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Tensor product of proper contractions, stable
and posinormal operators

By CARLOS S. KUBRUSLY (Rio de Janeiro)

Abstract. It is shown that if a class of Hilbert space operators is closed under

constant direct sums and ordinary products, then it is closed under tensors products.

This leads to a proof that proper contractiveness is preserved by tensor products. Weak,

strong and uniform stabilities of tensor products of operators are also investigated, and

it is proved that the tensor product of power bounded operators is of class C00 whenever

one of the factors is a completely nonunitary contraction for which the intersection of

the continuous spectrum with the unit circle has Lebesgue measure zero. Moreover, it

is also shown that if a contraction has no nontrivial invariant subspace, then the tensor

product with its adjoint is of class C00. Furthermore, it is verified that posinormality is

preserved by tensor products as well.

1. Introduction

Notational preliminaries: Let H and K be nonzero complex Hilbert spaces.
We shall consider the concept of tensor product space in terms of the single tensor
product of vectors as a conjugate bilinear functional on the Cartesian product ofH
and K. (See e.g., [4] and [13] – for an abstract approach see e.g., [2] and [18].)
The single tensor product of x ∈ H and y ∈ K is a conjugate bilinear functional
x⊗ y : H×K → C defined by (x⊗ y)(u, v) = 〈x; u〉〈y; v〉 for every (u, v) ∈ H×K,
where the first inner product is on H and the second on K. The collection of all
(finite) sums of single tensors, denoted by H⊗K, is a linear space (over the same
complex filed C) that admits an inner product 〈 ; 〉 : (H ⊗ K) × (H ⊗ K) → C
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defined, for arbitrary
∑N

i=1 xi ⊗ yi and
∑M

j=1 wj ⊗ zj in H⊗K, by

〈
N∑

i=1

xi ⊗ yi;
M∑

j=1

wj ⊗ zj

〉
=

N∑

i=1

M∑

j=1

〈xi;wj〉〈yi; zj〉

(the same notation for the inner products on H, K and H⊗K). By an operator
we mean a bounded linear transformation of a normed space into itself. Let B[H],
B[K] and B[H⊗K] be the normed algebras of all operators on H, K and H⊗K.
The tensor product on H ⊗ K of two operators A in B[H] and B in B[K] is the
operator A⊗B : H⊗K → H⊗K defined by

(A⊗B)
N∑

i=1

xi ⊗ yi =
N∑

i=1

Axi ⊗Byi for every
N∑

i=1

xi ⊗ yi ∈ H ⊗K,

which in fact lies in B[H⊗K]. The completion of the inner product space H⊗K,
denoted by H⊗̂K, is the tensor product space of H and K. The extension of A⊗B

over the Hilbert space H⊗̂K, denoted by A⊗̂B, is the tensor product of A and
B on the tensor product space, which lies in B[H⊗̂K].

Some properties of A and B are preserved when taking the tensor product.
For instance, if A and B are either self-adjoint, unitary, nonnegative, normal,
quasinormal, subnormal, hyponormal, quasihyponormal, semi-quasihyponormal,
or normaloid, then so is A⊗̂B (see e.g., [9]). The converse to many of these
statements also holds true. If A⊗̂B is either normal, quasinormal, subnormal or
hyponormal, then so are A and B (if they are nonzero) [15]. Preservation by tensor
product has also been verified for other classes of close to normal operators (see
e.g., [3], [5] and [17]). However, such a preservation may fail for some important
classes. Indeed, there exist paranormal or spectraloid operators A and B for
which A⊗̂B is not paranormal or spectraloid: the properties of being paranormal
or spectraloid are not preserved when taking tensor products [14, pp. 629, 631].

