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Hardy spaces and convergence of vector-valued
Vilenkin—Fourier series

By FERENC WEISZ (Budapest)

Abstract. The atomic decomposition of a vector-valued martingale Hardy space
is given. A classical inequality of Marcinkiewicz is generalized for UMD lattice valued
(bounded) Vilenkin-Fourier series. It is proved that the Vilenkin-Fourier series of f €
L,(X) (1 < p < c0) converges to f in L,(X) norm if and only if X is a UMD space.
Moreover, a lacunary sequence of the UMD lattice valued Vilenkin—Fourier series of
f € Hi(X) converges almost everywhere to f in X norm.

1. Introduction

For trigonometric and Walsh—Fourier series the partial sum operators are
bounded on L, (1 < p < o) spaces. An {,-valued version of this theorem
is due to Marcinkiewicz and Zygmund for trigonometric Fourier series (see e.g.
ZYGMUND [28, II. p. 225]), to SUNOUCHI [19] for Walsh-Fourier series and to
Youna [27] for Vilenkin—Fourier series.

LADHAWALA and PANKRATZ [9] (see also WEISZ [24]) proved that if f is in the
dyadic Hardy space H; and (ng, k € N) is a lacunary sequence of positive integers,
then s,, f, the partial sums of the Walsh-Fourier series of f, converges a.e. to f.
Moreover, SCHIPP and SIMON [17] verified that if ®(u) = o(loglogu) (u — o0)
then there exists a function in H;®(H;) whose full sequence of partial sums
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diverges everywhere. Especially, if ®(u) =1 (v > 1) then we get H1®(H;) = Hy,
i.e. it follows the existence of f € Hj such that s, f diverges everywhere (see
LADHAWALA and PANKRATZ [9]). The analogous results for trigonometric Fourier
series can be found in ZyGMUND [28, II. p. 235] and for Vilenkin-Fourier series
in YOUNG [26].

In this paper we extend these results to vector-valued, more exactly to UMD
space valued Walsh- and Vilenkin—Fourier series. The UMD (unconditionality
property of martingale differences) Banach spaces were introduced by BURK-
HOLDER [2]. Since that time these spaces itself and their applications to Fourier
analysis has been studied very intensively in the literature (e.g. BURKHOLDER [3],
[4], RuBio DE FrANcCIA [15], [16], TozoNI [20], [21], MISHURA and WEISZ [13],
[14], MARTINEZ and TORREA [12] and GIRARDI and WEIS [8]). Hardy spaces of
scalar-valued martingales are investigated in the books LoNG [11] and WEISZ [23].

Here we consider Walsh and Vilenkin martingales and give the atomic de-
composition of a Banach space valued martingale Hardy space. We generalize
the Marcinkiewicz inequality on partial sums for UMD space valued (bounded)
Vilenkin—Fourier series. From this it follows that if X is a UMD space then the X
valued Vilenkin—-Fourier series of f € L,(X) (1 < p < 00) converges to f in norm.
The converse is also true: if the Vilenkin-Fourier series converges in L,(X) norm
then X is a UMD space. For Walsh—Fourier series this was proved in WENZEL
[25] and TozoNT [20].

It is known that if f € L,(X) (1 < p < o0) and X is UMD then s, f — f
a.e. in X norm (see RUBIO DE FRANCIA [15] for trigonometric Fourier series
and WEIsz [22] for Vilenkin—Fourier series). Finally, we extend this result to
Hardy spaces, more exactly we prove that if f is in the Hardy space H1(X) and
(nk,k € N) is a lacunary sequence of positive integers, then the partial sums of
the Vilenkin-Fourier series s,, f converge a.e. to f in X norm. In the proofs of
these results martingale techniques are used.

2. Vilenkin systems

In this paper we consider the unit interval [0,1), the o-algebra A of the
Borel sets and the Lebesgue measure A. Let (p,,n € N) be a sequence of natural
numbers with entries at least 2. Introduce the notations Py = 1 and P, :=
[1;_opr (n € N). Every point = € [0,1) can be written in the following way:

) ngk<p]g, J/']geN
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In case there are two different forms, we choose the one for which limy_.o xr = 0.

The functions
2mTy,

o () := exp (n eN)

n
are the generalized Rademacher functions where 1 := v/—1. The product system
generated by these functions is called a Vilenkin system:

wy (1) = H ri(z)""
k=0

where n = Y77 (nipPr, 0 < ni < pi and ng € N. If p,, = 2 for every n € N then
it is called Walsh system. In this paper we suppose that the Vilenkin system is
bounded, i.e. the sequence (p,) is bounded. For a detailed investigation of the
Walsh- and Vilenkin systems see SCHIPP, WADE, SIMON and PAL [18].

