
Publ. Math. Debrecen

71/3-4 (2007), 397–412

Finsleroid–Finsler space and geodesic spray coefficients

By G. S. ASANOV (Moscow)

Abstract. Starting with particular spray coefficients, we demonstrate how the

Landsberg condition can explicitly appear in case of the Finsleroid-type metric function.

Calculations are supplementing by a convenient special Maple-program. The general

form of the associated geodesic spray coefficients is presented for such metric functions

under the condition of constancy of the Finsleroid charge.

1. Introduction

Great parts of of many works on the Finsler Geometry (see the books [1]–[3])
deal with the concept of spray. We need the spray coefficients when deriving
the geodesic equations, the connection coefficients, the curvature tensors, the
geodesic deviation equations, etc. Various ideas of applications of the Finslerian
metrics (see [4]–[10]) need also convenient sets of the spray coefficients to succeed
in developing handy equations. At the same time, it seems also useful to have
the spray coefficients which belong to the Landsberg type (consult [1]–[3, [14]) of
Finsler metric function.

Continuing the previous work [10]–[13] dealt with the Finsleroid–Finsler
spaces, we below clarify (in a transparent way avoiding any clutter of calcula-
tions) how the spray notion may entail the Landsberg-type Finsler space. Any
dimension number N ≥ 2 is embraced by our consideration.

A spray G on an N -dimensional smooth manifold M is a smooth vector field
on the slit tangent bundle TM\0 expressed in terms of a standard local coordinate

Mathematics Subject Classification: 53A35, 53B40, 53B50.
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398 G. S. Asanov

system (xi, yi) in TM according to the representation

G = yi ∂

∂xi
−Gi(y)

∂

∂yi
. (1.1)

Spray spaces are generalized vector spaces which deep meaning is underlined by
the property that a spray G on M determines a collection of geodesics in M ,
according to the differential equation

d2ci

dt2
+ Gi

(
dc

dt

)
= 0 (1.2)

for curves c : (a, b) → M parametrized by t. The theory of sprays bears close
relation on the path spaces. The Finsler geodesic spray is the notion which is the
adaptation of the general spray notion to the structure of Finsler spaces, by using
the Finslerian Christoffel symbols γk

ij and prescribing the equality

Gk
{Finsler} = γk

ijy
iyj . (1.3)

On the basis of these coefficients the Finsler connection and curvature can con-
sistently be constructed by following known methods (see [1]–[3]).

Suppose we are given on M a Riemannian metric SN = S(x, y) and a 1-form
b = b(x, y) of the unit Riemannian length. With respect to local coordinates
xi in the Riemannian space RN = (M,SN ) we have the local representations
b = bi(x)yi, S =

√
aij(x)yiyj , and

‖b‖x :=
√

aij(x)bibj = 1 (1.4)

with the tensor aij reciprocal to the input aij . We shall construct from the co-
variant vector bi the contravariant vector bi according to the Riemannian rule
bi = aijbj .

We also introduce the tensor

rij(x) := aij(x)− bi(x)bj(x), (1.5)

obtaining the decomposition
S2 = b2 + q2 (1.6)

in terms of the scalar

q :=
√

rij(x)yiyj . (1.7)
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In many cases it is convenient to use the variables

ui := aijy
j , (1.8)

vi := yi − bbi, vm := um − bbm = rmnyn ≡ rmnvn ≡ amnvn. (1.9)

Notice that

ri
n := aimrmn = δi

n − bibn =
∂vi

∂yn
(1.10)

(δi
n stands for the Kronecker symbol),

vib
i = vibi = 0, rijb

j = ri
jb

j = bir
i
j = 0, (1.11)

uiv
i = viy

i = q2, (1.12)
and

∂b

∂yi
= bi,

∂q

∂yi
=

vi

q
. (1.13)

We comply with the notation adopted in [12], [13].
Under these conditions, it seems attractive to take three scalars c1(x), c2(x),

c3(x) and propose to consider on the Riemannian space RN = (M, SN ) the spray
given by the coefficients