We investigate the preservation of three further properties by tensor products
of Hilbert space operators. Although the preservation of plain contractiveness and
strict contractiveness is trivially verified, the preservation of proper contractive-
ness is not, once this is not a property that can be separated when taking tensor
products. In Section 2 we prove that closeness under constant direct sums and
ordinary products implies closeness under tensor products (Theorem 1). This
ensures that proper contractiveness is preserved by tensor products. Stability is
considered in Section 3 leading to a spectral condition for a tensor product to
be of class C00 (Theorem 2). The role played by tensor products of class C00 in
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the invariant subspace problem is also explored (Theorem 3). Preservation of
tensor products for classes of close to normal operators is extended in Section 4
by showing that A and B are posinormal if and only if A⊗̂B is (Theorem 4).

2. Proper contractions

An operator T is a contraction if ‖T‖ ≤ 1 (i.e., ‖Tx‖ ≤ ‖x‖ for every x). It is
a proper contraction if ‖Tx‖ < ‖x‖ for every nonzero x, and a strict contraction
if ‖T‖ < 1 (i.e., supx 6=0(‖Tx‖ / ‖x‖) < 1). These are related by proper inclusions:

Strict Contraction ⊂ Proper Contraction ⊂ Contraction.

Since ‖A⊗̂B‖ = ‖A‖ ‖B‖, it follows that A⊗̂B is a contraction (or a strict
contraction) if and only if ‖A‖ ‖B‖ ≤ 1 (or ‖A‖ ‖B‖ < 1). Thus it is trivially
verified that if A in B[H] and B in B[K] are contractions, then so is A⊗̂B in
B[H⊗̂K] and, if in addition one of A or B is a strict contraction, then so is
A⊗̂B. However, the proof that the tensor product of proper contractions is a
proper contraction does not follow at once by the above norm identity. Indeed,
the italicized assertion is equivalent to saying that, for every nonzero

∑N
i=1 xi⊗yi

in H⊗K,

N∑

i=1

N∑

j=1

〈Axi; Axj〉〈Byi;Byj〉 <

N∑

i=1

N∑

j=1

〈xi; xj〉〈yi; yj〉

whenever ‖Ax‖ < ‖x‖ and ‖By‖ < ‖y‖ for every nonzero x and y in H and K.
We show that the above statement is a corollary of the next theorem.

Theorem 1. If C′ and C are classes of operators (acting on separable Hilbert

spaces) such that

(a) C′ ⊆ C,
(b) every operator unitary equivalent to an operator in C′ or in C is an operator

in C′ or in C, respectively,

(c) direct sum of countably many copies of an operator in C′ or in C is an operator

in C′ or in C, respectively,

(d) product (either left or right) of an operator in C′ with an operator in C (acting

on the same space) is an operator in C′,
then the tensor product of two operators of class C, being one of them in class C′,
is an operator of class C′.
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Proof. Let H and K be Hilbert spaces, take A in B[H], B in B[K], and
recall that

A⊗̂B = (A⊗̂ I)(I⊗̂B) = (I⊗̂B)(A⊗̂ I)

in B[H⊗̂K], where the same notation I is being used for the identity on H and
on K. Also recall that tensor product is unitarily equivalent commutative; that
is,

A⊗̂B ∼= B⊗̂A,

with ∼= denoting unitary equivalence, and so H⊗̂K ∼= K⊗̂H. No assumption on
separability required so far (see e.g., [9]). Now suppose H and K are separable.
This implies that the tensor products I⊗̂B on H⊗̂K and I⊗̂A on K⊗̂H are
unitarily equivalent to the direct sums

⊕
k B on

⊕
k K and

⊕
k A on

⊕
kH,

respectively, and so H⊗̂K ∼= ⊕
k K and K⊗̂H ∼= ⊕

kH – recall that if one
of H or K, say H, is infinite-dimensional, then H ∼= `2+ and

⊕
k K = `2+(K).

Therefore, with U : H⊗̂K → K⊗̂H, V : K⊗̂H → ⊕
kH, and W : H⊗̂K → ⊕

k K
standing for the unitary transformations concerning the above-mentioned unitary
equivalences,

A⊗̂B = U∗(I⊗̂A)U(I⊗̂B) = U∗[V ∗(⊕
kA

)
V

]
UW ∗(⊕

kB
)
W

and
A⊗̂B = (I⊗̂B)U∗(I⊗̂A)U = W ∗(⊕

kB
)
WU∗[V ∗(⊕

kA
)
V

]
U.

