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Solutions of some generalized Ramanujan–Nagell equations
via binary quadratic forms

By N. SARADHA (Mumbai) and ANITHA SRINIVASAN (Mumbai)

Abstract. Let h be the class number of binary quadratic forms of discriminant

−4d, where d is odd and I is the identity form x2 + dy2. Let λkn be represented by I,

where λ is a prime power represented by I and k is prime. Then we show that kr is

represented by I for some r dividing h and representations of λkn by I arise out of

the representations by I of λ and kr. As an application we solve several generalized

Ramanujan–Nagell equations of the type x2 + d = λkn.

1. Introduction

For any integer n let ω(n) denote the number of distinct prime divisors of
n where ω(±1) is 0. Let νp(n) denote the exact power of the prime p in n with
νp(±1) = 0 and νp(0) = ∞. Throughout this paper λ, d, k are odd integers such
that λ ≥ 1, d, k > 1, gcd(λ, k) = gcd(λk, d) = 1 and d is not a perfect square.
A binary quadratic form of discriminant D is a function ax2 + bxy + cy2 with
b2 − 4ac = D. We can define an equivalence relation on the set of all binary
quadratic forms of a given discriminant so that the equivalence classes form a
group known as the class group. The order of the class group is denoted by h(D).
The form x2 + dy2 is the identity form which belongs to the identity class. An
integer m is said to be represented by the form ax2 + bxy + cy2, if there exist
coprime positive integers x0 and y0 such that m = ax2

0 + bx0y0 + cy2
0 . A classical

problem in the theory of quadratic forms is the following.
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Given integers m and D, D ≡ 0 or 1 (mod 4) does there exist a representation
of m by some form of discriminant D, in particular, by the identity form ?

See [11] for other fundamental problems. We consider the problem of when the
identity form can represent powers of a given integer k > 1. In other words, we
ask for solutions of the Diophantine equation

x2 + dy2 = kz in integers x, y, z with gcd(x, y) = 1 and z > 1. (1.1)

See Nagell ([10], Chapter VI) for various results on the identity form repre-
senting a prime or a prime power. See also Hua ([6], Chapter 12) for results
on the number of such representations. In [8], Le uses the class group structure
to classify all solutions of D1x

2 − D2y
2 with D1 > 0 and D1D2 not a square

(D1 = 1, D2 = −d gives (1.1)). He gives explicit formulas for these solutions
that have a natural form. Later Heuberger and Le [5] elaborated and clari-
fied certain ambiguities in the works of Le. Bugeaud and Shorey [2] proved
numerous results on equations similar to (1.1) using Le’s classification. (Their
work depends also on the work of Bilu, Hanrot and Voutier [1] on primitive
divisors of Lucas and Lehmer sequences.)

In this paper we consider the equation

x2 + dy2 = λkz in integers x, y, z with gcd(x, y) = 1 and z > 1. (1.2)

From the theory of binary quadratic forms it is known that if an odd integer m is
represented by a form of discriminant −4d then all its divisors are also represented
by some form of the same discriminant. Hence we may assume that λ and k are
represented by some form (not necessarily the same one) of discriminant −4d.

Using the class group structure of forms, we prove the following result when
λ and k are prime powers.

Theorem 1.1. Suppose q1 and q2 are distinct primes not dividing d. Let f

and g be classes that represent q1 and q2 respectively with corresponding orders

r1 and r2. Then the equation

x2 + dy2 = qm
1 qn

2 , gcd(x, y) = 1, m, n ≥ 1 (1.3)

implies that

r1 gcd(n, r2) = r2 gcd(m, r1). (1.4)

In particular,

r1 | m if and only if r2 | n. (1.5)

Further if gcd(r1, r2) = 1, then r1 | m and r2 | n. If q1 and q2 are represented by

the same class, then r1 = r2 = r and (1.3) has a solution if and only if r | (m+n)
or r | (m− n).
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Remark 1.1. The integers r1 and r2 in Theorem 1.1 are uniquely determined
by the primes q1 and q2 respectively. This is because a prime is represented by at-
most two classes and these two classes are inverses of each other (see Lemma 3.9).

Note that (1.3) has no solution if either r1 | m and r2 - n or r1 - m and r2 | n.
It has solutions if r1 | m and r2 | n. We illustrate the theorem with the following
examples. Consider

x2 + 31y2 = 5m7n.

Here d = 31, q1 = 5 and q2 = 7. Note that h(−31) = h(−4 · 31) = 3. The
three inequivalent classes have their representative forms as e = 8x2 + xy + y2,
f = 4x2 + xy + 2y2 and g = 5x2 + 3xy + 2y2 with f3 ∼ g3 ∼ e and f2 ∼ g.
Here e represents the identity class. We see that 5 and 7 are both represented by
f and hence also by g = f−1. Thus r1 = r2 = 3 and by Theorem 1.1, we have
3 | (m + n) or 3 | (m− n). These conditions are equivalent to either 3 | m, 3 | n
or 3 - m, 3 - n. Note that if these conditions are satisfied the equation under
consideration has solutions. For example,

53=1 + 31 · 22; 73=82 + 31 · 32 and 53 · 73=1942 + 31 · 132 or 1782 + 31 · 192;

5 · 7 = 22 + 31; 5 · 72 = 112 + 31 · 22; 52 · 7 = 122 + 31; 52 · 72 = 272 + 31 · 42.

Also the equation has no solution if 3 | m and 3 - n or 3 - m and 3 | n.
Next consider

x2 + 17y2 = 3m53n.

Here 53 = 62 + 17 and 34 = 82 + 17. Note that h(−4 · 17) = 4. Also q1 = 3,
r1 = 4, q2 = 53, r2 = 1. By Theorem 1.1, this equation has no solution whenever
m 6≡ 0 (mod 4).

If λ is represented only by the identity class, then it follows that kz is also
represented by the identity class and (1.2) has solutions. In fact, all the solu-
tions of (1.2) can be put into Nλ2ω(k)−1 classes where Nλ denotes the number
of representations (up to signs) of λ by the identity form (see Section 4, Propo-
sition 4.1). This generalizes Le’s result on (1.1) as 1 is represented only by the
identity class. Our work is based on the theory of binary quadratic forms. We
point out here that our representation is similar to that of Yuan [13]. Indeed
he gives the representations of solutions of a more general equation than (1.2)
namely of

ax2 + by2 = ckn with gcd(ax, by) = 1 in positive integers x, y and n.

He uses the structure of abelian groups and ideal theory of quadratic fields.



352 N. Saradha and Anitha Srinivasan

In the case when λ is a prime power represented by the identity class and
k is a prime, there is only one class of solutions of (1.2) which we present in
Theorem 1.2 below. We point out that all the theorems below assume these
conditions on λ and k, namely,

λ is a prime power represented by the identity class and k is a prime. (1.6)

Theorem 1.2. Assume (1.6). Then there exists a unique positive integer

r | h(−4d) and unique (up to signs) representations of λ and kr by the identity

form such that the following holds. If (x′, y′, z) is a solution of (1.2) then z = rt

for some t ≥ 1 and x′ = ±x, y′ = ±y where

x + y
√
−d = (x0 + y0

√
−d )(x1 + y1

√
−d )t (1.7)

with x2
0 + dy2

0 = λ, x2
1 + dy2

1 = kr.

