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Non-linear commutativity preserving maps
on symmetric matrices

By AJDA FOŠNER (Maribor)

Abstract. We study bijective maps on the set of all symmetric matrices in Mn(C),

n ≥ 3, that preserve commutativity in both directions.

1. Introduction

One of the most active and fertile subjects in matrix theory during the past
one hundred years is the linear preserver problem which concerns characteriza-
tion of linear operators on matrix spaces that leave certain functions, subsets,
relations, etc., invariant (see [8], [11]). In the last few decades a lot of results on
linear preservers on matrix algebras as well as on more general rings and operator
algebras have been obtained. Besides linear preservers also a more general prob-
lem of characterizing additive preservers and related problem of characterizing
multiplicative preservers on matrix algebras were studied a lot. It is surprising
that in some cases we can get nice structural results for preservers without any
algebraic assumption like linearity, additivity or multiplicativity. Probably the
first fundamental attempt to attack non-linear preserver problems was made by
Baribeau and Ransford in [1]. They studied spectrum preserving non-linear
maps of matrix algebras under some mild differentiability condition.

Linear preserver problems concerning commutativity are one of the most
extensively studied preserver problems both on matrix algebras and on operator
algebras (see, for example, [2], [3], [4], [10], and [13] and the references therein).
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The reason is that the assumption of preserving commutativity can be considered
as the assumption of preserving zero Lie products. Omitting linearity, the problem
can become much more difficult and hence more challenging.

Recently Molnár and Šemrl [9] characterized bijective non-linear maps
preserving commutativity in both directions on the set of all self-adjoint complex
matrices. In [12] Šemrl considered continuous maps on Mn(C), the algebra of
all n× n complex matrices, n ≥ 3, that are bijective and preserve commutativity
in both directions and are not assumed to be linear. The continuity assumption
and the assumption n ≥ 3 are indispensable in Šemrl’s theorem (see [12] for
counterexamples). In [5] the problem has been solved also for real matrices.
A natural question here is whether the analogues results hold true for the set
of all complex symmetric matrices. So, in this paper we will study non-linear
commutativity preserving maps on the set of all n×n complex symmetric matrices
which will be denoted by Sn(C).

One of the main results of the paper states that if φ : Sn(C) → Sn(C),
n ≥ 3, is a continuous bijective map preserving commutativity in both directions,
then there exist an orthogonal matrix Q ∈ Mn(C) and for every A ∈ Sn(C)
a complex polynomial pA such that either φ(A) = QpA(A)Qt, A ∈ Sn(C), or
φ(A) = QpA(A)Qt, A ∈ Sn(C). Here, A = [aij ] = [aij ]. Note that a complex
matrix Q is said to be orthogonal if QQt = I (here, Qt denotes the transpose
of the matrix Q). We will also study commutativity preserving maps on Sn(C)
without the continuity assumption. Let f be an automorphism of the complex
field. For every A = [aij ] ∈ Sn(C) we will denote Af = [f(aij)]. Then the
maps φ : Sn(C) → Sn(C) defined by φ(A) = QpA(Af )Qt, A ∈ Sn(C), preserve
commutativity. We will prove that every bijective map on S3(C) that preserves
commutativity in both directions is of this nice form. On the other hand we will
give an example showing that this is not true for n > 3. However, there is a
large subset C ⊂ Sn(C), n ≥ 3, which is invariant under every bijective map φ

on Sn(C) preserving commutativity in both directions and the restriction of φ to
this subset is of this nice form.

2. Statements of the main results

A map φ : Sn(C) → Sn(C) preserves commutativity if φ(A)φ(B) = φ(B)φ(A)
whenever AB = BA, A,B ∈ Sn(C). If φ is bijective and both φ and φ−1 preserve
commutativity, then we say that φ preserves commutativity in both directions.
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In this paper we will consider maps on Sn(C) that are bijective and preserve
commutativity in both directions and are not assumed to be linear.

Let us start by giving some examples of such maps. Let Q ∈ Mn(C) be
an orthogonal matrix. Then, of course, A 7→ QAQt is an example of linear
bijective map on Sn(C) preserving commutativity in both directions. Let f be
any automorphism of the complex field. Recall that the identity function and the
complex conjugation are the only continuous automorphisms of the complex field.
On the other hand, there are many noncontinuous automorphisms of C [7]. The
map A 7→ Af , A ∈ Sn(C), is a bijective additive map of Sn(C) that preserves
commutativity in both directions. But there are also many nonadditive maps
φ : Sn(C) → Sn(C) that preserve commutativity. To see this observe that if A

and B are two commuting matrices and p and q are any complex polynomials,
then p(A) and q(B) commute as well. Therefore, if we associate to each A ∈ Sn(C)
a polynomial pA, then the map A 7→ pA(A) preserves commutativity. Every such
map will be called a locally polynomial map. This kind of maps are in general
neither bijective, nor they preserve commutativity in both directions. However,
if such a map φ is bijective and if polynomials pA, A ∈ Sn(C), are chosen in
such a way that for every A ∈ Sn(C) we can find a polynomial qA such that
qA(pA(A)) = A (in other words, if φ is bijective and its inverse is again a locally
polynomial map), then it preserves commutativity in both directions. Such maps
will be called regular locally polynomial maps.

Of course, any composition of bijective maps preserving commutativity in
both directions is again a bijective map preserving commutativity in both direc-
tions. So, at this point it would be tempting to conjecture that every bijective
map φ : Sn(C) → Sn(C) preserving commutativity in both directions is of the
form φ(A) = QpA(Af )Qt, A ∈ Sn(C), where Q ∈ Mn(C) is any orthogonal ma-
trix, f is any automorphism of the field C, and A 7→ pA(A) is a regular locally
polynomial map. But it turns out that this conjecture is true just for n = 3.
On the other hand, for n > 3 we define the subset C ⊂ Sn(C) of all symmet-
ric matrices with the property that the zeros of their minimal polynomials have
multiplicities at most two. Note that the set C is rather large. In particular, it
contains the set of all symmetric matrices with n distinct eigenvalues. We will
prove that C is invariant under every bijective map φ on Sn(C) preserving com-
mutativity in both directions. Our first result states that the restriction of φ to
this subset must be of the nice form described above.