Let C′ and C be classes of operators satisfying assumptions (a) to (d). If A and
B are of class C, with one of them being of class C′, then U∗[V ∗(⊕

kA
)
V

]
U and

W ∗(⊕
kB

)
W are of class C, with one of them being of class C′, by assumptions

(b) and (c). Thus the above identities ensure that A⊗̂B is of class C′ if (d)
holds. ¤

Corollary 1. Take A ∈ B[H] and B ∈ B[K] where H and K are separable

Hilbert spaces. If one of A or B is a contraction and the other is a proper

contraction, then A⊗̂B is a proper contraction.

Proof. It is readily verified that assumptions (a), (b) and (c) of Theorem 1
hold for contractions and proper contractions. That is, if C denotes the class
of all contractions and C′ the class of all proper contractions, both consisting of
operators acting on separable Hilbert spaces, then assumptions (a), (b) and (c)
hold true. Moreover, since the product (either left or right) of a contraction with
a proper contraction is again a proper contraction [11], it follows that assumption
(d) of Theorem 1 is also satisfied. Thus Theorem 1 ensures that A⊗̂B is a proper
contraction whenever one of A or B is a contraction and the other is a plain
contraction. ¤
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Remark 1. In particular, if C′ = C, then Theorem 1 is rephrased as follows.
Suppose a class of operators acting on separable Hilbert spaces is closed under
unitary equivalence and under constant direct sums. If it is also closed under
products, then it is closed under tensor products.
Thus, in this case, Corollary 1 is particularized accordingly:
If A and B are proper contractions acting on separable Hilbert spaces, then their
tensor product A⊗̂B is again a proper contraction.

3. Stability

A Hilbert space operator T is uniformly stable if ‖Tn‖ → 0, strongly stable if
‖Tnx‖ → 0 for every x, and weakly stable if 〈Tnx; y〉 → 0 for every x and y (equiv-
alently, if 〈Tnx; x〉 → 0 for every x). These are denoted by Tn u−→ O, Tn s−→ O

and Tn w−→ O, respectively. Moreover, T is power bounded if supn ‖Tn‖ < ∞.
With r(T ) denoting the spectral radius of T , it is well known that

r(T ) < 1 ⇐⇒ Tn u−→ O =⇒

Tn s−→ O =⇒ Tn w−→ O =⇒ sup
n
‖Tn‖ < ∞ =⇒ r(T ) ≤ 1.

The converses to the above one-way implications fail in general. We shall investi-
gate how stability for A in B[H] or B in B[K] is transferred to A⊗̂B in B[H⊗̂K].
First, by the Gelfand–Beurling formula for the spectral radius we get

r(A⊗̂B) = r(A)r(B).

Indeed, ‖(A⊗̂B)n‖ 1
n = ‖(An⊗̂Bn)‖ 1

n = ‖An‖ 1
n ‖Bn‖ 1

n for every nonnegative
integer n. Thus r(A⊗̂B) < 1 if and only if r(A)r(B) < 1, and therefore A⊗̂B is
uniformly stable if and only if r(A)r(B) < 1.

Interesting results about strong stability for tensor products of operators on
the same separable Hilbert space where presented in [3]. We extend some of
those results (that will be required in the sequel) in Proposition 1 by considering
distinct (not necessarily separable) Hilbert spaces and exhibiting a different proof
for strong stability that can be carried through weak stability, thus also showing
that weak stability for tensor products of operators is preserved as well.

Proposition 1. Consider the tensor product A⊗̂B of A ∈ B[H] and

B ∈ B[K].
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(a) If A⊗̂B is uniformly (strongly, weakly) stable, then so is one of A or B.

(b) If one of A or B is uniformly (strongly, weakly) stable and the other is power

bounded, then A⊗̂B is uniformly (strongly, weakly) stable.