Gi = c1(x)
1
q
yjyh(∇jbh)vi + c2(x)yhbj(∇jbh)vi + c3(x)qf i + ai

kmykym, (1.14)

which are such that the difference Gi − ai
kmykym involves all the crucial terms

linear in ∇jbh. Here, the nabla means the covariant derivative in terms of the
Riemannian space RN = (M,SN ); ai

nm stands for the Riemannian Christoffel
symbols constructed from the tensor aij(x); the notation

f i = f i
nyn, f i

n = aikfkn, fmn = ∇mbn −∇nbm ≡ ∂bn

∂xm
− ∂bm

∂xn
(1.15)

is used.
In the previous work [10]–[13], the notion of the Finsleroid–Finsler space have

been formulated and the necessary and sufficient conditions for the space to be of
the Landsberg type have been found. In Section 2 we consider particular Gi which
reveal the astonishing property of the nullification (2.11)–(2.12) for contractions.
We call them the Landsberg-type spray coefficients, because, under the structural
condition (2.13), Finsler metric functions inducing such coefficients must produce
the Landsberg-type spaces.
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In Section 3 we demonstrate how the use of the generating Finsleroid–Finsler
metric functions induces explicitly such coefficients Gi.

In Section 4 the general representation of the geodesic spray coefficients in
case of the Finsleroid–Finsler space with g = const is given. The representation
is obviously the kernel from which all the significant spray implications in such
spaces are to be grown up.

In Section 5 we present the Maple-program which verifies the Landsberg-type
spray coefficients.

The paper ends by Appendix A in which the basic formulas and definitions
of the Finsleroid–Finsler space are summarized up.

Key Propositions 1, 2, 3 are motivated and proven.

2. Landsberg-type spray coefficients

Under the condition
∇jbi = k(aij − bibj) (2.1)

with k = k(x), the coefficients (1.14) reduce to

Gi = cq(yi − bbi) + ai
kmykym ≡ gqkvi + ai

kmykym, (2.2)

where c = c(x) is the scalar that is obtained by

c = c1k. (2.3)

From (2.2) we can readily calculate the entailed coefficients

Gi
k : =

∂Gi

∂yk
, Gi

km : =
∂Gi

k

∂ym
, Gi

kmn : =
∂Gi

km

∂yn
(2.4)

by applying the rules (1.13), obtaining the representations

Gi
k =

c

q

[
(yi − bbi)(uk − bbk) + q2(δk

i − bkbi)
]
+ 2ai

kmym, (2.5)

Gi
km =

c

q

[
(akm − bkbm)(yi − bbi)− 1

q2
(yi − bbi)(uk − bbk)(um − bbm)

+ (um − bbm)(δk
i − bkbi) + (uk − bbk)(δm

i − bmbi)
]

+ 2ai
km, (2.6)
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and

Gi
kmn = − c

q3
(un − bbn)

[
(akm − bkbm)vi − 1

q2
vi(uk − bbk)(um − bbm)

+ (um − bbm)(δk
i − bkbi) + (uk − bbk)(δm

i − bmbi)
]

+
c

q

[
(akm − bkbm)(δn

i − bnbi) +
2
q4

(un − bbn)vi(uk − bbk)(um − bbm)

− 1
q2

(
(δn

i − bnbi)(uk − bbk)(um − bbm) + vi(akn − bkbn)(um − bbm)

+ vi(uk − bbk)(amn − bmbn)
)

+ (amn − bmbn)(δk
i − bkbi) + (akn − bkbn)(δm

i − bmbi)
]
.

The explicitly symmetric form of the latter coefficients reads

Gi
kmn =

3c

q5
vivkvmvn− c

q3

[
(δk

i−bkbi)vmvn+(δm
i − bmbi)vkvn+(δn

i − bnbi)vkvm

+ vi
(
(akm − bkbm)vn + (akn − bkbn)vm + (amn − bmbn)vk

)]

+
c

q

[
(δk

i − bkbi)(amn − bmbn) + (δm
i − bmbi)(akn − bkbn)

+ (δn
i − bnbi)(akm − bkbm)

]
, (2.7)

or
Gi

kmn =
c

q
(ηk

iηmn + ηm
iηkn + ηn

iηkm), (2.8)

where the η-tensors are given by

ηi
j := ri

j − 1
q2

vivj , ηij := rij − 1
q2

vivj ≡ ainηn
j (2.9)

(the formulas (1.7)–(1.10) have been used). Because of the nullifications

biη
i
j = uiη

i
j = 0 (2.10)

(see the formulas (1.11)–(1.12)) the obtained coefficients (2.8) fulfill the identities

biG
i
kmn = 0 (2.11)

and
uiG

i
kmn = 0. (2.12)

Suppose a Finslerian metric function F (x, y) be obtainable from a function
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F̆ (S, b) of the 1-form b and the Riemannian metric function S, such that

F (x, y) = F̆ (S(x, y), b(x, y)). (2.13)

Then it is obvious that covariant vectors {yi} produced by the function F accord-
ing to the conventional Finsler rule yi = 1

2∂F 2(x, y)/∂yi are linear combinations
of bi and ui, that is, the equality

yi = p1bi + p2ui (2.14)

holds with two scalars p1, p2. Noting the vanishings (2.11) and (2.12), we are
justified to claim the following.

