multisets which are
reciprocal to the multisets {β−1

1 , . . . , β−1
d } and {β−1

N,1, . . . , β
−1
N,d} of roots of P and

PN , respectively. It is clear that the multisets SN tend pointwise to S as N →∞.
By (3) and Theorem 4 (whose proof will be given below), it is sufficient to prove
the inequality

Hser(S) 6 Hser(SN ) + ε

for N > N0(ε).
The argument is quite close to the one used in the proof of Lemma 12. Fix

some constants r2 > 0 and r3 < 1 such that the elements of S and SN all lie in
the annulus r2 6 |z| 6 r3.

Let fN (x) = 1 +
∑∞

j=1 gN,jx
j be the series vanishing at SN for which

supj>1 |gN,j | = Hser(SN ). (Lemma 3 implies their existence for any N .) We
shall change the first d coefficients of fN into g1, . . . , gd and consider the series
f̄N (x) = 1 +

∑d
j=1 gjx

j +
∑∞

j=d+1 gN,jx
j . These d coefficients will be chosen
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in a way which guarantees that f̄N vanishes at S with required multiplicities,
namely, f̄N (βs) = · · · = f̄

(ms−1)
N (βs) = 0 if βs occurs in S with multiplicity ms.

A corresponding linear system of d equations in d unknowns g1, . . . , gd gives

gj = Fj,0(S) + Fj,d+1(S)gN,d+1 + Fj,d+2(S)gN,d+2 + . . .

for j = 1, . . . , d. Here, setting

D(S) :=

∣∣∣∣∣∣∣

β1 β2
1 . . . βd

1
...

βd β2
d . . . βd

d

∣∣∣∣∣∣∣

and Dj,m(S) for D(S) whose jth column is replaced by the column (βm
1 , . . . , βm

d ),
we have

Fj,m(S) = −Dj,m(S)/D(S) (21)

for each m ∈ {0, d + 1, d + 2, . . . }. Note that, although D(S) = 0 in the case
when at least one βs belongs to S is with multiplicity > 2, the functions Fj,m(S)
are well defined. Moreover, from (21) it is easily seen that, for each m > d + 1,
Fj,m(S) is a symmetric polynomial in β1, . . . , βd of degree 6 m with at most mr4

terms, where r4 is a positive constant depending on d only. For example, for
d = 2, we have

g1 = −(β1 + β2)(β1β2)−1 + β1β2

∞∑

j=3

gN,j(β
j−3
1 + βj−2

1 β2 + · · ·+ βj−3
2 )

and

g2 = (β1β2)−1 −
∞∑

j=3

gN,j(β
j−2
1 + βj−1

1 β2 + · · ·+ βj−2
2 ).

Of course, the fact that fN vanishes at SN implies that

gN,j = Fj,0(SN ) + Fj,d+1(SN )gN,d+1 + Fj,d+2(SN )gN,d+2 + . . .

for each j = 1, . . . , d. Here, Fj,m(SN ) are defined as in (21), where each βj in
the above determinants is replaced by βN,j . Subtracting gN,j from gj , we deduce
that

gj − gN,j = Fj,0(S)− Fj,0(SN ) +
∞∑

t=d+1

gN,t(Fj,t(S)− Fj,t(SN )). (22)

Now, fix ε > 0. We will show that, for N > N0(ε), |gj − gN,j | < ε for each
j = 1, . . . , d. For this, we split the sum in (22) into two sums corresponding to
t 6 M and t > M + 1, where M will be chosen later (M will be the same for
all N).
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We will first bound the sum over t > M + 1. Note that, since βj and βN,j

all lie in the annulus r2 6 |z| 6 r3 and since Fj,t(S) and Fj,t(SN ) are symmetric
polynomials in β1, . . . , βd and βN,1, . . . , βN.d, respectively, of degree 6 t with 6 tr4

terms, |Fj,t(S)| and |Fj,t(SN )| do not exceed tr4rt
3. Thus

∞∑

t=M+1

|gN,t||Fj,t(S)− Fj,t(SN )| 6 2Hser(SN )
∞∑

t=M+1

tr4rt
3 < ε/2

if M is large enough, say, M > M(ε). Here, we bound each Hser(SN ) from above
by an absolute constant, so that M(ε) is independent of N . Fix one of such
large M , say, M = M(ε).

Let us order the points of SN so that, for each j ∈ {1, . . . , d}, βN,j is ‘close’
to βj , and put

δN := max
16j6d

|βN,j − βj |.