Proof. (a) If A⊗̂B is uniformly stable, then r(A)r(B) < 1 so that r(A) < 1
or r(B) < 1, which means that A or B is uniformly stable. This proves (a) for
uniform stability. To verify assertion (a) for strong and weak stabilities proceed
as follows. Take arbitrary x ∈ H and y ∈ K and observe that

‖(A⊗̂B)nx⊗ y‖ = ‖Anx⊗Bny‖ = ‖Anx‖ ‖Bny‖
and

|〈(A⊗̂B)nx⊗ y; x⊗ y〉| = |〈Anx⊗Bny;x⊗ y〉| = |〈Anx; x〉||〈Bny; y〉|.

If A⊗̂B is strongly stable, then ‖Anx‖‖Bny‖ → 0. If ‖Bny‖ → 0 for every y ∈ K
then B is itself strongly stable. If infn ‖Bny‖ > 0 for some y ∈ K, then ‖Anx‖ → 0
for every x ∈ H. Thus A or B is strongly stable. If A⊗̂B is weakly stable, then
|〈Anx;x〉||〈Bny; y〉| → 0. A similar argument ensures that |〈Anx; x〉| → 0 for
every x ∈ H or |〈Bny; y〉| → 0 for every y ∈ K, which means that A or B is
weakly stable.

(b) Since r(A⊗̂B)= r(A)r(B), and since r(B)≤ 1 whenever supn ‖Bn‖<∞,
it follows that if r(A) < 1 and supn ‖Bn‖ < ∞ (or vice versa), then r(A⊗̂B) < 1,
which proves (b) for uniform stability. To prove assertion (b) for strong and weak
stabilities take an arbitrary

∑N
i=1 xi ⊗ yi in H⊗K. Note that

∥∥∥∥∥(A⊗B)n
N∑

i=1

xi ⊗ yi

∥∥∥∥∥ =

∥∥∥∥∥
N∑

i=1

Anxi ⊗Bnyi

∥∥∥∥∥ ≤
N∑

i=1

‖Anxi ⊗Bnyi‖

N∑

i=1

‖Anxi‖ ‖Bnyi‖ ≤
(

N∑

i=1

‖Anxi‖
)

sup
n
‖Bn‖

N∑

i=1

‖yi‖.

If A is strongly stable (so that
∑N

i=1 ‖Anxi‖ → 0) and B is power bounded, then∥∥(A ⊗ B)n
∑N

i=1 xi ⊗ yi

∥∥ → 0. Thus A ⊗ B is strongly stable whenever one of
A or B strongly stable and the other is power bounded. Since strong stability is
preserved under unitary equivalence, and is also preserved from a dense subspace
of a normed space to the whole space, it follows that the extension A⊗̂B of A⊗B

on the completion H⊗̂K of H ⊗ K is strongly stable whenever A ⊗ B is. This
proves (b) for strong stability. Similarly, and applying the Schwarz inequality,

∣∣∣∣∣

〈
(A⊗B)n

N∑

i=1

xi ⊗ yi;
N∑

i=1

xi ⊗ yi

〉∣∣∣∣∣ =

∣∣∣∣∣

〈
N∑

i=1

Anxi ⊗Bnyi;
N∑

i=1

xi ⊗ yi

〉∣∣∣∣∣
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=

∣∣∣∣∣
N∑

i=1

N∑

j=1

〈Anxi;xj〉〈Bnyi; yj〉
∣∣∣∣∣

≤
(

N∑

i=1

N∑

j=1

|〈Anxi; xj〉|
)

sup
n
‖Bn‖

N∑

i=1

N∑

j=1

‖yi‖ ‖yj‖.