Proposition 1. Suppose a Finsler metric function F (x, y) entail the spray

coefficients of the form (2.2). If also the function F is of the structure (2.13),
then the function F produces the identity

yiG
i
kmn = 0 (2.15)

and, hence, a Landsberg-case Finsler space.

Because of this observation, we introduce the following.

Definition. The coefficients Gi given by the representation (2.2) are called
the Landsberg-type spray coefficients.

In the two-dimensional case,

N = 2, (2.16)

such a unit 1-form e = ej(x)yj exists that

aij = eiej + bibj , (2.17)

whence the definitions (1.5), (1.7), and (1.9) reduce to

rij = eiej , (2.18)

q = |e|, (2.19)

vi = eei, (2.20)
the η-tensors (2.9) vanish

ηk
i = ηkn = 0, (2.21)

and the implication
(N = 2) → Gi

kmn = 0 (2.22)
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is applicable to (2.8) independently of the value of the scalar c. Therefore, in the
dimension N = 2 the coefficients (2.2), (2.5), and (2.6) reduce to

Gi = ce|e|ei + ai
kmykym, (2.23)

Gi
k = 2c|e|eiek + 2ai

kmym, (2.24)
and

Gi
km =

2ce

|e| e
iekem + 2ai

km. (2.25)

The latter coefficients are independent of vectors y, thereby corresponding to the
Berwald case.

The formula (2.2) obtained for the spray coefficients, as well as the very
condition (2.1), is applicable in any dimension N ≥ 2. The right-hand side of the
formula involves q which is a square root of a quadratic form of rank N − 1, so
that in the dimensions N ≥ 3 the coefficients can not be quadratic in vectors y

(unless the Riemannian case occurs), – this note may be regarded as the reason
proper why the Landsberg case treated does not degenerate to the Berwald case
at N ≥ 3. In the dimension N = 2, however, the quadratic form mentioned is a
square of the 1-form e introduced above, hence the square root is extracted up
(see (2.19)), leaving us with the expression (2.23) quadratic in vectors y, that is
with the Berwald case. In the Finsleroid–Finsler space of the dimension N = 2
the associated main scalar I proves to be I = I(x) = |g(x)| (cf. p. 26 in [12]).

3. Use of generating metric functions in the Finsleroid–Finsler case

Let us inquire into whether the Finsleroid–Finsler metric function K with
g = const may fulfil the conditions which underlined Proposition 1.

Accordingly, we use a constant g ranging over −2 < g < 2, together with the
notation

h =

√
1− 1

4
g2, G = g/h. (3.1)

The respective Finsleroid–Finsler metric function K does belong to the
class (2.13).

Put w = q/b whenever b 6= 0 and rewrite the function K in the form

K = bV (w), (3.2)

where the generating metric function V (w) is smooth of the class C∞ on all the
region

Iw = (−∞,∞). (3.3)
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In terms of the quadratic form

Q(w) = 1 + gw + w2 (3.4)

we have
V (w) =

√
Q(w) e

1
2 GΦ(w), (3.5)

where

Φ(w) =
π

2
+ arctan

G

2
− arctan

(
w + g

2

h

)
, if b ≥ 0, (3.6)

and

Φ(w) = −π

2
+ arctan

G

2
− arctan

(
w + g

2

h

)
, if 0 ≥ b, (3.7)

We obtain

V ′ = wV/Q, V ′′ = V/Q2, (3.8)