We observe that if x and y satisfy (1.7) for some t ≥ 1, then (x, y, rt) is
a solution to (1.2). When y = ±1 in (1.2) we get the so called generalized
Ramanujan–Nagell equations of the form

x2 + d = λkn in integers x and n > 2. (1.8)

From the theory of linear forms in logarithms, it is known that (1.8) has only
finitely many solutions. There are several results in the literature on the number
of solutions of (1.8), especially when λ = 1 and k is prime. See for instance [2].
We note that (1.8) has a solution if and only if (1.2) has a solution with y = ±1.
If (1.6) holds then by Theorem 1.2, (1.8) has a solution if and only if (1.7) has a
solution with y = ±1. In the following Theorems 1.3–1.6 we present conditions
under which (1.7) does not hold with y = ±1. Thus we are able to completely
solve some generalized Ramanujan–Nagell equations of type (1.8).

In the theorems below we use the following notation. If p is a prime dividing
d− 1 we write

d = pθf + 1 with p - f and θ > 0. (1.9)

We begin with the case λ = 1. As mentioned earlier, 1 is represented only by the
identity class.

Theorem 1.3. Assume (1.6). Let d satisfy (1.9) with θ > 1 if p = 2. Suppose

x0 = 1, y0 = 0 and θ < 2νp(x1). Then (1.8) has no solution except possibly when

n = r where r is as given in Theorem 1.2.
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For example, the equation

x2 + 105 = 11n with n > 2

has no solution. Here p = 2, θ = 3, λ = 1 and k = 11. Also r = 2 as 112 = 42+105.
Therefore x1 = 4, ν2(x1) = 2. By Theorem 1.2, we find that n = 2t. Since
θ < 2ν2(x1), by Theorem 1.3, we see that the equation has no solution for n > 2.
Here we note that (1.8) with d ≤ 100, λ = 1 has been completely solved in x, k

and n by Bugeaud, Mignotte and Siksek [3]. See also [4] and [7].
We assume henceforth that x0, y0, x1, y1 are all non-zero integers. It is

clear from the expression for y (see Section 5) that y 6= ±1 if any of gcd(x0, y0),
gcd(y0, y1) and gcd(x1, y1) exceeds 1. In Theorems 1.4–1.6, we consider the cases
gcd(y0, x1) > 1, gcd(x0, x1) > 1 and gcd(x0, y1) > 1.

Theorem 1.4. Assume (1.6). Let (1.9) hold with p = 2 and θ > 1. Suppose

2 | gcd(y0, x1) and x0, y1 ∈ {−1, 1}. Further let

ν2(y0) + ν2(x1) < min(θ, 2ν2(x1)).

Then (1.8) has no solution.

As an example let (λ, d, k) = (3301, 33, 7). Then θ = 5 and r = 2. Moreover
as λ = 3301 = 1 + 33 · 102 and kr = 72 = 42 + 33, we have ν2(y0) = 1, ν2(x1) = 2.
Note that 3301 is a prime. Thus all the conditions of Theorem 1.4 are satisfied.
Therefore the equation

x2 + 33 = 3301 · 7n

has no solution.

Theorem 1.5. Assume (1.6). Let y0, y1 ∈ {−1, 1}. Suppose that there

exists a prime p such that p | gcd(x0, x1) and (1.9) holds. Suppose further that

either

(i) νp(x0) < νp(x1) and θ 6= νp(x0) + νp(x1) if p ≥ 3

or

(ii) p = 2, θ > 1, ν2(x0) + 1 6= ν2(x1) and θ 6= ν∗2 + ν2(x1)

or

(iii) p = 2, θ > 1, ν2(x0) + 1 = ν2(x1) and θ ≤ ν2(x0) + ν2(x1) + 1

where ν∗2 = min(ν2(x0) + 1, ν2(x1)) holds. Then (1.8) has no solution.
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Observe that if ν2(x1) = 1 and θ ≥ 3, then condition (ii) above is satisfied.
For example,

x2 + 33 = 72 · 37n

has no solution since 72 = 42+33 and 37 = 22+33, hence condition (ii) is satisfied
with (λ, d, k) = (72, 33, 37). Similarly using condition (iii) in Theorem 1.5 we see
that

x2 + 33 = 72 · 97n

has no solution. The equation

x2 + 7 = 43 · 331n

has no solution by Theorem 1.5(i) with p = 3.

Theorem 1.6. Assume (1.6). Suppose y0, x1 ∈ {−1, 1}. Assume that there

exists a prime p such that p | gcd(x0, y1) and (1.9) holds. Suppose further that

νp(x0) + ε < νp(y1)

where ε = 0 if p ≥ 3 and ε = 1 if p = 2. Then (1.8) has no solution.

Consider (λ, d, kr) = (7, 3, 972). Then λ = 7 = 22+3 and kr = 972 = 1+3·562

with ν2(x0) = 1 and ν2(y1) = 3. Hence by Theorem 1.6,

x2 + 3 = 7 · 97n

has no solution.
The plan of the paper is as follows. In Section 2 we present the basic defi-

nitions and notations of binary quadratic forms. In Section 3 we present proofs
of certain results on binary quadratic forms. Section 4 contains the main lemmas
and proofs of Theorems 1.1 and 1.2. Lemmas 4.4 and 4.5 also appear in [7]. Apart
from the above two mentioned lemmas the remaining lemmas in Section 4 state
results that while most certainly are not new, are not very well known. The proof
of Theorem 1.2 depends only on these fundamental results on binary quadratic
forms. In Section 5 we use combinatorial arguments which lead to the proofs of
Theorems 1.3–1.6. The results of this paper can be generalized to the cases when
d is negative. Moreover the restriction that λ and k be odd can also be relaxed.
These cases will be treated in another article.

We refer to Hua [6], Ribenboim [11] and Rose [12] for the theory of binary
quadratic forms. Also Appendix E in [9] is a compact and useful reference for
results on binary quadratic forms.
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2. Binary quadratic forms

A binary quadratic form f = (a, b, c) of discriminant D is a function f(x, y) =
ax2 + bxy + cy2, where a, b, c are integers such that D = b2 − 4ac. Sometimes
we write a binary quadratic form of discriminant D simply as (a, b), as the third
coefficient c is determined by the discriminant equation above. A binary quadratic
form (a, b, c) is called primitive if gcd(a, b, c) = 1. Henceforth, we shall consider
only primitive binary quadratic forms. Let f = (a, b, c) be a form of discriminant
D. Then b2 ≡ D (mod 4a). Thus b and D are of the same parity. The forms
f = (a, b, c) and f ′ = (a′, b′, c′) are said to be equivalent, written as f ∼ f ′ if
there exists a transformation

x = αX + βY, y = γX + δY

with αδ − γβ = 1 and α, β, γ, δ ∈ Z that takes f to f ′, i.e.

ax2 + bxy + cy2 = a′X2 + b′XY + c′Y 2.

Note that

a′ = f(α, γ), b′ = b(αδ + βγ) + 2(aαβ + cγδ), c′ = f(β, δ). (2.1)

The matrix A =
(

α β
γ δ

)
is called the transformation matrix which takes f to f ′.

It is easily seen that equivalent forms represent the same integers.

The Composition formula. Let f = (a1, b1, c1) and h = (a2, b2, c2) be two
forms. Then the composition f ◦ h is the form (a′, b′, c′) obtained as follows. Let
g = gcd(a1, a2,

b1+b2
2 ) and let v1, v2, w ∈ Z be integers that satisfy

v1a1 + v2a2 + w
b1 + b2

2
= g.

Then a′, b′ and c′ are given as follows:

a′ =
a1a2

g2
,

b′ ≡ b2 +
2a2

g

(
b1 − b2

2
v2 − c2w

)
(mod 2a′), 1 ≤ b′ ≤ 2a′,

c′ =
(b′)2 −D

4a′
.