Theorem 2.1. Let n ≥ 3 and let φ : Sn(C) → Sn(C) be a bijective map

preserving commutativity in both directions. Then there exist an orthogonal
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matrix Q ∈ Mn(C), an automorphism f of the complex field, and a regular

locally polynomial map A 7→ pA(A) such that φ(A) = QpA(Af )Qt for all A ∈ C.

A consequence of this theorem is that every bijective map φ on S3(C) which
preserves commutativity in both directions is of the form φ(A) = QpA(Af )Qt,
A ∈ S3(C), where Q ∈ M3(C) is any orthogonal matrix, f is any automorphism
of the complex field, and A 7→ pA(A) is a regular locally polynomial map (see
Corollary 4.1). However, for n > 3 we will give an example showing that outside
the set C bijective maps on Sn(C) preserving commutativity in both directions
can have a wild behavior. But under the additional continuity assumption we get
a nice result on the whole set of symmetric matrices also for n > 3.

Theorem 2.2. Let n ≥ 3 and let φ : Sn(C) → Sn(C) be a continuous

bijective map preserving commutativity in both directions. Then there exist an

orthogonal matrix Q ∈ Mn(C) and a regular locally polynomial map A 7→ pA(A)
such that either φ(A) = QpA(A)Qt for all A ∈ Sn(C), or φ(A) = QpA(A)Qt for

all A ∈ Sn(C).

3. Preliminary results

Let B ∈ Mk(C) be the ”backward identity” matrix, B = E1k +E2,k−1 + . . .+
Ek1, and let

Sk =
1√
2
(I + iB) ∈ Sk(C). (1)

Since B2 = I, we have SkSk = I. Now consider a typical Jordan block Jk(0) with
zero main diagonal and k ≥ 2. It is a simple computation to show that

SkJk(0)S−1
k = Sk




0 1 . . . 0

0 0
. . .

...
...

. . .
. . . 1

0 . . . 0 0




Sk

=
1
2




0 1 . . . 0

1 0
. . .

...
...

. . .
. . . 1

0 . . . 1 0




+
i

2




0 . . . −1 0
... . .

.
0 1

−1 . .
.

. .
. ...

0 1 . . . 0



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which is evidently symmetric. Therefore a matrix SkJk(λ)S−1
k = SkJk(λ)Sk is

symmetric as well for any Jordan block Jk(λ) with k ≥ 2.
Every matrix A ∈ Mn(C) is similar to a Jordan canonical form J . Here,

J = Jn1(λ1, 2)⊕ Jn2(λ2, 2)⊕ . . .⊕ Jnk
(λk, 2) is a direct sum of modified Jordan

blocks

Jni
(λi, 2) =




λi 2 . . . 0

0 λi
. . .

...
...

. . .
. . . 2

0 . . . 0 λi



∈ Mni

(C).

This observation permits us to drop the coefficient factors of 1
2 in the above

equality. Let Sni ∈ Sni(C) be the matrix of the form (1) for ni ≥ 2 and let
S1 = [1]. If we set T = Sn1 ⊕Sn2 ⊕ . . .⊕Snk

, then the preceding argument shows
that

TJT−1 = TJT = (Sn1Jn1(λ1, 2)Sn1)⊕ . . .⊕ (Snk
Jnk

(λk, 2)Snk
)

is a direct sum of symmetric matrices and is therefore symmetric. Thus we have
shown that every matrix A ∈ Mn(C) is similar to a symmetric matrix. Since
two symmetric matrices A and B are similar if and only if they are similar via
orthogonal similarity, we have the next theorem.

Theorem 3.1. Every symmetric matrix A ∈ Sn(C) is similar to a symmetric

Jordan canonical form S = Sn1(λ1)⊕ Sn2(λ2)⊕ . . .⊕ Snk
(λk), where

Sni(λi) = SniJni(λi, 2)Sni

= λiI +




0 1 . . . 0

1 0
. . .

...
...

. . .
. . . 1

0 . . . 1 0




+ i




0 . . . −1 0
... . .

.
0 1

−1 . .
.

. .
. ...

0 1 . . . 0



∈ Sni(C).

Moreover, there exists an orthogonal matrix Q ∈ Mn(C) such that A = QSQt.

Note that S1(λ) = [λ] and S2(λ) =
[

λ−i 1
1 λ+i

]
. Since the symmetric Jordan

canonical form was derived from the Jordan canonical form, its uniqueness is the
same as that of the Jordan canonical form.

Let S be a subset of Sn(C). Recall that its commutant S ′ is the space of
all matrices from Sn(C) that commute with all matrices from S. When S = {A}



380 Ajda Fošner

we write shortly A′ = {A}′. A matrix A is said to be nonderogatory if every
eigenvalue of A has geometric multiplicity one.

Let A = Sn(λ) for some complex number λ and some positive integer n.
Since A is a nonderogatory matrix, a matrix B ∈ Sn(C) commutes with A if and
only if there is a complex polynomial p such that B = p(A) (see [6, p. 135]).
Further, a matrix A can be written as A = SnJn(λ, 2)S−1

n , where Sn is a matrix
of the form (1) and Jn(λ, 2) is a modified Jordan block (see above). Because of
this special form an explicit calculation shows that a matrix B ∈ Sn(C) commutes
with A if and only if B = SnCS−1

n , where C must be an upper triangular matrix
of Toeplitz type, that is,

B = Sn




c1 c2 . . . cn

0 c1
. . .

...
...

. . .
. . . c2

0 . . . 0 c1




S−1
n

=
1
2




2c1 c2 . . . cn

c2 2c1
. . .

...
...

. . .
. . . c2

cn . . . c2 2c1




+
i

2




−cn . . . −c2 0
... . .

.
0 c2

−c2 . .
.

. .
. ...

0 c2 . . . cn




. (2)

Clearly, for A ∈ Sn(C) we have A′ = Sn(C) if and only if A is a scalar matrix.
In particular, B′ ⊆ (λI)′ for every B ∈ Sn(C) and every complex number λ. We
will call a nonscalar matrix A ∈ Sn(C) maximal if every B ∈ Sn(C) satisfying
A′ ⊂ B′ and A′ 6= B′ has to be a scalar matrix. The set of all nonscalar maximal
matrices will be denoted by M. Similarly, A ∈ Sn(C) is minimal if there is no
B ∈ Sn(C) satisfying B′ ⊂ A′ and B′ 6= A′.