(V 2/Q)′ = −gV 2/Q2, (V 2/Q2)′ = −2(g + w)V 2/Q3, Φ′ = −h/Q (3.9)

and also
1
2
(V 2)′ = wV 2/Q,

1
2
(V 2)′′ = (Q− gw)V 2/Q2,

1
4
(V 2)′′′ = −gV 2/Q3,

(3.10)

where the prime (′) denotes the differentiation with respect to w.
If, alternatively, we use the variable s = b/S and consider the function K to

read
K = Sφ(s), (3.11)

we obtain the generating metric function φ(s) which is smooth of the class C∞

on the interval
Is = (−1, 1), (3.12)

with

φ(s) =
√

1 + gs
√

1− s2 e
1
2 GΦ(s), (3.13)
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where

Φ(s) =
π

2
+ arctan

G

2
− arctan

(√
1− s2 + g

2s

hs

)
, if 1 > s ≥ 0, (3.14)

and

Φ(s) = −π

2
+ arctan

G

2
− arctan

(√
1− s2 + g

2s

hs

)
, if 0 ≥ s > −1, (3.15)

The limits at s = 0 from the left and from the right are the same value

φ(0) = e
1
2 G arctan(G/2) .

Evaluating derivatives yields merely

φ′ =
g
√

1− s2 e 1
2 GΦ(s)

√
1 + gs

√
1− s2

, φ′′ = − gs e 1
2 GΦ(s)

√
1− s2

(√
1 + gs

√
1− s2

)3 , (3.16)

where the prime (′) denotes the differentiation with respect to the variable s.
Singularities appear when |s| → 1.

Using each of the two generating metric functions, V (w) or φ(s), it is easy
to observe that with the symmetry assumption

∇jbi = ∇ibj (3.17)

the Finsler spray coefficients Gi = γi
nmynym (see (1.3)) prove to be of the explicit

form
Gi =

gymyn∇nbm√
S2 − b2

(yi − bbi) + ai
nmynym. (3.18)

If we plug here the condition (2.1), we obtain the spray coefficients

Gi = gk
√

S2 − b2(yi − bbi) + ai
nmynym (3.19)

which are tantamount to the Landsberg-type spray coefficients (2.2).
This way we have arrived at the following.

Proposition 2. Under the assumption (2.1), the Finsleroid–Finsler metric

function K with g = const induces the Landsberg-type spray coefficients. The

entailed coefficients Gi
kmn are of the simple form that is given by (2.8), with

c = kg. (3.20)

The Berwald case corresponds to k = 0 in dimensions N ≥ 3, and holds
uniquely in dimension N = 2.
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4. General form of Finsleroid–Finsler geodesic spray coefficients

Straightforward calculations of the Finsleroid–Finsler Christoffel symbols
γikj (on the basis of the representation (A.15) in Appendix below) results in
the following representation:

2γikj =
∂gkj

∂g

∂g

∂xi
+

∂gik

∂g

∂g

∂xj
− ∂gij

∂g

∂g

∂xk

+
2gb2

Bq
(cigkj + cjgik − ckgij) +

g

B

(
q − b2

q

)
(ciakj + cjaik − ckaij)

K2

B

− g K2

B

B

[
ci

[(
2gb +

S2

q

)
bkbj +

1
q2

S2

q
(b2bkbj − bbkuj − bbjuk + ukuj)

]

+
(

q +
b2

q

)
(bk,i(bbj − uj) + bj,i(bbk − uk))− gq2(bk,ibj + bj,ibk)

]

− g K2

B

B

[
cj

[(
2gb +

S2

q

)
bkbi +

1
q2

S2

q
(b2bkbi − bbkui − bbiuk + ukui)

]

+
(

q +
b2

q

)
(bk,j(bbi − ui) + bi,j(bbk − uk))− gq2(bk,jbi + bi,jbk)

]

+
g K2

B

B

[
ck

[(
2gb +

S2

q

)
bibj +

1
q2

S2

q
(b2bibj − bbiuj − bbjui + uiuj)

]

+
(

q +
b2

q

)(
bi,k(bbj −uj)+ bj,k(bbi−ui)

)− gq2(bi,kbj + bj,kbi)
]
+∆. (4.1)

Here, S2 = b2 + q2, ui = aijy
j , bj,k = ∂bj/∂xk, ci = ykbk,i, and ∆ symbolizes the

summary of the terms which involve partial derivatives of the input Riemannian
metric tensor aij with respect to the coordinate variables xk. By contracting we
find