We observe that if f ∼ f ′ and g ∼ g′, then f ◦ g ∼ f ′ ◦ g′. By fn or (a, b, c)n we
mean composition of the form f with itself n times.
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The class number h(D) is the number of equivalence classes of primitive bi-
nary quadratic forms of discriminant D. The equivalence classes of primitive
binary quadratic forms form an abelian group called the class group with com-
position of forms as the group law. The identity class is the class of the identity
form, which is defined as the form e = (1, 0, −D

4 ) or (1, 1, 1−D
4 ) depending on

whether D is even or odd respectively. The inverse of f = (a, b, c) denoted by
f−1 is given by (a,−b, c). We denote the order of the form f in the class group
by ord(f).

Suppose an integer m and a form f are given. We say that the equality
f(x, y) = m is a representation (of m) if the integers x and y are coprime.

3. Basic lemmas on binary quadratic forms

The results in this section are well known. However, we provide proofs for
the sake of completeness.

Definition 3.1. If a transformation matrix A takes the form f to the form f ′

we write TA(f) = f ′.

The following lemma may be verified easily.

Lemma 3.1. If f1, f2 and f3 are forms such that TA(f1)=f2 and TB(f2)=f3,

then TAB(f1) = f3.

Lemma 3.2. The form (a, b, c) is equivalent to the form (a, b + 2aδ) for any

integer δ.

Proof. The equivalence follows via the matrix
(

1 δ
0 1

)
. ¤

Lemma 3.3. Let f and h be two forms. Then there exists a unique form F

such that f ◦ h = F .

Proof. Let f = (a1, b1, c1) and h = (a2, b2, c2). Let gcd(a1, a2,
b1+b2

2 ) be
denoted by g with a1 = ga′1, a2 = ga′2 and b1+b2

2 = gB. Let integers v1, v2, w

and v′1, v′2, w′ satisfy

v1a1 + v2a2 + w
b1 + b2

2
= g = v′1a1 + v′2a2 + w′

b1 + b2

2
.

Let (a, φ) and (a, φ′) be the corresponding forms obtained by the composition
formula. We have

v1a
′
1 + v2a

′
2 + wB = 1 = v′1a

′
1 + v′2a

′
2 + w′B.
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Thus

(v2 − v′2)a
′
2 ≡ −(w − w′)

(
b1 + b2

2g

)
(mod a′1),

and hence

(v2 − v′2)
(

b1 − b2

2

)
a′2 ≡ −(w − w′)

(
b2
1 − b2

2

4g

)
(mod a′1).

Since D = b2
1 − 4a1c1 = b2

2 − 4a2c2, we have b21−b22
4 = a1c1 − a2c2 implying that

b2
1 − b2

2

4g
≡ −c2a

′
2 (mod a′1).

Therefore
b1 − b2

2
(v2 − v′2) ≡ c2(w − w′) (mod a′1).

It follows that

φ− φ′ = 2a′2

(
b1 − b2

2
(v2 − v′2)− c2(w − w′)

)
≡ 0 (mod 2a′1a

′
2)

which gives φ = φ′ since by definition, 1≤φ, φ′≤ 2a′1a
′
2. Hence (a, φ) = (a, φ′).

¤

Lemma 3.4. Let (a1, b1, c1) and (a2, b2, c2) be two forms. For i = 1, 2
let (ai, b

′
i, c

′
i) be forms such that bi ≡ b′i (mod 2ai). Then the compositions

(a1, b1, c1) ◦ (a2, b2, c2) and (a1, b
′
1, c

′
1) ◦ (a2, b

′
2, c

′
2) are equal.

Proof. Let b′i = bi + 2aiki for i = 1, 2. Then c′i = ci + aik
2
i + biki. Let

g = gcd(a1, a2,
b1+b2

2 ). Note that g = gcd(a1, a2,
b′1+b′2

2 ). Let the two compositions
in the lemma be (a1a2

g2 , φi) for i = 1, 2, where v1, v2, w and v′1, v′2, w
′ are chosen

such that
v1a1 + v2a2 + w

b1 + b2

2
= g (3.1)

and

v′1a1 + v′2a2 + w′
b′1 + b′2

2
= g. (3.2)

Equation (3.2) above gives a1(v′1 + w′k1) + a2(v′2 + w′k2) + w′ b1+b2
2 = g. Observe

that if we set w′ = w, v′1 = v1 − wk1 and v′2 = v2 − wk2, then (3.2) is satisfied.
By the composition formula,

(
mod 2a1a2

g2

)
we have

φ1 ≡ b2 +
2a2

g

(
v2

b1 − b2

2
− c2w

)
and φ2 ≡ b′2 +

2a2

g

(
v′2

b′1 − b′2
2

− c′2w
)

.
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Therefore

φ2 ≡ b2 + 2a2k2

+
2a2

g

(
(v2 − wk2)

(b1 − b2

2
+ a1k1 − a2k2

)− w
(
c2 + a2k

2
2 + b2k2

))

≡ φ1 + 2a2k2 +
2a2

g

(
a1k1v2 − a2k2v2 − k2w

b1 + b2

2
− k2wa1k1

)

≡ φ1 + 2a2k2 +
2a2

g

(
a1k1v2 − k2(g − v1a1)− k2wa1k1

)
.

The last congruence above follows from (3.1). As a result we have

φ2 ≡ φ1 +
2a1a2

g
(k1v2 + v1k2 − wk1k2)

(
mod

2a1a2

g2

)
,

and hence φ2 ≡ φ1

(
mod 2a1a2

g2

)
. Therefore φ1 = φ2 and the two compositions are

equal. ¤

Lemma 3.5. Let f(x, y) = n be a representation. Then there exist unique

integers x1 and y1 with xy1−x1y = 1 such that if A =
(

x x1
y y1

)
, then TA(f) = (n, φ)

with 1 ≤ φ ≤ 2n.

Proof. Let integers x0 and y0 be such that xy0−yx0 = 1. Let A′ =
(

x x0
y y0

)

and TA′(f) = (n, φ′). If B′ =
(

1 δ
0 1

)
, then TB′(n, φ′) = (n, φ′ + 2nδ). We may

choose δ so that φ = φ′ + 2nδ satisfies 1 ≤ φ ≤ 2n. Now let A = A′B′ =
(

x x1
y y1

)
.

Then TA(f) = (n, φ). Suppose B =
(

x x2
y y2

)
is such that TB(f) = (n, φ′) with

1 ≤ φ′ ≤ 2n. Since xy2− yx2 = 1, we observe that x2 = x1 + hx, y2 = y1 + hy for
some integer h. Using the expression for φ and φ′ from (2.1) we have

φ− φ′ = b(xy1 + yx1 − xy2 − yx2) + 2(axx1 + cyy1 − axx2 − cyy2)

= −2hbxy − 2ahx2 − 2chy2 = −2hn.

Since 1 ≤ φ, φ′ ≤ 2n we conclude that φ = φ′ and x2 = x1 and y2 = y1. ¤

Henceforth we assume that the discriminant D = −4d. Hence the identity
form e = (1, 0, d) and b is even in any form f = (a, b, c). We note that there is
a binary quadratic form of discriminant −4d that represents an odd integer k if
and only if the congruence x2 ≡ −d (mod k) has a solution.
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Definition 3.2. Let e(x, y) = n be a representation. Define T (x, y) = TA(e) =
(n, 2φ) where 1 ≤ φ ≤ n and A is the unique transformation matrix as in
Lemma 3.5 above.