If A is weakly stable (so that
∑N

i=1

∑N
j=1 |〈Anxi; xj〉| → 0) and B is power

bounded, then
〈
(A⊗B)n

∑N
i=1 xi⊗ yi;

∑N
i=1 xi⊗ yi

〉 → 0. Thus A⊗B is weakly
stable whenever one of A or B weakly stable and the other is power bounded.
Again, as weak stability is preserved under unitary equivalence, and is also pre-
served from a dense subspace of a inner product space to the whole space, the
extension A⊗̂B of A ⊗ B on the completion H⊗̂K of H ⊗ K is weakly stable
whenever A⊗B is. ¤

Remark 2. If A and B are power bounded, then A⊗̂B is uniformly (strongly,
weakly) stable if and only if one of A or B is (cf. Proposition 1). Note that power
boundedness is not required in part (a) of Proposition 1, and is sufficient but not
necessary in part (b). Indeed, put A = 1

3I and B = 2I so that A⊗̂B = 2
3 (I⊗̂ I).

Thus r(A) = 1
3 and r(A⊗̂B) = 2

3 , which means that A and A⊗̂B are uniformly
(thus strongly and so weakly) stable, although B is not power bounded.

If T is a contraction, then the sequence of nonnegative numbers {‖Tnx‖} is
decreasing (thus convergent) for every vector x. A contraction T is of class C0·
if it is strongly stable; that is, if {‖Tnx‖} converges to zero for every x, and of
class C1· if {‖Tnx‖} does not converge to zero for every nonzero vector x. It is
of class C·0 or of class C·1 if its adjoint T ∗ is of class C0· or C1·, respectively. All
combinations are possible, leading to the Nagy–Foiaş classes of contractions C00,
C01, C10 and C11 [16, p. 72]. A contraction is completely nonunitary if it has no
unitary direct summand. A uniformly stable contraction is of class C00, and hence
completely nonunitary. Note that the classes C0· and C·0, originally defined for
contractions, can be naturally extended to power bounded operators.

Tensor products of operators comprise a most useful way for exhibiting ex-
amples and counterexamples (e.g., see [14, Section 6]), which in part is due to
the fact that σ(A⊗̂B) = σ(A)σ(B) [1], where σ(T ) stands for the spectrum of T .
In particular, an example of a strongly stable operator that is not similar to
any contraction was obtained in [6] by means of the tensor product S∗⊗̂F on
`2+⊗̂ (`2+ ⊕ `2+) of the adjoint S∗ of the canonical unilateral shift on `2+ with the
Foguel operator F on `2+⊕`2+. However, S∗⊗̂F is not of class C00 – it is of class C0·
but not of class C·0. In fact, it is still unknown whether every operator of class
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C00 is similar to a contraction (see [8, Section 8.2]). Next we provide a sufficient
spectral condition for a tensor product of operators to be of class C00.

Theorem 2. Let A ∈ B[H] and B ∈ B[K] be power bounded. Suppose

one of them is a completely nonunitary contraction such that the intersection of

its continuous spectrum with the unit circle either has Lebesgue measure zero

or is empty. In the former case A⊗̂B is of class C00, in the latter case A⊗̂B is

uniformly stable.

Proof. Consider the classical partition
{
σP (T ), σR(T ), σC(T )

}
of the spec-

trum σ(T ) of any Hilbert space operator T , where σP (T ) is the point spectrum
(the set of all eigenvalues of T ), σR(T ) = σP (T ∗)∗\σP (T ) is the residual spec-
trum, and σC(T ) = σ(T )\(σP (T ) ∪ σR(T )) is the continuous spectrum. (We are
using the standard notation Λ∗ = {λ ∈ C : λ ∈ Λ}.) Let µ denote the Lebesgue
measure on the unit circle Γ. Suppose T is a completely nonunitary contraction.
We split the proof into two parts. In part (a) it is assumed that µ

(
σC(T )∩Γ

)
= 0

and in part (b) it is assumed that σC(T ) ∩ Γ = ∅.

(a) If µ
(
σ(T ) ∩ Γ

)
= 0, then T is of class C00 (cf. [16, p. 85]). Moreover,

every completely nonunitary contraction is weakly stable, and every weakly stable
contraction T is such that σP (T )∪σR(T ) is included in the open unit disc (cf. [8,
pp. 106, 114]). Thus if µ

(
σC(T ) ∩ Γ

)
= 0, then T is of class C00. Therefore, if A

and B are power bounded and one of them is a completely nonunitary contraction
whose intersection of the continuous spectrum with the unit circle has Lebesgue
measure zero, then this one is of class C00, and hence A⊗̂B is of class C00 by
Proposition 1(b).