Let F,, be the o-algebra generated by {ro,...,r,—1}. It is easy to see that

Fo=0c{lkP; Y (k+1)P ) :0<k< P,}

where o(H) denotes the o-algebra generated by an arbitrary set system H. By a
Vilenkin interval we mean one of the form [kP, !, (k+1)P;!) for some k,n € N,
0<k<P,.

For a Banach space X, the space L,(X) consists of all strongly measurable
functions f:]0,1) — X for which

1 1/p
T ( [ s dA) (0<p< o).

If fe L,(X) (p>1) then the Bochner integral fol f dX exists (see DIESTEL and
UHL [6] and GARCIA-CUERVA and RUBIO DE FRANCIA [7]). The expectation
and the conditional expectation operators relative to F,, are denoted by F and
E,, respectively. We investigate the class of X-valued (Vilenkin) martingales
f = (fn, € N) with respect to (F,, € N). For a stopping time v : [0,1) — NU{oc}
the stopped martingale (f%, € N) is defined by

In = Z 1o >mydef,
k=0

where di f == fr — fx—1, f-1:=0.
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If f e L1(X) then f(n) := E(fw,) is said to be the nth Vilenkin-Fourier
coefficient of f (€ N). Denote by s, f the nth partial sum of the Vilenkin—Fourier
series of f, namely,

n—1
Snf = Zf(k)wk
k=0

It is easy to see that (sp, f, € N) is an X-valued martingale.

We will suppose that X is a Banach lattice. As usual, | - | will denote the
absolute value in X: |z| := sup{z, —z}. For more about Banach lattices see LIN-
DENSTRAUSS and TZAFRIRI [10]. A Banach lattice X is a UMD (unconditionality
property for martingale differences) space, if for all 1 < p < oo, all X-valued
martingale difference sequences (di,ds,...) and all numbers €1, €9,... € {—1,1}
there exists a positive real number C), such that

n
g €rdy
k=1

(see BURKHOLDER [2]). It is enough to assume (1) for some 1 < p < co and for
all X-valued martingale difference sequences (di, ds, . . .) with respect to (F,), be-
cause each F,, is atomic (see RUBIO DE FRANCIA [16] or GIRARDI and WEIS [8]).

The mazimal function of an X-valued martingale f = (f,, € N) is defined by

<q,
Lp(X)

dy,
=1

(eN) (1)

Lp(X)

My f = sup || frllx, Mf = sup|| frllx-
k<n keN

The following theorem can be found in BOURGAIN [1], RUBIO DE FRANCIA
[16] and TozoNI [21].

Theorem 1. If X is a UMD lattice and f € L,(X) then
PAM f > p) < C|lfllL, (x) (p>0)

and

00 1/2
1 lzscor ~ 1M Al o ~ H (Z Idnf|2)

n=0
oo 1/2

(s
n=0

for all 1 < p < oo, where ~ denotes the equivalence of the norms.

Lp(X)

Lp(X)

Note that the sequence (F,) is regular. In this paper the positive constants
Cp depend only on p and may denote different constants in different contexts.
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3. Hardy spaces and atomic decomposition

The Hardy space Hp(X) (1 < p < c0) consists of all X-valued martingales f
for which

HfHHp(X) = ”Mf”Lp(]R) < o0.

By Theorem 1, if X is UMD then H,(X) ~ L,(X) for all 1 < p < co. Moreover,
if (fn) € Hp(X) for some 1 < p < oo then there exists f € L,(X) such that
f=limy, oo frn in Ly(X) norm and f,, = E,, f (see e.g. DIESTEL and UHL [6]).
The atomic decomposition is a useful characterization of Hardy spaces (for
scalar valued martingales see e.g. WEISZ [23]). Let us introduce first the concept
of atoms. A function a is an atom if there exists a Vilenkin interval I such that

/ adA=0, ali_oo <MD, {a#0}Cl.
I

Though the proof of the next atomic decomposition is similar to the scalar valued
case, for the sake of completeness we present a short proof.