Clearly, δN → 0 as N → ∞. From the formula (21), we obtain that there exists
some positive constant r5 which depends on r2, r3,M and S only such that

|Fj,t(S)− Fj,t(SN )| 6 r5δN

for every t ∈ {0, d + 1, d + 2, . . . ,M} and j ∈ {1, . . . , d}. Then (22) implies that

|gj − gN,j | 6 r5δN + (M − d)Hser(SN )r5δN + ε/2

for each j ∈ {1, . . . , d}, where r5 is a positive constant. Taking N0(ε) so large that
r5δN +(M −d)Hser(SN )r5δN < ε/2 for N > N0(ε), we obtain that |gj−gN,j | < ε

for all N > N0(ε).
It follows that, for N > N0(ε), the moduli of the coefficients of the series f̄N ,

namely, |g1|, . . . , |gd|, |gN,d+1|, |gN,d+2|, . . . are all smaller than supj>1 |gN,j |+ε =
Hser(SN ) + ε. But f̄N vanishes at S with required multiplicities, so

Hser(S) 6 sup{|g1|, . . . , |gd|, |gN,d+1|, |gN,d+2|, . . . } 6 Hser(SN ) + ε,

as claimed. ¤

Proof of Theorem 4. Note that, as in Theorem 1 (ii), (iii), we have
H(S) = H(S ′), where S ′ = S ∩ {z ∈ C : |z| > 1}. Evidently, S∗ = S ′−1, so
for the proof of H(S) = Hser(S∗) it suffices to show that H(S ′) = Hser(S ′−1).
The bound H(S ′) 6 Hser(S ′−1) follows immediately from Lemma 12.
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As for the inequality H(S ′) > Hser(S ′−1), observe first that for each ε > 0
there is a polynomial G(x) vanishing at the points of S ′ with prescribed multiplic-
ities that satisfies H(G−xdeg G) < H(S ′)+ε. On replacing G(x) by its reciprocal
and adding zero terms we obtain a series that vanish at S ′−1 with prescribed mul-
tiplicities. It follows that Hser(S ′−1) 6 H(G− xdeg G) + ε. This, by (2) and (3),
implies that H(S ′) > Hser(S ′−1) and completes the proof of H(S) = Hser(S∗). ¤

Proof of Corollary 8. Let k be the largest positive integer for which
(1− 2u1−k)/(u− 1) > (1− 2v1−k)/(v − 1). Take J = {k} and apply Theorem 5
to β1 = 1/u, β2 = 1/v. By (5) and (6), we have D(J) = v−k − u−k > 0 and
Sn(J) = (uv)−k(uk−n − vk−n)/D(J) which is positive for n < k and negative for
n > k. Hence, by (9),

φ(x) = x + · · ·+ xk−1 − xk+1 − xk+2 − · · · = (x− xk − xk+1)/(1− x).

Next, by (10), we obtain that

D2(J) =
φ(u−1)

vk
− φ(v−1)

uk
=

u−1 − u−k − u−k−1

(1− u−1)vk
− v−1 − v−k − v−k−1

(1− v−1)uk

= (uv)−k

(
uk − u− 1

u− 1
− vk − v − 1

v − 1

)
= (uv)−k

(
uk − 2
u− 1

− vk − 2
v − 1

)
.

Thus
D(J)
D2(J)

=
uk − vk

(uk − 2)/(u− 1)− (vk − 2)/(v − 1)
. (23)

Similarly, by (10), we have

D3(J) = φ(u−1)− φ(v−1) =
1− u−k+1 − u−k

u− 1
− 1− v−k+1 − v−k

v − 1
. (24)

By (23), (24) and Theorem 5, we see that the proof of the corollary will be
completed if we will show that |D3(J)| 6 D(J) = v−k − u−k, namely,

∣∣∣∣
1− u−k+1 − u−k

u− 1
− 1− v−k+1 − v−k

v − 1

∣∣∣∣ 6 v−k − u−k.

This inequality is equivalent to the system of two inequalities




(1− 2u−k)/(u− 1) 6 (1− v−k)/(v − 1),

(1− 2u1−k)/(u− 1) > (1− v1−k)/(v − 1).

Clearly, both these inequalities hold if k is defined as above. This completes the
proof of Corollary 8. ¤
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Proof of Corollary 9. Let Su,v = {u, v} and let Su,u be the symmetric
set u, u. Clearly,

lim
v→u

H(Su,v) = H(Su,u).