(b) Every completely nonunitary contraction is weakly stable, and an oper-
ator T is uniformly stable if and only if it is weakly stable and σC(T ) ∩ Γ = ∅
(cf. [8, p. 115]). Thus, if A and B are power bounded and one of them is a
completely nonunitary contraction whose intersection of the continuous spectrum
with the unit circle is empty, then this one is uniformly stable, and so is A⊗̂B

by Proposition 1(b). ¤

Remark 3. There exist tensor products of class C00 for which both factors are
completely nonunitary contractions whose continuous spectra coincide with the
whole unit circle. Indeed, if V is any isometry, then Proposition 1 ensures that

(V ⊗̂B)n s−→ O ⇐⇒ (B⊗̂V )n s−→ O ⇐⇒ Bn s−→ O.

In particular, if K = H is separable and S is a unilateral shift on H, then S⊗̂S∗

and S∗⊗̂S are strongly stable because S∗ is strongly stable. (The only isometry
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with a strongly stable adjoint is a unilateral shift – see e.g., [8, Lemma 6.1].)
Therefore, S⊗̂S∗ is a C00-contraction on H⊗̂H.

The invariant subspace problem is the classical open question that asks
whether there exists an operator (equivalently, a contraction) on an infinite-
dimensional complex separable Hilbert space that does not have a nontrivial
invariant subspace. By a subspace M of a Hilbert space H we mean a closed
linear manifold of H, which is nontrivial if {0} 6= M 6= H, and T -invariant (i.e.,
invariant for an operator T on H) if T (M) ⊆M. A subspace M is T -invariant if
and only if M⊥ is T ∗-invariant, where M⊥ is the orthogonal complement of M.
If M and M⊥ are both invariant for T (equivalently, if M is invariant for both
T and T ∗), then M is a reducing subspace for T . Contractions A for which the
tensor product A⊗̂A∗ is of class C00 play an important role in the invariant sub-
space problem as we shall see in Theorem 3 below. First we need the following
auxiliary result, which shows how nontrivial invariant or reducing subspaces are
transferred when taking tensor products.

Proposition 2. Let A and B be nonzero operators on H and K, and let M
and N be subspaces of H and K, respectively.

(a) M is invariant (reducing) for A and N is invariant (reducing) for B if and

only if M⊗̂N is an invariant (reducing) subspace for A⊗̂B.

(b) Moreover, one of M or N is nontrivial and the other is nonzero if and only

if M⊗̂N is nontrivial.

Proof. A subspace R of a Hilbert space is invariant (or reducing) for a
nonzero operator T if and only if there exists an orthogonal projection E such
that ETE = TE (or such that TE = ET ) where R = range(E). Moreover, since
the orthogonal projection with range R is unique, R is nontrivial if and only if E

is nontrivial (i.e., O 6= E 6= I). We work out the proof for the invariant subspace
case only. The proof for the reducing subspace case is similar, where the relation
ETE = TE is replaced with the commuting assumption TE = ET .

(a) IfM = range(P ) is an invariant subspace for A where P is the orthogonal
projection on H such that PAP = AP and if N = range(Q) is an invariant
subspace for B where Q is the orthogonal projection on K such that QBQ = BQ,
then

(P ⊗̂Q)(A⊗̂B)(P ⊗̂Q) = PAP ⊗̂QBQ = AP ⊗̂BQ = (A⊗̂B)(P ⊗̂Q),

where P ⊗̂Q is an orthogonal projection on H⊗̂K (since it is idempotent and
self-adjoint whenever P and Q are) with

range(P ⊗̂Q) = range(P )⊗̂ range(Q) = M⊗̂N ,
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which is a subspace of H⊗̂K (since it is the range of an orthogonal projection).
Therefore, M⊗̂N is an invariant subspace for the tensor product A⊗̂B. Con-
versely, take arbitrary vectors u ∈ M and v ∈ N so that the single tensor u ⊗ v

lies in M⊗̂N . If M⊗̂N is an invariant subspace for A⊗̂B then, in particular,
(A⊗̂B)(u ⊗ v) = Au ⊗ Bv lies in M⊗̂N so that Au ∈ M and Bv ∈ N . Hence
M is A-invariant and N is B-invariant.

