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A stability property of the octahedron and the icosahedron

By KÁROLY BÖRÖCZKY (Budapest) and KÁROLY J. BÖRÖCZKY (Budapest)

Abstract. According to a recent result, for r =
√

3 or r =
p

15 − 6
√

5, the convex

body of minimal volume or of minimal surface area in E
3 that contains a unit ball, and

the extreme points are of distance at least r from the centre of the unit ball is the

regular octahedron and icosahedron, respectively. In this paper we prove corresponding

stability results.

1. Notation and known results

We write B3 to denote the unit Euclidean ball centred at the origin o in E
3,

and S2 to denote the boundary of B3. As usual a convex body C in E
3 is a

compact convex set with non-empty interior, and V (C) and S(C) denotes its

volume and surface area, respectively. The two-dimensional Hausdorff measure

of a measurable subset C of the boundary of some convex body in E
3 is called

the area A(C) of C.

Answering a conjecture of J. Molnár [11], K. Böröczky and K. Böröcz-

ky, Jr. [2] proved the following (see [2] for the history of the problem, and for

related results and conjectures).

Theorem 1.1 (K. Böröczky, K. Böröczky, Jr.). Given r =
√

3 or

r =
√

15 − 6
√

5, let Mr be the octahedron, or the icosahedron, respectively,

circumscribed around B3. If P is any polytope in E
3 containing B3, and each

vertex of P is of distance at least r from o then V (P ) ≥ V (Mr) and S(P ) ≥

Mathematics Subject Classification: 52A40.
The first author was supported by OTKA grants T043556 and 033752.

The second author was supported by OTKA grant 049301, and the EU Marie Curie TOK project

DiscConvGeo.
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S(Mr). Moreover equality holds in either inequalities if and only if P is congruent

to Mr, and its circumcentre is o.

In this paper our goal is to provide a stability version of Theorem 1.1. To

define the corresponding class of convex bodies in E
3, we recall that x is an

extreme point of a convex body C if it does not lie in the relative interior of any

segment contained in C. Actually the extreme points form the minimal subset

of C whose convex hull is C.

Definition. Given r > 1, we write Fr to denote the family of convex bodies in

E
3, which contain B3, and whose extreme points are of distance at least r from o.

Moreover let Pr ∈ Fr have minimal volume, and let Qr ∈ Fr have minimal surface

area.

The minima do exist according to the Blaschke Selection Theorem, and all

extreme points of Pr and Qr lie on rS2 by the monotonicity of the volume and

surface area. Theorem 1.1 states that if r =
√

3 or r =
√

15 − 6
√

5 then Pr is an

octahedron, or an icosahedron, respectively, circumscribed around B3. Moreover

the analogous statement holds for Qr.

To state a stability version of Theorem 1.1, we say that the compact convex

sets M and N are ε-close for ε > 0 if there exist congruent copies M ′ and N ′ of

M and N , respectively, satisfying

1

1 + ε
N ′ ⊂M ′ ⊂ (1 + ε)N ′.

Naturally in this case the dimensions of M and N coincide.

Theorem 1.2. Given r =
√

3 or r =
√

15 − 6
√

5, if M ∈ Fr satisfies

V (M) = (1 + ε)V (Pr) for small ε then M is c
√
ε-close to some octahedron or to

some icosahedron, respectively, where c is a positive absolute constant. Moreover

the analogous statement holds for Qr.

The order of the error term c
√
ε is optimal in Theorem 1.2 (see Example 5.1).

Actually the statement concerning the surface area yields the statement concern-

ing the volume in Theorem 1.2.

We note that if r is close to 1 then it seems to be out of reach to determine Pr

or Qr. However K. Böröczky, K.J. Böröczky and G. Wintsche [3] prove

that in this case most part of the boundaries of Pr and of Qr are the union of

triangles that are almost regular.

The paper is structured in the following way: Section 2 discusses polytopal

approximation from our point of view, and Section 3 introduces orthoschemes.
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Section 4 proves that if the contribution of a face is close to be optimal then the

face is close to be a suitable regular triangle. This section relies heavily on results

and methods in K. Böröczky and K. Böröczky, Jr. [2]. Finally the proof of

Theorem 1.2 is presented in Section 5.

2. Hausdorff distance and polytopal approximation

Let us introduce the notation used throughout the paper. For any notions

related to convexity in this paper, consult R. Schneider [14]. We write 〈·, ·〉 to

denote the scalar product in E
3, and ‖ · ‖ to denote the corresponding Euclidean

norm. In addition for non-collinear points u, v, w, the angle of the half lines vu

and vw is denoted by ∠uvw. Given a set X ⊂ E
3, the affine hull and the convex

hull of X are denoted by aff X and convX , respectively, moreover the interior of

X is denoted by intX . If X is compact convex then we write ∂X to denote the

relative boundary of X with respect to affX .