Lemma 3.2. Let A ∈ Sn(C) be a nonscalar matrix. Then A is maximal if

and only if either A is diagonalizable with exactly two eigenvalues, or A = λI +N

for some complex number λ and some square-zero matrix N 6= 0.

Proof. Assume first that A is diagonalizable with exactly two eigenvalues
and let B ∈ Sn(C) be a matrix satisfying A′ ⊂ B′ and A′ 6= B′. Then we may
assume that

A =

[
λI 0
0 µI

]
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with λ 6= µ. The commutant of A is the set of all symmetric matrices
[
X 0
0 Y

]
,

where X and Y are any two square symmetric matrices of the appropriate size.
It follows from A′ ⊂ B′ that every such matrix commutes with B which further
yields that

B =

[
δI 0
0 ξI

]

for some complex numbers δ and ξ. In the case δ 6= ξ we would have A′ = B′, a
contradiction. Therefore B has to be a scalar matrix.

Next, we will prove that also every symmetric matrix A of the form A =
λI + N , where λ ∈ C and N 6= 0 is a square-zero matrix, is maximal. Replacing
A by a similar matrix, if necessary, we may assume that

A =

[
λI + S 0

0 λI

]
,

where S is the matrix of the form

S =




S2(0) 0 . . . 0

0 S2(0)
. . .

...
...

. . .
. . . 0

0 . . . 0 S2(0)




.

The last column and the last row in the matrix A may be absent. For every pair
of complex numbers α and β we denote by S(α, β) the 2× 2 symmetric matrix

S(α, β) =

[
α− iβ β

β α + iβ

]
. (3)

The commutant of A is the set of all matrices of the form
[

X Y

Y t Z

]
,

where

X =




S(α11, β11) . . . S(α1k, β1k)
...

. . .
...

S(α1k, β1k) . . . S(αkk, βkk)


 ∈ S2k(C)
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(here, 2k is the size of the matrix S), Z is an arbitrary symmetric matrix of the
appropriate size, and Y is a matrix with the property SY = 0. Let B ∈ Sn(C)
be a matrix satisfying A′ ⊂ B′ and A′ 6= B′. Similar argument as above yields
that either

B =

[
µI + δS 0

0 µI

]

for some scalars µ and δ with δ 6= 0, or B = µI. Since A′ 6= B′ the first possibility
cannot occur.

To prove the converse, assume that A is neither diagonalizable with exactly
two eigenvalues, nor a scalar plus a nonzero square-zero matrix. Let us start with
a case when A has more than two eigenvalues. Then it is similar to a matrix




A1 0 0
0 A2 0
0 0 A3


 ,

where A1, A2, and A3 have pairwise disjoint spectra. We may assume that the
matrix A has this block diagonal form. It follows that the commutant of A is
contained in the set of all symmetric matrices of the form




X 0 0
0 Y 0
0 0 Z


 ,

where X, Y , and Z are square symmetric matrices of the appropriate size. But
then, obviously, the matrix

B =




I 0 0
0 I 0
0 0 0




is a nonscalar symmetric matrix whose commutant is larger than the commutant
of A.

If A has two eigenvalues and it is not diagonalizable, then there is no loss of
generality in assuming that

A =

[
λI + M 0

0 µI + N

]
,

where λ 6= µ and M and N are symmetric nilpotents not both equal to zero. The
nonscalar symmetric matrix

B =

[
λI 0
0 µI

]
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has larger commutant than A, thus showing that A is not maximal also in this
case.

The last case we have to treat is that A is of the form A = λI + N for some
complex number λ and some symmetric nilpotent N with N2 6= 0. Using the
symmetric Jordan canonical form it is easy to verify that the commutant of A is
a proper subset of the commutant of the nonscalar symmetric matrix λI + N2.
This completes the proof. ¤

Lemma 3.3. Let A ∈ Sn(C). Then A is minimal if and only if A is non-

derogatory.

Proof. Assume first that A is nonderogatory and let B ∈ Sn(C) be a matrix
satisfying B′ ⊆ A′. We have to show that B′ = A′. From B ∈ B′ we conclude that
matrices A and B commute. But then B = p(A) for some complex polynomial p

since A is nonderogatory. Hence, A′ ⊆ B′ as desired.
To prove the converse assume that A is in the symmetric Jordan canonical

form and that it has more than two blocks corresponding to the same eigenvalue
λ. Denote these blocks by Sn1(λ), Sn2(λ), . . . , Snk

(λ). Let B be a symmetric
matrix obtained from A by replacing all diagonal entries in Sn1(λ) by µ1, all
diagonal entries in Sn2(λ) by µ2, . . ., and all diagonal entries in Snk

(λ) by µk,
where µi 6= µj whenever i 6= j. Then B′ ⊂ A′ and B′ 6= A′. This completes the
proof. ¤

Our next goal is to characterize nonderogatory symmetric matrices with n

different eigenvalues and nonderogatory symmetric matrices with n− 1 different
eigenvalues using commutativity relations. Let A be a nonderogatory symmetric
matrix. For two matrices B, C ∈ A′ the commutants B′ and C ′ may be equal or
different. We will take all matrices from A′, then form the set of their commutants
and denote by #A the cardinality of this set, #A = |{B′ : B ∈ A′}|. Note that
the quantity #A does not change if we replace A by a similar symmetric matrix.
So, we will assume that A is in the symmetric Jordan canonical form

A = diag(Sn1(λ1), Sn2(λ2), . . . , Snk
(λk)),

where λ1, λ2, . . . , λk are distinct eigenvalues of A and n1 ≥ n2 ≥ . . . ≥ nk.
Assume first that n1 ≥ 4 and let S = Sn1⊕Sn2⊕. . .⊕Snk

, where Sn1 , Sn2 , . . .,
. . . , Snk

are matrices of the form (1). Then Bα = S(αE1,n1−1+αE2,n1+E1,n1)S
−1

belongs to A′ and it is trivial to verify that B′
α 6= B′

β whenever α 6= β. Hence,
#A = ∞ in this case. Next, assume that n2 ≥ 2. Then Bα = S(αE1,n1 +
En1+1,n1+n2)S

−1 belongs to A′ and again B′
α 6= B′

β whenever α 6= β. Hence,
#A = ∞ in this case as well.
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Thus, we have proved the following result.