(b) One of M or N is nontrivial and the other is nonzero if and only if one of
the orthogonal projections P or Q is nontrivial and the other is nonzero (since M
and N are the ranges of P and Q), which means that the orthogonal projection
P ⊗̂Q is nontrivial or, equivalently, that the subspace M⊗̂N (which is the range
of P ⊗̂Q) is nontrivial. ¤

Does a contraction not in C00 have a nontrivial invariantsubspace? Equiva-
lently, is a contraction without a nontrivial invariant subspace necessarily of class
C00? This is a classical open question in operator theory (see [7] for equivalent
versions of it). We show next that a contraction A for which A⊗̂A∗ is not in C00

has a nontrivial invariant subspace. This ensures that if A is a contraction and
A⊗̂A∗ has no nontrivial invariant subspace, then A⊗̂A∗ is necessarily of class
C00. Recall that H is separable if and only if H⊗̂H is separable.

Theorem 3. Let A be a contraction on a separable Hilbert space H, let M
and N be subspaces of H, and consider the following assertions.

(a) A⊗̂A∗ has no nontrivial invariant subspace.

(b) A⊗̂A∗ has no nontrivial invariant subspace of the form M⊗̂N .

(c) A has no nontrivial invariant subspace.

(d) A⊗̂A∗ is a C00-contraction.

Claim: (a)=⇒(b) ⇐⇒ (c)=⇒(d).

Proof. Assertion (a) trivially implies (b). Now Proposition 2 ensures that
A⊗̂A∗ has a nontrivial invariant subspace of the form M⊗̂N if and only if M
and N are invariant subspaces for A and A∗, being one of them nontrivial. Thus,
since A has a nontrivial invariant subspace if and only if A∗ has, the denial of
(b) is equivalent to the denial of (c), and so (b) and (c) are equivalent assertions.
Finally, if (c) holds true, then A is either a C00, a C01 or a C10-contraction [7,
Proposition 1]. Hence, A⊗̂A∗ on H⊗̂H is of class C00 by Proposition 1(b), which
is a contraction since ‖A⊗̂A∗‖ = ‖A‖‖A∗‖ = ‖A‖2. Thus (c) implies (d). ¤

Therefore, if A does not have a nontrivial invariant subspace, then A⊗̂A∗ is
a C00-contraction, and there is no subspaces M and N of H, with one of them
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being nontrivial, such that M⊗̂N is A⊗̂A∗-invariant; in particular, there is no
nontrivial subspace M of H such that M⊗̂M⊥ is A⊗̂A∗-invariant.

4. Posinormality

Posinormal operators where introduced in [12] as the class of Hilbert space
operators T for which TT ∗ = T ∗QT for some nonnegative operator Q. This is
a very large class that includes the hyponormal (in fact all dominant operators)
as well as the invertible operators (in fact every injective operator with a closed
range). We show below that posinormality is preserved by tensor products.

Theorem 4. Take nonzero operators A ∈ B[H] and B ∈ B[K]. The tensor

product A⊗̂B is posinormal if and only if both A and B are posinormal.