Lemma 3.6. Suppose e(x1, y1) = e(x2, y2) = n are representations. If

T (x1, y1) = T (x2, y2) then x2 + y2

√−d = ±(x1 + y1

√−d ).

Proof. It follows by definition that there exist matrices A and B with A =(
x1 t1
y1 s1

)
and B =

(
x2 t2
y2 s2

)
such that TA(e) = T (x1, y1) = (n, 2φ1) and TB(e) =

T (x2, y2) = (n, 2φ2). Since T (x1, y1) = T (x2, y2), we have

x1t1 + dy1s1 = φ1 = φ2 = x2t2 + dy2s2.

Let φ = φ1 = φ2. We define two rational numbers u and v as

nu = x1x2 + dy1y2 and nv = x1y2 − x2y1.

We have
x1 = x1(x1s1 − y1t1) = x2

1s1 − φy1 + dy2
1s1

= s1(x2
1 + dy2

1)− φy1 = ns1 − φy1

that gives x1 = ns1 − φy1. Similarly x2 = ns2 − φy2. Hence nv = x1y2 − x2y1 =
ns1y2 − ns2y1 implying that v = s1y2 − s2y1. Thus v is an integer. Now

(u2 + dv2)n2 = x2
1x

2
2 + d2y2

1y2
2 + dx2

2y
2
1 + dx2

1y
2
2 = (x2

1 + dy2
1)(x2

2 + dy2
2) = n2.

Hence u2 + dv2 = 1 and we conclude that u = ±1 and v = 0. Therefore n =
±(x1x2 + dy1y2) and x1y2 = x2y1. We have now

x1 = ±(x2
1x2 + dx1y1y2)/n = ±(x2

1x2 + dx2y
2
1)/n = ±x2,

y1 = ±(−x1x2y1 + dy2
1y2)/n = ±(x2

1y2 + dy2
1y2)/n = ±y2

which proves the lemma. ¤

Lemma 3.7. Let h be a positive integer. Suppose e(ai, bi) = pri
i is a

representation, where pi is an odd prime and ri is a positive integer for every

i with 1 ≤ i ≤ h. Then the identity class is the only class that represents

P = pr1
1 · · · prh

h . Moreover, if P = pα for an odd prime p and a positive integer α

and e(a, b) = e(m,n) = pα are two representations, then m = ±a and n = ±b.
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Proof. By Lemma 3.5 for each 1 ≤ i ≤ h there exists 1 ≤ φi ≤ pri
i such

that e ∼ (pri
i , 2φi). By composition of the forms (pri

i , 2φi) it follows that P is
represented by the identity class. Suppose a form f represents P . Again by
Lemma 3.5, we have f ∼ (P, 2ξ) for some ξ with 1 ≤ ξ ≤ P . Let ξ ≡ ξi (mod pri

i )
with 1 ≤ ξi ≤ pri

i . Then ξ2
i ≡ −d (mod pri

i ). Hence φi ≡ ±ξi (mod pri
i ). By

Lemma 3.2, for all i we obtain

(pri
i , 2ξi) ∼ (pri

i ,±2φi) ∼ e.

Once again by resorting to Lemma 3.2 we have (pri
i , 2ξi) ∼ (pri

i , 2ξ). It follows
now by composition that

e ∼ (pr1
1 , 2ξ) ◦ · · · ◦ (prh

h , 2ξ) ∼ (P, 2ξ)

which proves the first assertion.
Let T (a, b) = (pα, 2η1) and T (m,n) = (pα, 2η2). We reason as above to

conclude that η2 = η1 or η2 = pα−η1. Now T (−a, b) = T (a,−b) = (pα, 2(pα−η1)).
Thus T (a, b) = T (m,n) or T (−a, b) = T (a,−b) = T (m,n). By Lemma 3.6 we
have m = ±a, n = ±b. ¤

Remark 3.1. The converse of the above lemma is not always true. For in-
stance, let d = 31. As seen following Theorem 1.1 in the Introduction, there
are three inequivalent representative forms namely e(x, y) = x2 + 31y2, f(x, y) =
4x2+xy+2y2 and g(x, y) = 5x2+3xy+2y2. Now f(1,−1) = g(1, 0) = 5; f(1, 1) =
g(1,−2) = 7; e(2, 1) = 35. Clearly 5 and 7 are not represented by e. If f or g

represents 35 then |x| ≤ 3, |y| ≤ 5. It may be verified that for these values of x

and y, neither f(x, y) nor g(x, y) is equal to 35. Thus 35 is represented only by e

but its prime factors are not represented by e.

Lemma 3.8. Let (a, b, c) be a form such that r is the highest power of a

that divides c. Then for 1 ≤ i ≤ r + 1 we have (a, b, c)i ∼ (ai, b, c
ai−1 ).

Proof. By the composition formula, as gcd(a, b) = 1, it follows immediately
that (a, b, c)2 ∼ (a2, b, c

a ). Similarly for 2 ≤ i ≤ r it follows by induction that

(a, b, c)i+1 ∼ (a, b, c) ◦
(
ai, b,

c

ai−1

)
∼

(
ai+1, b,

c

ai

)
. ¤

Lemma 3.9. Let p be an odd prime that is represented by a class f . If f ′

is any other class that represents p, then either f ′ = f or f ′ = f−1.

Proof. As f represents p, there exist coprime integers α and β such that
f(α, β) = p. It follows from (2.1) that there exists a form (p, b, c) with f ∼ (p, b, c).
Note that b is a solution of the congruence x2 ≡ −4d(mod 4p). Also, modulo
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2p this congruence has only two solutions, namely b and −b. Therefore from
Lemma 3.2 it follows that there are only two classes that represent p, namely the
classes of the forms (p, b, c) and (p,−b, c). It is easily seen that these forms are
inverses of each other. ¤

4. Proofs of Theorems 1.1 and 1.2

Lemma 4.1. Let m and n be positive integers such that gcd(mn, d) = 1.

Assume that m is represented only by the identity class. Let e(x, y) = mn and

T (x, y) = (mn, 2φ). Then n is represented by the identity class and there exist

representations e(x0, y0) = m and e(x1, y1) = n such that T (x0, y0) = (m, 2φ0),
T (x1, y1) = (n, 2φ1) and T (x, y) = T (x0, y0) ◦ T (x1, y1) where φ ≡ φ0 (mod m)
and φ ≡ φ1 (mod n).

Proof. We have φ2 ≡ −d (mod mn). If φ ≡ φ0 (mod m) then φ2
0 ≡ −d

(mod m) and we obtain the form (m, 2φ0,
φ2

0+d
m ) = (m, 2φ0) of discriminant

−4d. By Lemma 3.2, (m, 2φ) ∼ (m, 2φ0). Similarly if φ ≡ φ1 (mod n) we
have (n, 2φ) ∼ (n, 2φ1). As the identity class is the only class that represents
m, we have e ∼ (m, 2φ0). Moreover by composition and Lemma 3.4 we have
e ∼ (mn, 2φ) = (m, 2φ) ◦ (n, 2φ) = (m, 2φ0) ◦ (n, 2φ1) ∼ (n, 2φ1). There-
fore (n, 2φ1) is equivalent to e and hence n is represented by the identity class.
Moreover there exist representations e(x0, y0) = m and e(x1, y1) = n such that
T (x0, y0) = (m, 2φ0) and T (x1, y1) = (n, 2φ1) as e ∼ (m, 2φ0) ∼ (n, 2φ1). By
Lemma 3.4 we have

T (x0, y0) ◦ T (x1, y1) = (m, 2φ) ◦ (n, 2φ) = (mn, 2φ) = T (x, y). ¤

Lemma 4.2. Let e(x0, y0) = m, e(x1, y1) = n be representations of coprime

integers m,n with gcd(mn, d) = 1. Let x+y
√−d = (x0 +y0

√−d )(x1 +y1

√−d ).
Then gcd(x, y) = 1 and e(x, y) = mn. Moreover T (x, y) = T (x0, y0) ◦ T (x1, y1).