γikjy
iyj =

∂yk

∂g

∂g

∂xi
yi − 1

2
∂K2

∂g

∂g

∂xk

+
gS2

Bq
(cjy

j)yk − gq
K2

B
ck + gq

K2

B
bkiy

i − g K2

B b

q
(ciy

i)bk + ∆y (4.2)

and

γikjy
iyjyk =

1
2

∂K2

∂g

∂g

∂xk
yk + gq(ciy

i)
K2

B
+ y∆. (4.3)

Using this result, we obtain after due calculations (applying the representa-
tion (A.16) of Appendix A below) the following.
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Proposition 3. In the Finsleroid–Finsler space under the only condition

that the Finsleroid charge is a constant, g = const, the induced spray coefficients

Gi = γi
nmynym can explicitly be written in the form (1.14) with

c1 = g, c2 = g2, c3 = −g, (4.4)

so that

Gi = g

(
1
q
yjyh∇jbh + gyhbj∇jbh

)
vi − gqf i + ai

kmykym. (4.5)

We have here f i = 0 if the symmetry (3.17) is assumed (see (1.15)). If the
condition (2.1) is plugged in (4.5), the spray coefficients (2.2) appear with c given
by (3.20).

It is remarkable to note that the Finsleroid–Finsler metric function K does
not enter the right-hand side of (4.5). The presence of the constant g in the right-
hand side of (4.5) is the only trace of the function K in the spray coefficients Gi

obtained.

5. Maple-verification

Below we check the vanishing Ȧjkl = 0 by the resource of the Maple10, using
the formulas

Gi = cq(yi − bbi) + ai
kmykym, Ȧjkl = −1

4
yi

∂3Gi

∂yj∂yk∂yl
(5.1)

with q =
√

rijyiyj and b = biy
i; c is independent of y. In the program, Gi will

be denoted by gammas[i], Ȧjkl by dotA[j,k,l], and b by bs.
> restart:

> N:=2:q:=sqrt(add(add(r[i,j]*y[i]*y[j], j=1..N), i=1..N)):

bs:=add(b[i]*y[i],i=1..N):

for i from 1 to N do

c*q*(y[i]-bs*b[i])+add(add(a[i,j,k]*y[j]*y[k],j=1..N),k=1..N):

gammas[i]:=eval(%,{seq(seq(r[i,j]=r[j,i],i=1..j),j=1..N)});

end do:

Apply yi = p1bi + p2rijy
j (equation (2.14)) with arbitrary p1 and p2.

> for j from 1 to N do for k from 1 to N do for l from 1 to N do

dotA[j,k,l]:=-1/4*factor(add((add(r[i,a]*y[a]*p2,a=1..N)+b[i]*p1)

*diff(diff(diff(gammas[i],y[l]),y[k]),y[j]),i=1..N));

end do:end do:end do:
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Plug the symmetry rij = rji and simplify the arisen quantities Ȧjkl by the use of
the constrains bib

i = 1 and rijb
j = 0.

> for a1 from 1 to N do for a2 from 1 to N do for a3 from 1 to N do

dotA[a1,a2,a3]:factor(eval(%,{seq(seq(r[i,j]=r[j,i],i=1..j),j=1..N)})):

algsubs(add(b[i]^2,i=1..N)=1,%):factor(%);

for j from 1 to N do

algsubs(eval(add(r[i,j]*b[i],i=1..N)=0,

{seq(seq(r[i,j]=r[j,i],i=1..j),j=1..N)}),%);end do:

simplify(%);print(%);end do:end do:end do:

The result of the simplification is just the succession of zeros:

0

0

0

0

0

0

0

0

This result supports Proposition 1 of Section 2.
The calculation times at the dimensions N = 2 and N = 3 are short.

Appendix A: Involved Finsleroid–Finsler representations

We introduce on the manifold M a scalar g = g(x) subject to ranging

−2 < g(x) < 2, (A.1)

and apply the convenient notation

h =

√
1− 1

4
g2, G = g/h. (A.2)

The characteristic quadratic form

B(x, y) := b2 + gqb + q2 ≡ 1
2
[
(b + g+q)2 + (b + g−q)2

]
> 0 (A.3)
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where g+ = 1
2g + h and g− = 1

2g − h, is of the negative discriminant

D{B} = −4h2 < 0 (A.4)

and, therefore, is positively definite.