In many instances we will approximate convex bodies by polytopes (see the

papers P. M. Gruber [7], [8], [9] and [10] for general surveys). A natural measure

of closeness between convex bodies is the so-called Hausdorff distance. For a

x ∈ E
3 and a compact X ⊂ E

3, we write d(x,X) to denote the minimal distance

between x and the points of X . If K and C are compact convex sets in E
3 then

their Hausdorff distance is

δH(K,C) = max
{

max
x∈K

d(x,C),max
y∈C

d(y,K)
}
.

Naturally the maximum of d(x,C) among x ∈ K is attained at some extreme

point of K, and conversely. The Hausdorff distance is a metric, and we always

consider the space of compact convex sets endowed with this metric. In partic-

ular we say that a sequence {Km} of compact convex sets tends to a compact

convex set C if limm→∞ δH(Km, C) = 0. Actually the topology induced by the

Hausdorff distance on the space of convex bodies coincides with the topology in-

duced by ε-closeness. For the main properties of the Hausdorff distance, consult

R. Schneider [14]. For example, the volume and surface area are continuous

functions of convex bodies. More precisely, if K and C are convex bodies that

contain B3 then

(1 − δH(K,C))3V (K) < V (C) < (1 + δH(K,C))3V (K); (1)

(1 − δH(K,C))2S(K) < S(C) < (1 + δH(K,C))2S(K). (2)
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According to the Blaschke Selection Theorem, if {Km} is a sequence of compact

convex sets that are contained in a fixed ball then {Km} has a subsequence {Km′}
that tends to some compact convex set C. For r > 1, we write F̃r to denote the

family of convex bodies that contain B3 and whose extreme points lie on rS2.

Lemma 2.1. Given r ∈ (1,
√

3 ], if k ≥ 576
r−1 and C ∈ F̃r then there exists a

polytope M ∈ F̃r that has at most k vertices, and satisfies

δH(M,C) <
36

√
r − 1√
k

.

Proof. Let m = ⌊
√
k/6⌋, hence m ≥

√
k

2
√

6
. Consider the edge to edge tiling

of each face of cube [−r, r]3 by m2 congruent squares, and let S′ denote the

family of centres of the all together 6m2 ≤ k squares. For each boundary point

x of [−r, r]3, we have a y ∈ S′ with ‖x − y‖ ≤
√

2r
m

≤
√

6
m

≤ 12√
k
. We write S

to denote the radial projection of S′ into rS2. Since radial projection from the

complement of int rB3 onto rS2 decreases distance, for any x ∈ rS2, there exists

a y ∈ S with ‖x− y‖ ≤ 12√
k
. In addition S has at most k points.

We define M to be the convex hull of those y ∈ S whose distance from some

extreme point of C is at most 24√
k
. First we show that M contains B3; or in other

words, for any z ∈ S2, there exists y ∈M with 〈y, z〉 ≥ 1. Since B3 ⊂ C, we have

an extreme point x of C with 〈x, z〉 ≥ 1. Let x′ ∈ rS2 such that ‖x− x′‖ = 12√
k
,

and either rz is contained in the shorter great circle arc on rS2 connecting x

and x′ (if ‖rz − x‖ ≤ 12√
k
), or x′ is contained in the shorter great circle arc on

rS2 connecting x and rz (if ‖rz − x‖ ≥ 12√
k
). Finally let y be a point of S with

‖y − x′‖ ≤ 12√
k
, hence y ∈ M , and it is easy to see that ‖y − rz‖ ≤ 24√

k
. Since

24√
k
≤

√
r2 − 1, we deduce 〈y, z〉 ≥ 1, as it is required.

Next we estimate the Hausdorff distance betweenM and C. If x is an extreme

point of C then its distance from some vertex y of M is at most 24√
k
, hence

d(x,M) ≤ d(x, conv{y,B3}) ≤ 24√
k
·
√
r2 − 1

r
<

36√
k
·
√
r − 1.

The analogous argument for d(y, C) where y is any vertex of M completes the

proof of Lemma 2.1. �

3. Orthoschemes and the density of the surface area

Let us note that if M ∈ Fr then S(B3)
S(M) is maximal for M = Qr. This

observation suggests the following definition: We write pS2(·) to denote the radial
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projection onto S2. If F is a convex domain in E
3 whose affine hull avoids intB3

then we define the density of the surface area to be

d(F ) =
A(pS2(F ))

A(F )
.

If in addition F ⊂
√

3B3 then d(F ) satisfies

(
√

3)−3 < d(F ) < 1.