Proof. We have x = x0x1 − dy0y1 and y = x0y1 + x1y0. Suppose g divides
x and y. Then x1y−xy1 = y0(x2

1 + dy2
1) = y0n is divisible by g. Similarly g | x0n

and hence g | n since gcd(x0, y0) = 1. In the same manner we can show that g | m
and thus gcd(x, y) = 1. We observe that

e(x, y) = x2 + dy2 = (x2
0 + dy2

0)(x2
1 + dy2

1)

= e(x0, y0)e(x1, y1) = mn.
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Let T (x0, y0) = (m, 2φ0), T (x1, y1) = (n, 2φ1) and T (x, y) = (mn, 2φ). Let

A =

(
x0 a0

y0 b0

)
, B =

(
x1 a1

y1 b1

)
, C =

(
x a

y b

)

be such that TA(e) = (m, 2φ0), TB(e) = (n, 2φ1) and TC(e) = (mn, 2φ). We will
show that φ ≡ φ0 (mod m) and φ ≡ φ1 (mod n). By equation (2.1), φ = xa+dyb

and for i = 0, 1, φi = xiai + dyibi. We have

φ− φ1 = xa + dyb− x1a1 − dy1b1

= (x0x1 − dy0y1)a + db(x0y1 + x1y0)− x1a1 − dy1b1

= x1(x0a + dby0 − a1) + dy1(−y0a + bx0 − b1).

Multiplying by x1y1 we have

x1y1(φ− φ1) = x2
1(x0a + dby0 − a1)y1 + dy2

1(−y0a + bx0 − b1)x1.

Observe that

(x0a + dby0 − a1)y1 − (−y0a + bx0 − b1)x1

= a(x0y1 + x1y0) + b1x1 − a1y1 + b(dy0y1 − x0x1) = 1 + ay + b(−x) = 0.

Hence

x1y1(φ− φ1) = (x2
1 + dy2

1)(x0a + dby0 − a1)y1 ≡ 0 (mod n).

As gcd(x1y1, n) = 1, it follows that φ ≡ φ1 (mod n). Similarly φ ≡ φ0 (mod m).
Therefore by Lemma 3.4 we have

T (x0, y0) ◦ T (x1, y1) = (m, 2φ) ◦ (n, 2φ) = (mn, 2φ) = T (x, y),

which completes the proof of the lemma. ¤

Lemma 4.3. Let gcd(m,n) = gcd(mn, d) = 1. Assume that m and mn

are represented by the identity class. Further assume that m is represented only

by the identity class. Let e(x, y) = mn be a representation. Then there exist

representations e(x0, y0) = m and e(x1, y1) = n such that

x + y
√
−d = ±(x0 + y0

√
−d )(x1 + y1

√
−d ).

Proof. Let T (x, y) = (mn, 2φ). By Lemma 4.1 there exist pairs (x0, y0) and
(x1, y1) such that T (x, y) = T (x0, y0) ◦ T (x1, y1). Moreover we have T (x0, y0) =
(m, 2φ0) and T (x1, y1) = (n, 2φ1) where φ ≡ φ0 (mod m) and φ ≡ φ1 (mod n).
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Also by Lemma 4.2 we have T (x0, y0) ◦ T (x1, y1) = T (x′, y′) where x′ + y′
√−d =

(x0 + y0

√−d )(x1 + y1

√−d ). Hence T (x, y) = T (x′, y′) and by Lemma 3.6, the
assertion follows. ¤

Lemma 4.4. Let gcd(x0, y0) = 1 and e(x0, y0) = kr for some positive inte-

ger r. Let (x0 + y0

√−d )t = xt + yt

√−d for some t ≥ 0. Then gcd(xt, yt) = 1
and e(xt, yt) = krt. Moreover T (xt, yt) = T (x0, y0)t.

Proof. Let T (x0, y0) = (kr, 2φ0). We have

xt =
[ t
2 ]∑

i=0

(
t

2i

)
xt−2i

0 y2i
0 (−d)i

and

yt =
[ t−1

2 ]∑

i=0

(
t

2i + 1

)
xt−2i−1

0 y2i+1
0 (−d)i.

As x2
0 + dy2

0 = kr we have

xt ≡ xt
0

[ t
2 ]∑

i=0

(
t

2i

)
= 2t−1xt

0 (mod kr)

and

yt ≡ xt−1
0 y0

[ t−1
2 ]∑

i=0

(
t

2i + 1

)
= 2t−1xt−1

0 y0 (mod kr).

Note that x2
t + dy2

t = krt. Hence if a prime p divides xt and yt then p divides k.
As gcd(x0y0, k) = 1 and k is odd it follows from the above two congruences that
gcd(xt, yt) = 1. Moreover y0xt − x0yt ≡ 0 (mod kr). Thus

xt

yt
≡ x0

y0
(mod kr). (4.1)

Let A =
(

x0 a0
y0 b0

)
and B =

(
xt at

yt bt

)
be such that TA(e) = T (x0, y0) = (kr, 2φ0)

and TB(e) = T (xt, yt) = (krt, 2φt), where 1 ≤ φ0 ≤ kr and 1 ≤ φt ≤ krt. Observe
that

φ2
t + d ≡ 0 (mod krt). (4.2)

By (2.1), φi = xiai + dbiyi, i = 0, t, which gives xi + yiφi = bi(x2
i + dy2

i ), that is

xi

yi
≡ −φi (mod kr).
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Using (4.1) we have
φ0 ≡ φt (mod kr).

By Lemma 3.4, (kr, 2φ0)t = (kr, 2φt)t and so T (x0, y0)t = (kr, 2φ0)t = (kr, 2φt)t.
Note that (kr, 2φt) = (kr, 2φt, c1) where c1 = φ2

t+d
kr . Now c1 is divisible by kr(t−1)

from (4.2) and hence by Lemma 3.8 (kr, 2φt)t = (krt, 2φt) = T (xt, yt). Thus
T (x0, y0)t = T (xt, yt). ¤

Note that the congruence

x2 ≡ −d (mod k)

has 2ω(k) solutions. Let x1, · · · , x2ω(k) be the solutions with 1 ≤ xi ≤ k. Cor-
responding to each xi, we have a form (k, 2xi). Now the forms (k, 2xi) and
(k, 2(k−xi)) are inverses and hence have the same order. For 1 ≤ i ≤ 2ω(k)−1 we
now define fi = (k, 2`i), where `i is chosen to be either xi or k − xi. Let ri be
the order of fi in the class group. Let fri

i = (kri , 2Li) with 1 ≤ Li ≤ kri . Since
fri

i ∼ e, there exist coprime integers αi, βi such that T (αi, βi) = (kri , 2Li), which
gives T (−αi, βi) = T (αi,−βi) = (kri , 2(kri − Li)). In conclusion we have

Lemma 4.5. Let k be an odd integer such that gcd(k, d) = 1. Assume

that k is represented by some form of discriminant −4d. Then for every i with

1 ≤ i ≤ 2ω(k)−1, there exists an integer ri dividing h(−4d) and integral tuples

(αi, βi, Li) such that

1 ≤ Li ≤ kri , αi, βi ≥ 0 with gcd(αi, βi) = 1

and

(kri , 2Li) = T (αi, βi) or (kri , 2Li) = T (αi,−βi).