Proof. Suppose A and B are both nonzero (otherwise A ⊗̂B is trivially
posinormal). It is known that an operator T is posinormal if and only if there
is a γ > 0 for which TT ∗ ≤ γ2T ∗T [12] (see also [10]). Thus, if A and B are
posinormal, then there are positive constants α and β such that AA∗ ≤ α2A∗A
and BB∗ ≤ β2B∗B. Since the operators involved in the above inequalities are
nonnegative, it follows that

AA∗⊗̂BB∗ ≤ α2β2(A∗A⊗̂B∗B)

(see e.g., [9]), and therefore

(A⊗̂B)(A⊗̂B)∗ ≤ α2β2(A⊗̂B)∗(A⊗̂B)

so that A⊗̂B is posinormal. Conversely, if A⊗̂B is posinormal, then there exists
a positive γ such that

(A⊗̂B)(A⊗̂B)∗ ≤ γ2(A⊗̂B)∗(A⊗̂B),

which means
AA∗⊗̂BB∗ ≤ (γA∗A)⊗̂ (γB∗B).

Since the operators involved in the above inequalities are all nonzero and non-
negative, it follows by [15, Proposition 2.2] that there is a positive number δ

such that AA∗ ≤ δ(A∗A) and BB∗δ−1 ≤ (B∗B) so that both A and B are
posinormal. ¤
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Recall the following standard definitions. A Hilbert space operator T is hypo-
normal if TT ∗ ≤ T ∗T or, equivalently, if (λI − T )(λI − T ∗) ≤ (λI − T ∗)(λI − T )
for every scalar λ in C. It is M -hyponormal if there exists a constant M ≥ 0
such that (λI − T )(λI − T ∗) ≤ M(λI − T ∗)(λI − T ) for every λ in C (actually,
hyponormal means 1-hyponormal), and dominant if for each λ in C there exists
an Mλ ≥ 0 such that (λI − T )(λI − T ∗) ≤ Mλ(λI − T ∗)(λI − T ). Thus, as we
saw in the proof of Theorem 4, an operator T is dominant if and only if (λI − T )
is posinormal for every λ in C. These classes are related by proper inclusions:

Hyponormal ⊂ M -Hyponormal ⊂ Dominant ⊂ Posinormal.

Hyponormality is preserved by tensor products (as commented in Section 1) and
so does posinormality (Theorem 4) but the classes in between are defined in terms
of translations, and translation is not a property that can be separated when
taking tensor products. Moreover, these classes are not closed under ordinary
products, which prevent an application of Theorem 1. The next result gives a
sufficient condition for preserving dominance by tensor products – recall that if
A and B are dominant, then they are posinormal.

Corollary 2. Suppose A ∈ B[H] and B ∈ B[K] are posinormal. If one of

them is quasinilpotent, then the tensor product A⊗̂B is dominant.

Proof. Recall that an operator has a one-point spectrum if its spectrum
is a singleton (i.e., has exactly one element). In particular, a quasinilpotent is a
one-point spectrum operator whose spectrum is {0} (i.e., an operator with zero
spectral radius). Take an arbitrary Hilbert space operator T . If it is a one-point
spectrum, say σ(T ) = {ν}, then T ′ = νI − T is quasinilpotent (by the Spectral
Mapping Theorem). Thus every nonzero complex number lies in the resolvent set
of T ′ so that λI − T ′ is invertible for every λ 6= 0 in C. Since invertible operators
are posinormal [12] (see also [10]), it follows that λI−T ′ is posinormal for every λ

in C whenever T ′ is itself posinormal, which means that T ′ is dominant. But it is
clear by the very definition of a dominant operator that if T ′ = νI−T is dominant,
then so is T = νI − T ′. Outcome: if a one-point spectrum T with σ(T ) = {ν} is
such that νI − T is posinormal, then T is dominant. In particular, a posinormal
quasinilpotent operator is dominant. Now suppose A and B are posinormal so
that A⊗̂B is posinormal by Theorem 4. If one of A or B is quasinilpotent,
then so is the tensor product A⊗̂B since r(A⊗̂B) = r(A)r(B). Thus A⊗̂B is a
posinormal quasinilpotent, thus dominant. ¤
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[14] T. Saitô, Hyponormal operators and related topics, Lectures on Operator Algebras, New
Orleans, 1970–1971, Lecture Notes in Math., Vol. 247, Springer, Berlin, 1972, 533–664.

[15] J. Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc.
124 (1996), 135–140.
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