Theorem 2. Assume that X is a UMD lattice. Then f € Hy(X) if and only
if there exist a sequence (a*,k € N) of atoms and a sequence (jux, k € N) of real
numbers such that

Zukak =f a.e. in X norm and Z |pk] < oo. (2)
k=0 k=0

Moreover,

11y x) ~ infz ||
k=0
where the infimum is taken over all decompositions of f of the form (2).
PROOF. Assume that f € H;(X). Define the stopping time vy by
vi(r) == inf{n € N: B 1y poory(z) > 1/d}, (keZ),
where d = sup,, p,. From this it follows that v, < 41, (k € Z),
(Mf>2F) c{m <o), A < o0) <dAMf >2F) (3)

and M, f < 2% for all k € Z, where M, [ = M,f if v, =n. It is easy to see
that

f= Z(f,,k+1 — fu,) a.e. in X norm.

keZ
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Indeed, A(vx < o0) — 0 by (3) and so f,,,, — f a.e. in X norm as k — oo
and ||f,,|lx <2 — 0as k — —oco. We decompose {v}, = [} = UnI,lC7n, where
I ,lcn € F; are Vilenkin intervals. If we define

u%c,n =3 2k)‘(lllc,n)7 aéc,n = (ugc,n)_lll,lmn (ka+1 - ka)

then

f= Z Z Zuﬁcﬁnabn a.e. in X norm. (4)

k€EZ leEN n

Since vg11 > v =1 on I,lwz, by the martingale property

[ o= tdir= [ (s = rir =0

k,n kyn

This and
g, llx < tthonl ™ (v llx + [fullx) < ATG,) ™

imply that ak)n are atoms. By (3),
SO el =3 2Nk < 00) <3d Y 2MA(Mf > 2%) < CE(M).
keZ leN n keZ keZ

Since E(]la|lx) < 1, the sum

SOSTS lkallak i

keZ leN n

is convergent a.e. Thus the sum in (4) can be rearranged to get (2).
Conversely, suppose that f has a decomposition of the form (2). Since the
sum in (2) converges in Li(X) norm, we have

E.f= Z ,ukEnak
k=0
and so we conclude
E(IMfl) <> |l B( SupHE a*||x) < Zlukl/ sup Ep[la®||x dA < Zlukl
k=0 Iy mzm k=0
where the Vilenkin interval I, € F,,, is the support of ay. [l

Note that the same proof works if we suppose only that X is a Banach space
having the Radon—Nikodym property.
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4. Marcinkiewicz inequality

Now we generalize the classical Marcinkiewicz inequality, mentioned in the
Introduction, for UMD valued functions.

Theorem 3. Assume that X is a UMD lattice and ny, is an arbitrary natural
number for each k € N. If (f*,k € N) € L,(¢,(X)) for some 1 < p,r < oo then

o'} 1/r e s} 1/r
H (Z |snkf’€||§() (Z ||f’“||§(>
k=0 k=0

If (f¥,k € N) € Li(£,(X)) for some 1 < r < co then

%) 1/r o 1/7"
px((Znsnkf’w;() >p) <c (an’w;()
k=0 k=0

PRrROOF. It is known that

()

< Cp,r
p

P

o (p>0). (6)

Dasnf = 0T} (wa (Bya (fn) = B (f5a)) = Doy, (7)
7=0 =0

where the operator T7" is linear,
T7fI? < CEjIf1?, (jimeN) (8)

and (d},j € N) is a martingale difference sequence with respect to (Fj+1) (see
WEIsz [23]). Note that (7) is a finite sum. Since ¢, (1 < r < 00) is a UMD lattice,
so is £,(X) (see RUBIO DE FRANCIA [16]). Then we may apply Theorem 1 and
(8) to obtain

oo 1/r oS oS rN 1/7
[(Ssrix) | (X)X )
k=0 P k=0""j=0 X P

r N\ 1/r
J

0o 1/2
(Z By By (f¥T,) — Ej(f’“ﬁnk)F)
5=0

[SS) 0 1/2
<Gl (2 (Swr)
3=0

k=0

p

o0

< Cpr (Z

k=0

o (S

k=0" \j=0

rN\ 1/r
J
r N 1/r
J

p

3

1/2
By () — Ej<fkwnk>|2)

p
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0o r N 1/r
( o ) )
k= P
which proves (5). Note that in the last step we have used that
(Ej+1 (fkmnk) - Ej (fkwnk)vj € N)
is a martingale difference sequence.
To prove (6) let us define the stopping time
I/(.I) = 1nf{n eN: En]_{(zzo:o ||En+1(fkwnk)||&)1/T>P} (ZZT) Z l/d}
Then
S 1/r
A <00) < i\(sup (L IBFmIK) > 0) (10)
eN \ 175
and
o 1/r
sw (LB Tl) < 1)
NSV N =0
Obviously,
0 1/r 1/r
(X lsnerlx) - = (Z Zd ST )
k=0 k=0

(2
k=0

IA
2|

M8

AM(A4) > p) <
> (Eipa (fFn,) — B (f*0n,) 1541y
=0

T 2/7
j= X

(D (f¥T) |X)2/Ts “p <ZIE (7wl )

k=0

B
[=)

1/r

bm|9

’I"

3 (Z |fk|X) . (12)

b|Q
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It is easy to see that (B) = 0 if v = oo, and so {(B) > p} C {v < co}. Since