As a consequence of the above lemma, we have

Lemma 4.6. Let k be an odd integer such that gcd(k, d) = 1. Assume that

k is represented by some form of discriminant −4d. Suppose that e(x, y) = kn is

a representation with T (x, y) = (kn, 2φ). Then for some i with 1 ≤ i ≤ 2ω(k)−1,

there exists an integer ti > 0 such that n = riti and T (x, y) = T (αi, βi)ti or

T (x, y) = T (αi,−βi)ti where ri, αi, βi are given by Lemma 4.5.

Proof. By Lemma 3.8 we have e ∼ (kn, 2φ) = (k, 2φ)n. Hence if f = (k, 2φ)
then ord(f) | n. Note that φ2 ≡ −d (mod k). Let φ ≡ `i (mod k) for some
1 ≤ i ≤ 2ω(k). Then f ∼ fi and ord(f) = ri. Thus n = riti for some integer ti ≥ 1
and T (x, y) = (kriti , 2φ) = (k, 2φ)riti = (k, 2`i)riti = (kri , 2Li)ti = T (αi,±βi)ti

by Lemmas 3.4 and 4.5 above. ¤
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Proposition 4.1. Suppose (1.2) holds where λ is represented only by the

identity class. Then for 1 ≤ i ≤ 2ω(k)−1 there exist positive integers ri | h(−4d)
and representations e(αi, βi) = kri , such that the solutions (x, y, z) of (1.2) can

be put into classes as given below. To each integer ri as above and to each

representation e(γ, δ) = λ, we have x = ±x′, y = ±y′ and z = riti, where

x′ + y′
√
−d = (γ + δ

√
−d )(αi + βi

√
−d )ti

and ti ≥ 0 is any integer. Conversely each triple (x′, y′, z) given as above satisfies

equation (1.2).

Proof. We have e(x, y) = λkn. By Lemma 4.3, there exist representations
e(γ, δ) = λ and e(α, β) = kn such that (x + y

√−d ) = (γ + δ
√−d )(α + β

√−d ).
Let T (α, β) = (kn, 2φ). By Lemma 4.6, for some i with 1 ≤ i ≤ 2ω(k)−1 there
exists ti > 0 such that n = riti and T (α, β) = T (αi,±βi)ti . By Lemma 4.4, we
have T (αi,±βi)ti = T (αiti ,±βiti) where (αi± βi

√−d )ti = αiti ± βiti

√−d. Thus
T (α, β) = T (αiti ,±βiti) which by Lemma 3.6, implies that

(α + β
√
−d ) = ±(αi ± βi

√
−d )ti .

Therefore for some 1 ≤ i ≤ 2ω(k)−1, we have

x+y
√
−d = ±(γ+δ

√
−d )(αi±βi

√
−d )ti = ±(γ+δ

√
−d )(αiti±βiti

√
−d ). (4.3)

Now for any integers p, q, r and s, let

(x1 + y1

√
−d ) = (|p|+ |q|

√
−d )(|r|+ |s|

√
−d )

and
(x2 + y2

√
−d ) = (|p|+ |q|

√
−d )(|r| − |s|

√
−d ).

It can be seen easily that if

(x0 + y0

√
−d ) = (p + q

√
−d )(r + s

√
−d )

then x0 = ±x1, y0 = ±y1 or x0 = ±x2, y0 = ±y2. The proposition now follows
from (4.3). The converse follows by Lemma 4.2. ¤

Proof of Theorem 1.1. Let f and g be forms that represent the primes
q1 and q2 with orders, ord(f) = r1 and ord(g) = r2. It is easy to see that

ord(fm) =
r1

gcd(r1, m)
, ord(gn) =

r2

gcd(r2, n)
.
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By (1.3), we have e ∼ T (x, y) = (qm
1 qn

2 , 2b) = (qm
1 , 2b) ◦ (qn

2 , 2b). By Lemmas 3.8
and 3.9 we have (qm

1 , 2b) ∼ (q1, 2b)m ∼ fm or f−m. Similarly (qn
2 , 2b) ∼ gn or

g−n. Hence fm ∼ gn or fm ∼ g−n. Thus ord(fm) = ord(gn) which yields (1.4).
The assertion (1.5) is immediate from (1.4). Suppose gcd(r1, r2) = 1. Then by
(1.4), r1 | gcd(m, r1) and r2 | gcd(n, r2). Hence r1 | m and r2 | n. Suppose q1 and
q2 are represented by the same class. Then f ∼ g or f ∼ g−1. Hence r1 = r2 = r.
By hypothesis, e ∼ fm ◦ gn ∼ fm+n or fm−n. Hence r | (m + n) or r | (m− n).
Conversely, suppose m + n = rh. Then fm+n = (fr)h ∼ e. By composition
fm+n = (qm

1 qn
2 , 2b1) for some integer b1. Thus e ∼ (qm

1 qn
2 , 2b1) and so there exists

a representation e(x, y) = qm
1 qn

2 . Hence equation (1.3) has a solution. The case
r | (m− n) is similar. ¤

Proof of Theorem 1.2. If k is prime, then by Proposition 4.1 there exists
a unique integer r ≥ 1 such that r | h(−4d) and a unique (up to signs) representa-
tion e(α1, β1) = kr. Moreover by Lemma 3.7, as representations of prime powers
by the identity form are unique, there exists a unique (up to signs) representation
e(γ1, δ1) = λ. Hence solutions of (1.2) can be put into one class, given by

x + y
√−d = (γ1 + δ1

√−d)(α1 + β1

√−d)t where t > 0.

Taking x0 = ±|γ1|, y0 = ±|δ1| and x1 = ±|α1|, y1 = ±|β1| we have (1.7). ¤

5. Proofs of Theorems 1.3–1.6

The lemmas in this section leading to the proofs of Theorems 1.3–1.6 are
combinatorial in nature and are of independent interest. We consider the equality
(1.7) viz.,

(x + y
√
−d ) = (x0 + y0

√
−d )(x1 + y1

√
−d )t.

Using binomial expansion and equating real and imaginary parts we get

y =
h∑

i=0

Pi if t = 2h + 1 (5.1)

where

Pi = (−d)h−ix2i
1 y2h−2i

1

(
x0y1

(
2h + 1

2i

)
+ x1y0

(
2h + 1
2i + 1

))

and

y =
h∑

i=1

Qi + y0y
2h
1 (−d)h if t = 2h (5.2)
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where

Qi = (−d)h−ix2i−1
1 y2h−2i

1

(
x0y1

(
2h

2i− 1

)
+ x1y0

(
2h

2i

))
.

Our aim is to determine when y = ±1. From the above two expressions for y it
is clear that y 6= ±1 whenever any one of gcd(y0, y1), gcd(x0, y0) and gcd(x1, y1)
exceeds 1. Hence we assume throughout this section that

gcd(y0, y1) = gcd(x0, y0) = gcd(x1, y1) = 1. (5.3)

Let p be a prime and suppose that

d = pθf + g with θ ≥ 1, p - f, 0 < g < p. (5.4)

Then we see that
νp(d− g) = θ. (5.5)

In the following lemma we compute νp(dh − gh) for any positive integer h.