Lemma 3.4. Let A ∈ Sn(C) be a nonderogatory matrix. If #A < ∞, then

A has at most n− 2 distinct eigenvalues such that at most one of the eigenvalues

has algebraic multiplicity larger than one.

In the next step we will consider only maximal matrices from the commu-
tant A′ of a nonderogatory symmetric matrix A. As before we form the set
of their commutants and denote by #mA the cardinality of this set, #mA =
|{B′ : B ∈ A′ ∩M}|.

Assume first that A is a diagonal matrix with n different eigenvalues. Then
every symmetric matrix B ∈ A′ ∩M is of the form B = αP + β(I − P ), where
P is a diagonal idempotent, P 6= 0, I, and α and β are different complex num-
bers. Clearly, B′ = P ′. Since two diagonal idempotents P and Q have the same
commutant if and only if P = Q or P = I −Q we have

#mA =
1
2

((
n

1

)
+ . . . +

(
n

n− 1

))
= 2n−1 − 1.

Now, let A be a nonderogatory symmetric matrix with n−1 different eigenvalues.
Then its symmetric Jordan canonical form has one, say the first cell of the size
2 × 2, while all the others are 1 × 1 trivial cells. Hence, B ∈ A′ ∩ M if and
only if B = αI + β

[
S2(0) 0

0 0

]
with β 6= 0 or B is a diagonal matrix with exactly

two eigenvalues and the first two diagonal entries must be equal. Since all the
matrices B ∈ A′ ∩M that are of the form scalar plus square-zero matrix have
the same commutant, we have

#mA = 1 +
1
2

((
n− 1

1

)
+ . . . +

(
n− 1
n− 2

))
= 2n−2.

Similarly, if A has n − 2 different eigenvalues one of them being of algebraic
multiplicity 3, then #mA = 2n−3.

Hence, we have the following statement.

Lemma 3.5. Let A ∈ Sn(C), n ≥ 3, be a nonderogatory matrix and

#A < ∞. Then

(i) A has n different eigenvalues if and only if #mA = 2n−1 − 1,

(ii) A has n− 1 different eigenvalues if and only if #mA = 2n−2,

(iii) A has n−2 different eigenvalues one of them being of algebraic multiplicity 3
if and only if #mA = 2n−3.
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In the proof of Theorem 2.1 we will also use the next simple lemma. Before
setting this lemma we introduce some notation. Recall that every symmetric
idempotent P of rank one can be written as P = xxt, where x is a n× 1 matrix
satisfying xtx = 1. Similarly, every symmetric nilpotent N of rank one can be
written as N = xxt, where x is a n × 1 matrix satisfying xtx = 0. The space of
all n× 1 matrices will be identified with Cn. For a nonzero x ∈ Cn we denote by
[x] the one-dimensional space spanned by x. As usual, PCn = {[x] : x ∈ Cn \ 0}.

Lemma 3.6. Let n ≥ 3 and x, y, z ∈ Cn. The following two statements are

equivalent:

(i) [z] ⊂ [x] + [y],

(ii) wtz = 0 for every vector w ∈ Cn satisfying wtx = 0 and wty = 0.

4. Commutativity preserving maps

The goal of this section is to prove Theorem 2.1 and Corollary 4.1. So, we
will start with the study of commutativity preserving maps on Sn(C), n ≥ 3,
without assuming the continuity of such maps.

Proof of Theorem 2.1. Let us assume that n ≥ 3 and let φ : Sn(C) →
Sn(C) be a bijective map preserving commutativity in both directions. Then,
obviously, for every subset S ⊆ Sn(C) we have φ(S ′) = φ(S)′. If A ∈ Sn(C) has n

different eigenvalues, then A is a diagonalizable nonderogatory matrix. Assume
that A is already in a diagonal form and that B ∈ A′. Then B is diagonal and the
commutant B′ is completely determined if we know which of the diagonal entries
of B are equal. Thus, #A < ∞ and #mA = 2n−1 − 1. Therefore φ(A) is also
a nonderogatory symmetric matrix with #φ(A) < ∞ and #mφ(A) = 2n−1 − 1.
It follows from Lemma 3.5 that φ maps the set of all symmetric matrices with n

different eigenvalues onto itself. Further, a symmetric matrix A is diagonalizable if
and only if it commutes with some symmetric matrix with n different eigenvalues.
Thus, D, the set of all diagonalizable symmetric matrices is mapped by φ onto
itself. Denote by Dk ⊂ Sn(C), k = 1, 2, . . . , n, the set of all diagonalizable
symmetric matrices with exactly k eigenvalues. We have A ∈ D1 if and only if
A = λI for some λ ∈ C and this is equivalent to A′ = Sn(C). Thus, D1 is mapped
onto itself. The same is true for D2 = M ∩ D. Observe that for A ∈ D the
following two statements are equivalent:
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(i) A ∈ D3,

(ii) A 6∈ D1 ∪D2 and every symmetric matrix B ∈ D satisfying B ∈ A′, A′ ⊂ B′,
and A′ 6= B′ belongs to D1 ∪ D2.

It follows easily that φ(D3) = D3. Repeating this procedure we get φ(Dk) = Dk,
k = 1, 2, . . . , n.

Let A ∈ Sn(C) be a nonderogatory symmetric matrix with n − 1 different
eigenvalues. Assume that A is already in the symmetric Jordan canonical form
with the first cell of the size 2× 2 and let B ∈ A′. Then

B =

[
S(α, β) 0

0 X

]
,

where X is a diagonal matrix of the appropriate size and S(α, β) is a matrix of the
form (3) for some complex numbers α and β. Thus, #A < ∞ and #mA = 2n−2

(see above). This yields that φ(A) is also a nonderogatory symmetric matrix with
#φ(A) < ∞ and #mφ(A) = 2n−2. It follows from Lemma 3.5 that φ maps the set
of all nonderogatory symmetric matrices with n−1 different eigenvalues onto itself.
Further, let A ∈ Sn(C) be a matrix of the form A = λI + N for some complex
number λ and a symmetric nilpotent N of rank one. Then A commutes with some
nonderogatory symmetric matrix with n − 1 different eigenvalues. Hence, φ(A)
also commutes with some nonderogatory symmetric matrix with n − 1 different
eigenvalues. Therefore, since A is maximal and it is not diagonalizable, φ(A) =
µI + M for some complex number µ and a symmetric nilpotent M of rank one.
This yields that N ⊂ Sn(C), the set of all matrices that can be written as λI +N ,
where λ is any complex number and N is any symmetric nilpotent of rank one,
is mapped by φ onto itself.