(>Xns, ||En(fkwnk)|\§()1/r is a non-negative submartingale, we obtain

o 1/r oo 1/r
e d r
A <00 < an(sup (S mIK) > 0) < SE( X 1)
N N=o P Ni=o
This together with (12) implies (6). O

If we apply Theorem 3 for one k, only, then we get

Corollary 1. If X is a UMD lattice and f € Ly(X) for some 1 < p < oo
then

snfll,x) < Cpllfll,x)  (€N) (13)
and s, f — f in L,(X) norm as n — oo.
The converse of this result easily follows from the proof of Theorem 3:

Theorem 4. Assume that X is a Banach lattice. Inequality (13) holds for
some (or equivalently for all) 1 < p < oo if and only if X is UMD.

PROOF. One can show that

Ti (wn(Ej1 (fn) = Ej(f00))) = 1j(wn(Ej1 (f0n) = Ej(f05)))

if nj =0 or 1, where n = 377% n;P;, 0 < n; < p; (see WEIsz [23]). Consider
only such numbers n for which n; = 0 or 1 for each j. Then

mnsnf = Z n; (Ej+1 (fmn) - Ej (fwn)) .

Jj=0

Inequality (13) implies

< Cpllfllz,x)-
Lp(X)

> 0 (Bja (fWn) — B (f,))
§=0
Writing fw, instead of f we obtain

< Cpllfllz,x)
Lp(X)

> ni(Ejf — Ejf)
=0

and this implies that X is UMD (see (1)). O

For other versions of this theorem see also WENZEL [25], TozoNI [20] and
CLEMENT at al. [5].
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5. Almost everywhere convergence

It is known (see WEISzZ [22]) that s,f — f ae. in X norm as n — oo,
whenever f € L,(X) for some 1 < p < co. However, this does not hold for L (X)
or Hi(X) even if X = R (see LADHAWALA and PANKRATZ [9] or SCHIPP and
SIMON [17]). We say that an increasing sequence (ng, k € N) of positive integers
is lacunary if ngy1/ng > a > 1 for all k € N. Now we are ready to prove our
main result.

Theorem 5. Assume that X is a UMD lattice and (ng, k € N) is a lacunary
sequence of positive integers. If f € Hy(X) then

p/\(sgpllsnkfllx >p) <Clfllaxy, (0> 0).

Proor. It is well known that every lacunary sequence (ng,k € N) can be
split into a finite number of lacunary subsequences (nk, k € N) with n), 12 dnk
(k € N). Thus we may assume that P, < ny < Pyy1. Then s,, f = sp. f +
Sy, (di f), where dif == sp, ., f — sp, f. Since (sp, f) is a martingale, Theorem 1
implies

pA(swpllsr Sllx > p) < Cllf ) < Clflmcy— (p>0) (14)

On the other hand, by Theorem 3,

1/q
(s s (01 x> ) <px((2|snk 0if) |X) >p)

1/q
(Z ||dkf||?x)
k=0

for all p > 0 and 1 < ¢ < co. If we take an atomic decomposition of f as in (2)
then

1

o0
dpf = Zujdkaj a.e. in X norm.
j=0

It is easy to show that
s3] 0 ) 1/q
(D s, (kx> ) < 13 mE(Z |dkaﬂ|§() )
7=0 k=0

Since every UMD lattice is superreflexive (see e.g. RUBIO DE FRANCIA [16]), X
is g-concave for some 1 < g < oo. We may suppose that ¢ > 2. Hence X has



Convergence of vector-valued Vilenkin—Fourier series 423

cotype ¢ (see LINDENSTRAUSS and TZAFRIRI [10]). This means that

N _ 1/q 1
(Z ||dkaﬂ||§(> <cf
k=0 0

for every N, j € N, where 7, denote now the original Rademacher functions with
» = 2 (€ N). If I; denotes the support of the atom a’, then we obtain by the
UMD property and by the definition of the atom that for each fixed ¢,
d\

N . N .
Z Tk (t)dkaj = / Z Tk (t)dka]
k=0 X Il k=0 X

N 2 1/2 ‘ 1/2
< A(Ij)l/z(/I > rk(t)dyal dA) < C)\(Ij)l/2</l ||a3||§(d)\) <C.
i k=0 X f

Now Theorem 2, (14) and (15) finishes the proof of the theorem. O

N

Z TL (t) dg a’

k=0

dt
X

E

By the usual density argument of Marcinkiewicz and Zygmund we obtain

Corollary 2. Assume that X is a UMD lattice and (ny, k € N) is a lacunary
sequence of positive integers. If f € Hy(X) then limy_ o0 Sp, f = f a.e. in X norm.
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