Lemma 5.1. Let d be given by (5.4). Then for any integer h ≥ 1, we have

νp(dh − gh) = θ + νp(h) (5.6)

except when d = 2f + 1 and h is even in which case

ν2(dh − 1) ≥ 1 + ν2(h).

Proof. Let

Li =
(

h

i

)
(pθf)igh−i for 0 ≤ i ≤ h.

Then

dh − gh =
h∑

i=1

Li. (5.7)

Now for any i with 1 ≤ i ≤ h,

νp(Li) = νp

((
h

i

)
(pθf)igh−i

)
= θi + νp

((
h

i

))
.

Assume that h is odd whenever d = 2f + 1. Then

νp(L1) = θ + νp(h), (5.8)
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νp(L2) = 2θ + νp

((
h

2

))
= 2θ + νp(h) + νp(h− 1)− νp(2) > θ + νp(h) (5.9)

and for i ≥ 3,

νp(Li) ≥ θi + νp(h)− νp(i) ≥ θi + νp(h)− log i

log p
> θ + νp(h).

Now the assertion follows from (5.5)–(5.9). In the case when h is even and d =
2f + 1, we have

ν2(L2) = 2 + ν2

(
h

2

)
= 1 + ν2(h) = ν2(L1)

and for i ≥ 3,
ν2(Li) > 1 + ν2(h)

which gives the assertion on using (5.7). ¤

Lemma 5.2. Suppose (1.7) holds with x0 = 1, y0 = 0. Let p be a prime

such that p | x1. Further let d be given by (5.4). Then y ≡ 0 (mod p) if t = 2h.

When t = 2h + 1 and θ < 2νp(x1), we have

νp(y − (−g)h) = θ + νp(h).

Proof. We note that y1 = ±1 by (5.3) as y0 = 0. The assertion for t = 2h

is clear from (5.2). Let t = 2h + 1. Using (5.1), we see that

y − (−g)h = ±(dh − gh) +
h∑

i=1

Pi. (5.10)

By Lemma 5.1, we have νp(dh − gh) = θ + νp(h). Also

νp(Pi) = νp

(
(−d)h−ix2i

1 y2h−2i+1
1

(
2h + 1

2i

))

≥ 2iνp(x1) + νp(h(2h + 1))− νp(i(2i− 1))

≥ 2iνp(x1) + νp(h)−max(νp(i), νp(2i− 1))

≥ 2iνp(x1) + νp(h)− log(2i− 1)
log p

≥ 2νp(x1) + νp(h).

Thus

νp

(
h∑

i=1

Pi

)
≥ 2νp(x1) + νp(h).

Now the assertion follows from (5.10) since θ < 2νp(x1). ¤



Generalized Ramanujan–Nagell equations 369

Next, we consider the case when 2 | gcd(y0, x1).

Lemma 5.3. Suppose (1.7) holds. Let (5.4) be satisfied with p = 2. Assume

that 2 | gcd(y0, x1). Then y is even if t = 2h. If t = 2h + 1 and

ν2(y0) + ν2(x1) < min(θ, 2ν2(x1)),

then

ν2(y − (−g)hx0y
2h+1
1 ) = ν2(y0) + ν2(x1).

Proof. If t = 2h then from (5.2) we observe that as x1 and y0 are even, y

is even. From (5.1) when t = 2h + 1, we have

y − (−g)hx0y
2h+1
1 = (−d)hx1y0y

2h
1 (2h + 1)

+ (−1)hx0y
2h+1
1 (dh − gh) +

h∑

i=1

Pi.
(5.11)

Note that ν2((−d)hx1y0y
2h
1 (2h + 1)) = ν2(x1) + ν2(y0) since y1 is odd. By

Lemma 5.1, we have ν2((−1)hx0y
2h+1
1 (dh − gh)) = θ + ν2(h) since x0 and y1

are odd. Also for i ≥ 1 as x1 is even, ν2(Pi) ≥ 2ν2(x1) > ν2(x1) + ν2(y0), by
hypothesis. Now the assertion of the lemma follows from (5.11). ¤

In the next lemma we deal with the case when p | gcd(x0, x1).

Lemma 5.4. Suppose (1.7) holds and d satisfies (5.4). Let p be a prime

such that p | gcd(x0, x1). Further if p = 2, let ν∗2 = min(ν2(x0)+1, ν2(x1)). Then

y ≡ 0 (mod p) if t = 2h + 1. Let t = 2h. Then the following assertions hold.

(i) Suppose p ≥ 3 and νp(x0) < νp(x1). Let θ 6= νp(x0) + νp(x1). Then

νp(y − (−g)hy0y
2h
1 ) = min(θ, νp(x0) + νp(x1)) + νp(h).

(ii) Let p = 2 and d 6= 2f + 1. Assume that ν2(x0) + 1 6= ν2(x1) and θ 6=
ν∗2 + ν2(x1). Then

ν2(y − (−g)hy0y
2h
1 ) = min(θ, ν∗2 + ν2(x1)) + ν2(h).

(iii) Let d 6= 2f +1. Assume that ν2(x0)+1 = ν2(x1) and θ ≤ ν2(x0)+ν2(x1)+1.

Then

ν2(y − (−g)hy0y
2h
1 ) = θ + ν2(h).
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Proof. From the expression for y in (5.1), we see that

y ≡ 0 (mod p) if t = 2h + 1.

Let t = 2h. Then from (5.2), we have

y − (−g)hy0y
2h
1 =

h∑

i=1

Qi + (−1)hy0y
2h
1 (dh − gh). (5.12)

As
Q1 = (−d)h−1x1y

2h−2
1 (2x0y1h + h(2h− 1)x1y0), (5.13)

we have

νp(Q1) = νp(x1) + νp(h) + νp

(
2A1p

νp(x0) + A2p
νp(x1)+νp(2h−1)

)

for some integers A1, A2 with p - A1A2. Let p ≥ 3. By hypothesis, νp(x0) <

νp(x1). It follows that

νp(Q1) = νp(x0) + νp(x1) + νp(h). (5.14)

Let i ≥ 2. Then

νp(Qi) = (2i− 1)νp(x1) + νp

(
x0y1

2h

2i− 1

(
2h− 1
2i− 2

)
+ x1y0

h

i

(
2h− 1
2i− 1

))

which gives

νp(Qi) ≥ (2i− 1)νp(x1) + νp(h) + νp(x0)− log(2i− 1)
log p

> νp(x0) + νp(x1) + νp(h).
(5.15)

From (5.14) and (5.15), it follows that

νp

(
h∑

i=1

Qi

)
= νp(x0) + νp(x1) + νp(h) if p ≥ 3. (5.16)

Using (5.12), Lemma 5.1 and (5.16) we obtain assertion (i) of the lemma.
Next let p = 2. We see from (5.13) that

ν2(Q1) = ν∗2 + ν2(x1) + ν2(h) if ν2(x0) + 1 6= ν2(x1) (5.17)
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and

ν2(Q1) ≥ ν2(x0) + ν2(x1) + ν2(h) + 2 if ν2(x0) + 1 = ν2(x1). (5.18)

Further

ν2(Qi) ≥ (2i− 1)ν2(x1) + ν2(h)

+ν2

(
A32ν2(x0)+1

(
2h− 1
2i− 2

)
+ A42ν2(x1)

(
2h− 1
2i− 1

))
− log i

log 2

for some integers A3, A4 with 2 - A3A4. Thus

ν2(Qi) ≥ ν∗2 + ν2(x1) + ν2(h) + 1 if ν2(x0) + 1 6= ν2(x1). (5.19)

Suppose ν2(x0) + 1 = ν2(x1). Then

ν2(Qi) ≥ ν2(x1) + ν2(h) + 1 + ν∗2

+ν2 (A3(2i− 1) + A4(2h− 2i + 1)) + ν2

(
(2h− 1)!