We denote by P ⊂ D2 the set of all matrices of the form λP + µ(I − P ),
where λ and µ are different complex numbers and P is a symmetric idempotent
of rank one. Note that P is the set of all diagonalizable symmetric matrices with
exactly two eigenvalues one of them having the eigenspace of dimension one. In
our next step we will prove that φ maps the set P onto itself. We will verify that
for A ∈ D2 the following two statements are equivalent:

(i) A ∈ P,

(ii) for every B ∈ A′ ∩ D2 we have {A,B}′′ ⊆ D1 ∪ D2 ∪ D3.

Assume for a moment that we have already proved this. Then, because φ preserves
the first commutants, it has to preserve also the second commutants and since
it preserves Dk, k = 1, 2, 3, we have necessarily φ(P) = P, as desired. So,
assume that A = λP + µ(I − P ) ∈ P and B ∈ A′ ∩ D2. A symmetric matrix B
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commutes with A if and only if it commutes with P . Therefore there is no loss
of generality in assuming that already A is a symmetric idempotent of rank one,
and after applying an orthogonal similarity, if necessary, we may assume that
A = E11. Moreover, two diagonalizable matrices commute if and only if they are
simultaneously diagonalizable. Therefore there is no loss of generality in assuming
that B = δ(E11 + . . . + Ekk) + ξ(Ek+1,k+1 + . . . + Enn), where 1 ≤ k ≤ n − 1
and δ 6= ξ. If k = 1, then {A, B}′′ = span{E11, I − E11} ⊆ D1 ∪ D2. Here,
span{E11, I −E11} denotes the linear span of the set {E11, I −E11}. Similarly, if
2 ≤ k ≤ n−1, then {A, B}′′ = span{E11, E22 + . . .+Ekk, I− (E11 + . . .+Ekk)} ⊆
D1 ∪ D2 ∪ D3. To prove the other direction assume that A ∈ D2 \ P. As before
there is no loss of generality in assuming that A = E11 + . . . + Ekk for some k,
2 ≤ k ≤ n − 2. Take B = E11 + Ek+1,k+1 and observe that then {A,B}′′ =
span{E11, E22 + . . .+Ekk, Ek+1,k+1, I− (E11 + . . .+Ek+1,k+1)} contains matrices
with four different eigenvalues.

To each A ∈ P we associate the unique symmetric idempotent P ∈ Sn(C) of
rank one satisfying A = λP + µ(I − P ), λ, µ ∈ C. If A,B ∈ P and P and Q are
the corresponding symmetric idempotents of rank one, then P = Q if and only if
A′ = B′. Moreover, PQ = QP = 0 if and only if A and B commute and A′ 6= B′.
Similarly, to each A ∈ N we associate the unique symmetric nilpotent N ∈ Sn(C)
of rank one satisfying A = λI + N , λ ∈ C. If A,B ∈ N and N and M are the
corresponding symmetric nilpotents of rank one, then N = µM for some complex
number µ if and only if A′ = B′. Moreover, NM = MN = 0 if and only if A and
B commute. Further, let A = λP +µ(I−P ) ∈ P and let B = ξI +N ∈ N . Then
PN = NP = 0 if and only if A and B commute. Thus, φ induces a bijective map
ϕ defined on the projective space PCn which has the property that [z] ⊂ [x] + [y]
if and only if ϕ([z]) ⊂ ϕ([x])+ϕ([y]) (see Lemma 3.6). Hence, by the fundamental
theorem of projective geometry there exist a bijective linear map Q : Cn → Cn

and an automorphism f : C → C such that ϕ([x]) = [Qxf ] for every nonzero
vector x. Here,

xf =




x1

...

xn




f

=




f(x1)
...

f(xn)


 .

Since xty = 0 if and only if (Qxf )tQyf = 0 for every pair x, y ∈ Cn the map Q can
be chosen in such a way that QQt = I. Replacing φ by A 7→ Qtφ(Af−1)Q we may
assume without loss of generality that for every symmetric idempotent P of rank
one the set of all matrices of the form λP + µ(I −P ), λ, µ ∈ C, λ 6= µ, is mapped
bijectively onto itself and that for every symmetric nilpotent N of rank one the
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set of all matrices of the form λI +µN , λ, µ ∈ C, is mapped bijectively onto itself.
In other words, for every A ∈ P ∪ N ∪ CI there exist complex polynomials pA

and qA such that φ(A) = pA(A) and A = qA(pA(A)). Hence, after composing φ

by an appropriate regular locally polynomial map (this map acts like the identity
outside P ∪N ∪ CI), we may assume that φ(A) = A for every A ∈ P ∪N ∪ CI.

In the next step we will prove that after composing φ by yet another regular
locally polynomial map we may assume that φ(A) = A for every diagonalizable
symmetric matrix A. As before, we need to show that for every diagonaliz-
able A ∈ D there are polynomials pA and qA such that φ(A) = pA(A) and
A = qA(pA(A)). In fact, it is enough to prove this only for diagonal matrices.
Indeed, assume that we have proved the existence of such polynomials for di-
agonal matrices and let A ∈ D be any diagonalizable symmetric matrix. Then
there exists an orthogonal matrix Q ∈ Mn(C) such that QAQt = D is diagonal.
The map ψ : Sn(C) → Sn(C) defined by ψ(X) = Qφ(QtXQ)Qt is a bijective
map preserving commutativity in both directions with the additional property
that ψ(A) = A for every A ∈ P ∪ N ∪ CI. Thus, by our assumption, ψ(D) and
D have the same commutant or equivalently φ(A) and A have the same com-
mutant which is the same as the existence of polynomials pA and qA such that
φ(A) = pA(A) and A = qA(pA(A)). Hence, let D be a diagonal matrix. It is easy
to see that D′ = span(In(C) ∩ D′), where In(C) ⊂ Sn(C) denotes the subset of
all symmetric idempotents of rank one. Since φ acts like the identity on In(C) we
have φ(D)′ = D′, as desired. Thus, from now on we will assume that φ(A) = A

for every diagonalizable matrix A ∈ D.
To complete the proof we have to show that for every A ∈ C there exist

polynomials pA and qA such that φ(A) = pA(A) and A = qA(pA(A)). Note that
this is equivalent to the requirement that φ(A) = pA(A), A ∈ C, for some complex
polynomial pA with the property A′ = pA(A)′.