(This follows from Theorem 2, where we proved that H(SN ) → H(S) if SN as a
vector tends to S as N →∞.) By a standard computation, we find that

lim
v→u

uk − vk

(uk − 2)/(u− 1)− (vk − 2)/(v − 1)
=

kuk−1(u− 1)2

(k − 1)uk − kuk−1 + 2

and

lim
v→u

(1− 2u1−k)/(u− 1)− (1− 2v1−k)/(v − 1)
u− v

= −uk − 2ku + 2(k − 1)
uk(u− 1)2

.

Set u1 := ∞, and suppose uk > 1, where k = 2, 3, . . . , is the largest real root of
the equation xk−2kx+2(k−1) = 0. Clearly, u1 > u2 > u3 > . . . , limk→∞ uk = 1,
and the condition ‘the largest k for which (1−2u1−k)/(u−1) > (1−2v1−k)/(v−1)
holds’ becomes ‘u ∈ [uk+1, uk)’. So Corollary 8 implies that

H(Su,u) =
kuk−1(u− 1)2

(k − 1)uk − kuk−1 + 2

for each u ∈ [uk+1, uk). Observing that u2 = 2 +
√

2, u3 = 2, u4 = κ1 and that
at u = κ2 the equality 4u3(u− 1)2 = 3u4 − 4u3 + 2 holds, we conclude the proof
of Corollary 9 via (3). ¤

Proof of Corollary 10. Take J = J0 = {1} in Theorem 5. Suppose that
S = {w, w} = {|w|eiϕ, |w|e−iϕ}. Then β1 = β = |w|−1eiϕ, β2 = β = |w|−1e−iϕ.
We now find that

Sn = Sn(J0) = Sn = (βnβ − β
n
β)/(β − β) = −|w|−n sin((n− 1)ϕ)/ sin(ϕ).

Since ∞∑
n=2

|Sn| = |w|−2(1 +
∞∑

j=1

|w|−j | sin((j + 1)ϕ)/ sin(ϕ)|), (25)

we find from Theorem 5 that H(S)>|w|2/(1+
∑∞

j=1 |w|−j | sin((j + 1)ϕ)/ sin(ϕ)|).
In order to show that equality holds it suffices to prove that |φ(β)β− φ(β)β| and
|φ(β)− φ(β)| are both smaller than or equal to |β − β|. Here, φ(x) =

∑∞
j=2 δjx

j ,
δj ∈ {−1, 1}.



On the reduced height of a polynomial 347

Since |βjβ−β
j
β|/|β−β| 6 (j−1)|β|j = (j−1)|w|−j and |βj−β

j |/|β−β| 6
j|β|j−1 = j|w|−j+1, we obtain that

|φ(β)β − φ(β)β|
|β − β| 6

∞∑

j=2

(j − 1)|w|−j =
1

(|w| − 1)2
,

and
|φ(β)− φ(β)|
|β − β| 6

∞∑

j=2

j|w|−j+1 =
2|w| − 1

(|w| − 1)2
.

Clearly, both right hand sides 1/(|w| − 1)2 and (2|w| − 1)/(|w| − 1)2 are smaller
than or equal to 1, because |w| > 2 +

√
2. This completes the proof of the

corollary. ¤

Finally, we remark that, by Theorem 5, for any d ∈ N there is a constant
η(d) such that the reduced height of P (x) = xd + ad−1x

d−1 + · · · + a0 ∈ R[x]
which has all its roots in |z| > η(d) can be evaluated by the formula

H(P ) =

( ∞∑

j=d

|Sj |
)−1

,

where Sn, n = 0, 1, 2, . . . , satisfy the linear recurrence relation (14). Indeed, then
the roots βi = 1/αi of the polynomial

R(x) = (x− β1) . . . (x− βd) = xd + r1x
d−1 + · · ·+ rd = P (1/x)xd(−1)dβ1 . . . βd

are so small that the conditions of Theorem 5 are satisfied for the set J = J0 =
{1, . . . , d− 1}.

The value η(2) is equal to 2 +
√

2. (See Corollaries 8–10.) It seems that, for
each d > 2, the formulae η(d) = 1/(1−(1+1/(d−1)!)−1/d) is true. Some evidence
towards this formulae can be given as follows. For |z| 6 1− (1 + 1/(d− 1)!)−1/d,
the inequality |φ(d−1)(z)| 6 1, where φ(z) =

∑∞
j=d±zj , holds for any distribution

of signs ±, giving |Dd+1(J0)| 6 |D(J0)| (see (10) and Theorem 5).
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