(2i− 1)!(2h− 2i + 1)!

)

≥ ν∗2 + ν2(x1) + ν2(h) + 2 + ν2

(
(2h− 2)!

(2i− 1)!(2h− 2i + 1)!

)
.

Thus when ν2(x0) + 1 = ν2(x1) we have

ν2(Qi) ≥ ν2(x0) + ν2(x1) + ν2(h) + 3. (5.20)

From (5.17) and (5.19), we have

ν2

(
h∑

i=1

Qi

)
≥ ν∗2 + ν2(x1) + ν2(h) if ν2(x0) 6= ν2(x1)− 1. (5.21)

From (5.18) and (5.20), we have

ν2

(
h∑

i=1

Qi

)
≥ ν2(x0) + ν2(x1) + ν2(h) + 2 if ν2(x0) + 1 = ν2(x1). (5.22)

Now combining (5.12), Lemma 5.1, (5.21) and (5.22) we have the assertions (ii)
and (iii). ¤
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Finally we consider the case gcd(x0, y1) > 1. As this case is similar to
Lemma 5.4, we omit the details.

Lemma 5.5. Suppose (1.7) holds. Assume that p is a prime such that

p | gcd(x0, y1) and d is given by (5.4). Let t = 2h + 1. If νp(x0) < νp(y1), then

νp(y − x2h+1
1 y0) = νp(x0) + νp(y1) + νp(2h + 1).

Let t = 2h. Suppose ε = 0 if p ≥ 3 and ε = 1 if p = 2. If νp(x0)+ ε < νp(y1), then

νp(y − x2h
1 y0) = νp(x0) + νp(y1) + νp(h) + ε.

Proof. Let t = 2h + 1. Then from (5.1), we have

y − x2h+1
1 y0 = x0y1x

2h
1 (2h + 1) +

h−1∑

i=0

Pi.

Since

νp(x0y1x
2h
1 (2h + 1)) = νp(x0) + νp(y1) + νp(2h + 1), (5.23)

νp

(
h−1∑

i=0

Pi

)
= 2νp(y1) + νp(h) + νp(2h + 1) (5.24)

we have the required assertion.
Let t = 2h. Then from (5.2), we have

y − x2h
1 y0 = 2hx0y1x

2h−1
1 + y0y

2h
1 (−d)h +

h−1∑

i=1

Qi.

As

νp(2hx0y1x
2h−1
1 ) = νp(x0) + νp(y1) + νp(h) + ε, νp(y0y

2h
1 (−d)h) = 2hνp(y1)

and

νp

(
h−1∑

i=1

Qi

)
= 2νp(y1) + νp(h) + νp(2h− 1),

the assertion of the lemma follows. ¤

We now present the proofs of Theorems 1.3 to 1.6.
By the hypotheses of Theorems 1.3-1.6, d satisfies (1.9). Therefore (5.4) is

satisfied with g = 1.
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Proof of Theorem 1.3. Suppose (1.7) holds with y = ±1, x0 = 1 and
y0 = 0. Let d satisfy (1.9) with θ < 2νp(x1). By Lemma 5.2, we have t = 2h + 1
and

νp(±1− (−1)h) = θ + νp(h). (5.25)

If p ≥ 3, then the left hand side of (5.23) is either 0 or ∞ while the right hand
side is a finite non-zero value. This is a contradiction. When p = 2, the left hand
side of (5.23) is 1 or ∞ while the right hand side is ≥ θ > 1, by assumption. This
is again a contradiction. ¤

As the proofs of the other theorems are similar, we give only the equalities
corresponding to (5.23) in each case.

Proof of Theorem 1.4. By Lemma 5.3, we have t = 2h + 1 and

ν2(±1± (−1)h) = ν2(y0) + ν2(x1).

The assertion follows by comparing the values on both sides of the above equation
as in the proof of Theorem 1.3. ¤

Proof of Theorem 1.5. By Lemma 5.4, we have t = 2h,

νp(±1± (−1)h) = νp(h) + min(θ, νp(x0) + νp(x1)) for p ≥ 3

and
ν2(±1± (−1)h) = νp(h) + min(θ, ν∗2 + ν2(x1))

in the case when ν2(x0)+1 6= ν2(x1) and θ 6= ν∗2 +ν2(x1). Moreover if ν2(x0)+1 =
ν2(x1) and θ ≤ ν2(x0) + ν2(x1) + 1, then

ν2(±1± (−1)h) = θ + ν2(h).

As in the proofs above, these lead to contradictions proving the assertion of the
theorem. ¤

Proof of Theorem 1.6. By Lemma 5.5, we have the following. Let t =
2h + 1 and νp(x0) < νp(y1). Then we have

νp(±1± 1) = νp(x0) + νp(y1) + νp(2h + 1).

If t = 2h and νp(x0) + ε < νp(y1), then

νp(±1± 1) = νp(x0) + νp(y1) + νp(h) + ε.

The result follows in the same manner as in the proof of Theorem 1.3 above. ¤



374 N. Saradha and A. Srinivasan : Generalized Ramanujan–Nagell equations

References

[1] Y. Bilu, G. Hanrot and P.M. Voutier, Existence of primitive divisors of Lucas and
Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math. 539 (2001),
75–122.

[2] Y. Bugeaud and T .N. Shorey, On the number of solutions of the generalized Ramanujan
– Nagell equation, I, J. Reine Angew. Math. 539 (2001), 55–74.

[3] Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential
and Diophantine equations II.The Lebesgue-Nagell equation, Compos. Math. 142, no. 1
(2006), 31–62.

[4] J. H. E. Cohn, The Diophantine equation x2 + C = yn, Acta Arithmetica 55 (1993),
367–381.

[5] C. Heuberger and M. Le, On the generalized Ramanujan–Nagell equation x2 + D = pz ,
J. Number Theory 78 (1999), 312–331.

[6] L. K. Hua, Introduction to Number Theory, Springer Verlag, 1982.

[7] Maohua Le, On the number of solutions of the diophantine equation x2 + D = pn, C. R.
Acad Sci Paris Sér. A 317 (1993), 135–138.

[8] Maohua Le, Some Exponential Diophantine Equations I. The Equation D1x2−D2y2 = λkz ,
J. Number Theory 55 (1995), 209–221.

[9] R. A. Mollin, Quadratics, CRC Press, New York, 1996.

[10] T. Nagell, Introduction to Number Theory, AMS Chelsea Publishing, Providence, 1964.

[11] P. Ribenboim, My Numbers, My Friends, Popular Lectures on Number Theory,
Springer-Verlag, 2000.

[12] H. E. Rose, A Course in Number Theory, Clarendon Press, Oxford, 1988.

[13] P. Yuan, On the Diophantine equation ax2 + by2 = ckn, Indag. Mathem., N.S. 16 (2005),
301–320.

N. SARADHA

SCHOOL OF MATHEMATICS

TIFR, MUMBAI

INDIA

E-mail: saradha@math.tifr.res.in
URL: http://www.math.tifr.res.in/ saradha

ANITHA SRINIVASAN

DEPARTMENT OF MATHEMATICS

IIT, MUMBAI

INDIA

E-mail: rsrinivasan.anitha@gmail.com

(Received March 28, 2006; revised September 15, 2006)