Let Q be an arbitrary n×n orthogonal matrix, k and h nonnegative integers
with 2k + h = n, and λ1, λ2, . . . , λk, µ1, µ2, . . . , µh complex numbers. We have to
prove that

A = Q diag(S2(λ1), S2(λ2), . . . , S2(λk), µ1, µ2, . . . , µh) Qt

is mapped into

φ(A) = Q diag(S(α1, β1), S(α2, β2), . . . , S(αk, βk), δ1, δ2, . . . , δh) Qt,

where S(αi, βi), i = 1, 2, . . . k, are matrices of the form (3), λi = λj if and only
if αi = αj and βi = βj , µi = µj if and only if δi = δj , and λi = µj if and only if
αi = δj .
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Because A commutes with idempotents

Q diag(I, . . . , 0, 0, . . . , 0) Qt,

...

Q diag(0, . . . , I, 0, . . . , 0) Qt,

Q diag(0, . . . , 0, 1, . . . , 0) Qt,

...

Q diag(0, . . . , 0, 0, . . . , 1) Qt,

the matrix φ(A) commutes with these idempotents as well, and therefore,

φ(A) = Q diag(A1, A2, . . . , Ak, δ1, δ2, . . . , δh) Qt,

where A1, A2, . . . , Ak are 2 × 2 symmetric matrices and δ1, δ2, . . . , δh ∈ C. The
matrix A commutes with

Q diag(S2(0), . . . , 0, 0, . . . , 0) Qt ∈ N

and, of course, the same must be true for φ(A). Thus, A1 = S(α1, β1) for some
complex numbers α1 and β1. If β1 = 0, then φ(A) commutes with the idempotent
QE11Q

t and then the same must be true for A. This contradiction shows that
β1 6= 0. In the same way we show that all the matrices Ai, i = 2, 3, . . . , k, have a
similar form. So, we have proved that

φ(A) = Q diag(S(α1, β1), S(α2, β2), . . . , S(αk, βk), δ1, δ2, . . . , δh) Qt,

for some complex numbers α1, α2, . . . , αk, δ1, δ2, . . . , δh and some nonzero complex
numbers β1, β2, . . . , βk.

Assume that two of the λ’s, say λ1 and λ2, are equal. Then A commutes
with the matrix

D = Q

([
0 I

I 0

]
⊕ 0

)
Qt ∈ D.

Here, I stands for the 2×2 identity matrix and the last 0 denotes the (n−4)×(n−4)
zero matrix. It follows that φ(A) commutes with D which further yields α1 = α2

and β1 = β2. The same argument shows that S(α1, β1) = S(α2, β2) implies
λ1 = λ2. Hence, λi = λj if and only if αi = αj and βi = βj . Similarly, if
two of the µ’s, say µ1 and µ2, are equal, then A commutes with the matrix
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Q(E2k+1,2k+2 +E2k+2,2k+1)Qt ∈ D. Thus, the matrix φ(A) has to commute with
Q(E2k+1,2k+2 +E2k+2,2k+1)Qt as well which implies δ1 = δ2. In the same way we
show that δ1 = δ2 implies µ1 = µ2. Hence, µi = µj if and only if δi = δj .

It remains to prove that λi = µj if and only if αi = δj . The only case we
have to consider is that i = j = 1 and k = 1 since the same simple idea works in
the general case as well. So, assume that

A = Q diag(S2(λ1), µ1, µ2, . . . , µh) Qt

with λ1 = µ1. We already know that

φ(A) = Q diag(S(α1, β1), δ1, δ2, . . . , δh) Qt,

where β1 6= 0. We want to prove that α1 = δ1. Clearly, the matrix A commutes
with the symmetric matrix

B = Q







0 0 −i

0 0 1
−i 1 0


⊕ 0


 Qt,

where the last 0 denotes the (n−3)× (n−3) zero matrix. As above we can prove
that φ(B) = Q (C ⊕ ξI) Qt. Here, I stands for the (n − 3) × (n − 3) identity
matrix, ξ ∈ C, and C = [cij ] ∈ S3(C). Suppose that c13 = 0 and c23 = 0. Then
the matrix φ(B) commutes with the diagonalizable symmetric matrix

Q







1 0 0
0 1 0
0 0 0


⊕ 0


 Qt ∈ D

and the same must be true for the matrix B, a contradiction. Therefore, either
c13 6= 0, or c23 6= 0. Since B commutes with the matrix A, φ(B) commutes with
φ(A). This yields α1 = δ1, as desired. Similarly, α1 = δ1 implies λ1 = µ1. This
completes the proof. ¤

Corollary 4.1. Let φ : S3(C) → S3(C) be a bijective map preserving com-

mutativity in both directions. Then there exist an orthogonal matrix Q ∈ M3(C),
an automorphism f of the complex field, and a regular locally polynomial map

A 7→ pA(A) such that φ(A) = QpA(Af )Qt for all A ∈ S3(C).

Proof. Without loss of generality we can assume that φ(A) = A for every
A ∈ C ⊂ S3(C) (see the proof of Theorem 2.1). Now, let Q be an arbitrary
3 × 3 orthogonal matrix, λ ∈ C, and let A = QS3(λ)Qt. All we have to do is
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to show that φ(A) = pA(A) for some complex polynomial pA with the property
A′ = pA(A)′.