Definition. The scalar function K(x, y) given by the formulas

K(x, y) =
√

B(x, y)J(x, y) (A.5)

and
J(x, y) = e

1
2 GΦ(x,y), (A.6)

where

Φ(x, y) =
π

2
+ arctan

G

2
− arctan

(L(x, y)
hb

)
, if b ≥ 0, (A.7)

and

Φ(x, y) = −π

2
+ arctan

G

2
− arctan

(
L(x, y)

hb

)
, if b ≤ 0, (A.8)

with
L(x, y) = q +

g

2
b, (A.9)

is called the Finsleroid–Finsler metric function.

The positive (not absolute) homogeneity holds fine: K(x, λy) = λK(x, y) for
all λ > 0.

In the limit g → 0, the definition degenerates to the input Riemannian metric
function:

K|g=0 = S. (A.10)

Definition. The arisen space

FFPD
g := {RN ; b(x, y); g(x); K(x, y)} (A.11)

is called the Finsleroid–Finsler space.

Definition. The space RN entering the above definition is called the associ-
ated Riemannian space.

Definition. Within each tangent space TxM , the Finsleroid-metric function
K(x, y) produces the Finsleroid

FPD
g {x} := {y ∈ FPD

g {x} : y ∈ TxM, K(x, y) ≤ 1}. (A.12)
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We calculate from the function K the covariant tangent vector ŷ = {yi} and
the Finslerian metric tensor {gij}, by making use of the conventional Finslerian
rules

yi :=
1
2

∂K2

∂yi
, gij :=

1
2

∂2K2

∂yi∂yj
=

∂yi

∂yj
, (A.13)

obtaining

yi = (aijy
j + gqbi)

K2

B
(A.14)

and

gij =
[
aij +

g

B

(
(gq2 − bS2

q
)bibj − b

q
uiuj +

S2

q
(biuj + bjui)

)]
K2

B
, (A.15)

where the notation (1.8) has been used. The reciprocal components (gij) =
(gij)−1 read

gij =
[
aij +

g

q
(bbibj − biyj − bjyi) +

g

Bq
(b + gq)yiyj

]
B

K2
, (A.16)

In terms of the variables (1.9) we obtain the representations

yi =
(
vi + (b + gq)bi

)K2

B
, (A.17)

gij =
[
aij +

g

B

(
q(b + gq)bibj + q(bivj + bjvi)− b

vivj

q

)]
K2

B
, (A.18)

and

gij =
[
aij +

g

B

(
−bqbibj − q(bivj + bjvi) + (b + gq)

vivj

q

)]
B

K2
(A.19)

which are alternative to (A.14)–(A.16).
The determinant of the metric tensor is the smooth and positive function as

follows:

det(gij) =
(

K2

B

)N

det(aij) > 0. (A.20)

For the component of the contracted Cartan tensor we find

Ai =
NK

2
g
1
q

(
bi − b

K2
yi

)
=

NK

2
g

1
qB

(q2bi − bvi). (A.21)
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Since
vivj

q
→ 0 when vi → 0 (A.22)

(notice the definition (1.7) of q) the components yi, gij , and gij , as given by
(A.17), (A.18), and (A.19), are smooth on all the slit tangent bundle TM\0.
However, the components (A.21) are singular at vi = 0. Therefore, on TM\0 the
Finsleroid–Finsler space is smooth of the class C2 and not of the class C3, and
at the same time the space is smooth of the class C∞ on TM\{0,−b, b}.

We use the Riemannian Christoffel symbols

ak
ij :=

1
2
akn(∂jani + ∂ianj − ∂naji) (A.23)

(∂j = ∂/∂xj) given rise to by the associated Riemannian metric SN , and also the
Finslerian Christoffel symbols

γk
ij := gknγinj (A.24)

with
γinj :=

1
2
(∂jgni + ∂ignj − ∂ngji). (A.25)

In terms of the tensors

Hmn = ηmn
K2

B
, Hk

i = ηk
i (A.26)

(cf. equations (A.11) and (A.16) in [12]) the coefficients given by (2.8) take on
the form

Gi
kmn =

c

q
(Hk

iHmn + Hm
iHkn + Hn

iHkm)
B

K2
, (A.27)

and if we lower here the first index, we obtain the totally symmetric coefficients

Gikmn =
c

q
(HikHmn + HimHkn + HinHkm). (A.28)

The vanishings

yiGikmn = 0, biGikmn = 0, AiGikmn = 0 (A.29)
hold.
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