A matrix A commutes with a diagonalizable symmetric matrix

Q


S3




0 0 1
0 0 0
0 0 0


 S−1

3


Qt

(here, S3 ∈ S3(C) is the matrix of the form (1)) and therefore φ(A) has to
commute with this matrix as well. This yields that

φ(A) = Q


S3




α γ δ

0 β γ

0 0 α


 S−1

3


Qt,

where α, β, γ, δ ∈ C. On the other hand φ(A) is a symmetric matrix with one
eigenvalue of geometric multiplicity one since φ(C) = C. Hence, α = β and γ 6= 0.
This completes the proof. ¤

5. Continuous commutativity preserving maps

The goal of this section is to prove Theorem 2.2.

Proof of Theorem 2.2. Let n ≥ 3 and let φ : Sn(C) → Sn(C) be a
continuous bijective map preserving commutativity in both directions. Then we
may assume without loss of generality that φ(A) = A for every A ∈ C ⊂ Sn(C)
(see the proof of Theorem 2.1).

Let α ∈ C. Denote Sα = Sn(0)+α(iE11+E1n+En1−iEnn). We observe first
that for every α 6= 0 the matrix Sα is diagonalizable and consequently φ(Sα) = Sα.
Note also that Sn(0) = limα→0 Sα and since φ is continuous we have φ(Sn(0)) =
limα→0 φ(Sα) = limα→0 Sα = Sn(0). In a similar way we prove that for every
orthogonal matrix Q ∈ Mn(C) the matrix Q diag(0, Sm(0), 0) Qt, where 0 stands
for the zero matrices of the appropriate size (possibly different size and one of
them possibly absent), is mapped by φ into itself.

Using exactly the same ideas as in the proof of Theorem 2.1 we conclude that
every matrix

A = Q diag(Sn1(λ1), Sn2(λ2), . . . , Snk
(λk)) Qt

(here, Q ∈ Mn(C) is an orthogonal matrix) is mapped into

φ(A) = Q diag(A1, A2, . . . , Ak) Qt,
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where the Ai’s are symmetric matrices of the appropriate size. Since A commutes
with

Q diag(Sn1(0), 0, . . . , 0) Qt,

Q diag(0, Sn2(0), . . . , 0) Qt,

...

Q diag(0, 0, . . . , Snk
(0)) Qt,

φ(A) commutes with these matrices as well, and consequently,

Ai = Sni




a
(i)
1 a

(i)
2 . . . a

(i)
ni

0 a
(i)
1

. . .
...

...
. . .

. . . a
(i)
2

0 . . . 0 a
(i)
1




S−1
ni

,

where Sni ∈ Sni(C) is the matrix of the form (1). Suppose that a
(1)
2 = 0.

Then there exists a symmetric matrix B1 ∈ A′1 such that B1 /∈ Sn1(0)′. Thus,
the matrix B = Q diag(B1, 0, . . . , 0) Qt commutes with φ(A) and does not
commute with Q diag(Sn1(0), 0, . . . , 0) Qt. Note that B = φ(C), where C =
Q diag(C1, ξI, . . . , ξI) Qt with C1 ∈ Sni(C) and ξ ∈ C (see above). Since φ

preserves commutativity in both directions C commutes with A and does not
commute with the matrix Q diag(Sn1(0), 0, . . . , 0) Qt. This yields that there ex-
ists a symmetric matrix C1 ∈ Sn1(λ1)′ such that C1 /∈ Sn1(0)′, a contradiction.
In the same way we prove that a

(i)
2 6= 0 for i = 2, 3, . . . , k.

Assume that two of the λ’s, say λ1 and λ2, are equal. Then A commutes
with some symmetric matrix Q diag(B, 0, . . . , 0) Qt, where

B =

[
0 C

Ct 0

]
∈ Sn1+n2(C).

Here, the first 0 denotes the n1×n1 zero matrix, the second 0 denotes the n2×n2

zero matrix, and C is some nonzero complex matrix of the appropriate size. This
implies that φ(A) commutes with a symmetric matrix

Q diag(X, ξI, . . . , ξI) Qt,

where ξ ∈ C and

X =

[
Y Z

Zt W

]
∈ Sn1+n2(C).
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Here, Y ∈ Sn1(C), W ∈ Sn2(C), and Z stands for some nonzero complex matrix
of the appropriate size (see the proof of Theorem 2.1). Hence, the eigenvalue of
A1 coincides with the eigenvalue of A2. The same argument shows that if A1 and
A2 have the same eigenvalue, then λ1 = λ2. So we proved that the cells Sni

(λi)
and Snj

(λj) correspond to the same eigenvalue of A if and only if the eigenvalue
of Ai coincides with the eigenvalue of Aj . Thus, we have

φ(A) = φ(Q diag(Sn1(λ1), Sn2(λ2), . . . , Snk
(λk)) Qt)

= Q diag(p1(Sn1(λ1)), p2(Sn2(λ2)), . . . , pk(Snk
(λk))) Qt

for some complex polynomials p1, p2, . . . , pk. Moreover, pi(λi) = pj(λj) if and
only if λi = λj . In the next step we will show that we can take pi = pj whenever
λi = λj . In other words, we want to prove that a

(i)
1 = a

(j)
1 , a

(i)
2 = a

(j)
2 , . . . ,

a
(i)
t = a

(i)
t whenever λi = λj . Here, t = min{ni, nj}. If λi = λj , we already know

that a
(i)
1 = a

(j)
1 . Thus we have to consider only the cases when ni, nj ≥ 2.

Let A ∈ Sn(C) be a matrix with the largest cell in the symmetric Jordan
canonical form of the size m ×m. Of course, 1 ≤ m ≤ n. If m ≤ 2, we already
know that φ(A) = A. Suppose that m = 3 and that two of the λ’s, say λ1 and λ2,
are equal. Without loss of generality we can assume that n1 ≥ n2. If n1 = n2,
then A commutes with the diagonalizable symmetric matrix

B = Q (

[
0 I

I 0

]
⊕ 0) Qt.

Here, I stands for the n1×n1 identity matrix and the last 0 denotes the (n− 2n1)×
(n−2n1) zero matrix. It follows that φ(A) commutes with B which further yields
p1 = p2. It remains to consider the case when n1 = 3 and n2 = 2. Let S = S3⊕S2

and let

B = S




0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0




S−1.

Then the matrix A commutes with the symmetric matrix C = Q (B ⊕ 0) Qt.
Here, the last 0 denotes the (n− 5)× (n− 5) zero matrix. Since φ(C) = C (the
matrix B is similar to the matrix S5(0)), φ(A) commutes with C as well. Thus,
p1 = p2. Hence, after composing φ by an appropriate regular locally polynomial
map we may assume that φ(A) = A for all symmetric matrices A ∈ Sn(C) with
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the property that all the cells in the symmetric Jordan canonical form of A are
of the size 1× 1, 2× 2 or 3× 3.

Now, suppose that m = 4 and that λ1 = λ2 (n1 ≥ n2). In the same way as
above we can prove that p1 = p2 if n1 = n2 or n1 = 3, n2 = 2. So, it remains to
consider the cases when n1 = 4, n2 = 2 or n1 = 4, n2 = 3. Suppose that n1 = 4
and n2 = 2. Let S = S4 ⊕ S2 and let

B = S




0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1




S−1.

Then the matrix A commutes with the symmetric matrix C = Q (B ⊕ 0) Qt.
Here, the last 0 denotes the (n − 6) × (n − 6) zero matrix. With the symmetric
Jordan canonical form it is easy to see that φ(C) = C. Thus, φ(A) commutes
with C as well which further yields p1 = p2. The proof is the same in the second
case (n1 = 4, n2 = 3). The only difference is that

B = S




0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0




S−1,

where S = S4 ⊕ S3. Hence, after composing φ by an appropriate regular locally
polynomial map we may assume that φ(A) = A for all symmetric matrices A ∈
Sn(C) with the property that all the cells in the symmetric Jordan canonical form
of A are of the size 1× 1, 2× 2, 3× 3 or 4× 4. We continue in the same way for
m = 5, . . . , n− 1. For m = n we already know that φ(A) = A.

So we proved that there exist an orthogonal matrix Q ∈ Mn(C), an auto-
morphism f : C → C, and a regular locally polynomial map A 7→ pA(A) such
that φ(A) = QpA(Af )Qt for all A ∈ Sn(C).

To complete the proof we have to show that either f(λ) = λ for all λ ∈ C, or
f(λ) = λ for all λ ∈ C. Replacing φ by A 7→ Qtφ(A)Q we may assume without
loss of generality that φ(A) = pA(Af ) for all A ∈ Sn(C). In particular, we have
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φ(E11) = λE11 + µI for some scalars λ, µ with λ 6= 0. Moreover, φ((1 + x)E11 +√−x− x2(E12 +E21)−xE22) = λ(x)((1+f(x))E11 +f(
√−x− x2 )(E12 +E21)−

f(x)E22) + µ(x)I for some functions λ, µ : C→ C. By the continuity assumption
we have φ(E11) = limx→0 φ((1 + x)E11 +

√−x− x2(E12 + E21) − xE22), and
consequently, limx→0 µ(x) = µ, which further yields limx→0 λ(x)f(x) = 0 since
limx→0(µ(x)−λ(x)f(x)) = µ. We also have limx→0(λ(x)(1+f(x))+µ(x)) = λ+µ

and therefore limx→0 λ(x) = λ 6= 0. All these yields that limx→0 λ(x)f(x) =
λ limx→0 f(x) = 0. Thus, f is an automorphism of the complex field that is
continuous at zero. Therefore, we have either f(λ) = λ, λ ∈ C, or f(λ) = λ,
λ ∈ C. This completes the proof of Theorem 2.2. ¤

The next example will show that there exist bijective maps on the whole set
Sn(C), n > 3, preserving commutativity in both directions which are not of the
nice form given in Theorem 2.1. Nevertheless it should be mentioned that the
main idea of this example is taken from [12].

Example 5.1. Let n > 3 and let S ⊂ Sn(C) be the set of all symmetric
matrices of the form λI+N , where λ is any complex number and N is a symmetric
nilpotent of maximal nilindex (i.e., Nn = 0 and Nn−1 6= 0). For A,B ∈ S we will
write A ∼ B if A′ = B′. Clearly, A ∼ B if and only if there exist polynomials
p and q with complex coefficients such that A = p(B) and B = q(A). In other
words, A ∼ B if and only if AB = BA. Now suppose that A = λI + N ∈ S,
B = µI + M ∈ S, and that N is already in the symmetric Jordan canonical form
(i.e., N = Sn(0)). Then A ∼ B if and only if N ∼ M and this is true if and only
if M is of the form (3) with c1 = 0 and c2 6= 0.

Further, for A = λI + N ∈ S and B = µI + M ∈ S we will write A ≈ B

if A′ \ S = B′ \ S. Note that A′ \ S = span{I,N2, . . . , Nn−1} and B′ \ S =
span{I,M2, . . . , Mn−1}. Of course, A ≈ B if and only if N ≈ M . Now suppose
that N = Sn(0). Then it is easy to verify that every symmetric matrix M =
T + δSnE2,n−1S

−1
n , where δ is any complex number and T is a symmetric matrix

of the form (3) with c1 = 0 and c2 6= 0, satisfies N ≈ M . On the other hand, if
a symmetric nilpotent M of maximal nilindex commutes with N2, N3, . . . , Nn−1,
then M has to be of the form M = T + δSnE2,n−1S

−1
n , where δ ∈ C and T is as

above (see [12, Lemma 3.5]). This yields that N ≈ M if and only if M is of the
form described above. Clearly, A ∼ B yields A ≈ B. Therefore the relation ≈
induces an equivalence relation on S/∼ = {[A] : A ∈ S}, the set of all equivalence
classes with respect to the relation ∼.

Let φ : Sn(C) → Sn(C) be any bijective map such that φ(A) = A for all
A 6∈ S, A ∼ B if and only if φ(A) ∼ φ(B) for every pair A,B ∈ S, and φ(A) ≈ A
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for all A ∈ S. In other words, φ acts like the identity outside S and it maps every
equivalence class [A] ∈ S/∼ bijectively onto the equivalence class [φ(A)] with the
property φ(A) ≈ A. Moreover, the correspondence between equivalence classes
[A] and [φ(A)] induced by the map φ is a bijection of the set S/∼ onto itself.
Such a map obviously preserves commutativity on the whole set Sn(C) but does
not need to be of the nice form given in Theorem 2.1.
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