Next we say that a tetrahedron S = conv{o, v1, v2, v3} is an orthoscheme

if v1 is orthogonal to aff{v1, v2, v3}, and v3 − v2 is orthogonal to aff{o, v1, v2}.
Naturally the order of vertices is important. If ̺i = ‖vi‖ for i = 1, 2, 3 then we

call S a (̺1, ̺2, ̺3)-orthoscheme. K. Bezdek [1] proved the following result:

Lemma 3.1 (Bezdek). For i = 1, 2, let Si = conv{o, vi1, vi2, vi3} be an

orthoscheme in E
3, and let Ri = conv{vi1, vi2, vi3}. If 1 ≤ ‖v1j‖ ≤ ‖v2j‖ for

j = 1, 2, 3 then

d(R1) ≥ d(R2),

with equality if and only if S1 and S2 are congruent.

4. The stability around the optimal face

K. Böröczky, K. Böröczky, Jr. [2] proved that the regular triangles

touching B3 maximize the density of the surface area among the faces of polytopes

in F̃r.

Lemma 4.1 ([2], Corollary 4.8). Given r ∈ (1,
√

3], if F is any polygon

whose vertices lie on rS2 and aff F avoids intB3 then

d(F ) ≤
8 arctan

√
3(r−1)
3+r√

3(r2 − 1)
,

with equality if and only if F is a regular triangle touching B3.

To prove Theorem 1.2, we will verify Corollary 4.11, which is a stability

version of Lemma 4.1. But first we verify a stability version of Lemma 4.1 in the

special case when F is a triangle and aff F touches B3.

Since we are interested in the order of the error in Theorem 1.2, we only

calculate the constants involved when it does not make the argument more com-

plicated. Usually we also do not calculate how small exactly the positive ε should

be chosen to make the estimates below work.
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Lemma 4.2. There exist positive absolute constants c1 and c2 with the

following properties. Given r ∈ (1,
√

3], let D be a circular disc of radius
√
r2 − 1

that touches B3 in the centre of D. If T is any triangle whose vertices lie on ∂D,

and

d(T ) > [1 − ε (r − 1)] ·
8 arctan

√
3(r−1)
3+r√

3(r2 − 1)

for ε ≤ c1, then T is c2
√
ε-close to the regular triangle of circumradius

√
r2 − 1.

The whole section is dedicated to the proof of Lemma 4.2 and Corollary 4.11.

During the proof of Lemma 4.2, T always denotes some triangle whose vertices lie

in ∂D. Moreover the sides of T and their lengths are denoted by a, b, c, and the

distances of the midpoints of a, b and c from o are denoted by ma, mb and mc,

respectively. We plan to compare T to the regular triangle T∗ inscribed into D.

We write a∗ to denote the common length of the sides of T∗, and m∗ to denote

the common distance of the midpoints of the sides of T∗ from o.

In the course of the argument, we will consider T as part of a certain family

T (s) of triangles inscribed into D where the vertices of T (s) are differentiable

functions of the real parameter s. In all cases, s will be the length of a side of

T (s). Our main tool is to investigate the density of the variation; namely,

v(T (s)) =
d

d s
A(pS2(T (s)))
d

d s
A(T (s))

.

It is easy to see that reparametrization does not change the density of variation.

When it is clear from the context what the family T (s) is then we drop the

reference to s. Let us explain the role of v(T (s)): If A(T (s)) is a strictly monotone

function of s on an interval [s1, s2] then the Cauchy Mean Value theorem provides

s ∈ (s1, s2) satisfying

d(T (s2)) − d(T (s1)) = [v(T (s)) − d(T (s2))] ·
A(T (s2)) −A(T (s1))

A(T (s1))
; (3)

= [v(T (s)) − d(T (s1))] ·
A(T (s2)) −A(T (s1))

A(T (s2))
. (4)

Fortunately the density of variation satisfies the simple formulae in Proposi-

tions 4.3 and 4.4.

The proof of Lemma 4.2 is prepared by Propositions 4.3 to 4.9. Actu-

ally Propositions 4.3, 4.4 and 4.5 were proved in K. Böröczky, K. Böröcz-

ky, Jr. [2].
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Proposition 4.3 ([2], Proposition 4.3). If a < b, and T is deformed in a way

that the side c is kept fixed and a is increased then A(T ) is strictly increasing,

and

v(T ) =
r

m2
am

2
b

.

Proposition 4.4 ([2], Proposition 4.4). Let b = c, and and let T be deformed

in a way that T stays isosceles, and the side a is increased. If a < a∗ then A(T )

is strictly increasing, and if a > a∗ then A(T ) is strictly decreasing. Moreover

v(T ) =
r

m2
am

2
b

.

Proposition 4.5 ([2], Proposition 4.5). Assuming that b = c and T has no

obtuse angle, let us parametrize T as T (a) where 0 < a ≤ 2
√
r2 − 1. Then

(i) d(T (a∗)) = d(T∗) =
8 arctan

√
3(r−1)
3+r√

3(r2 − 1)
;

(ii) lim
a→0

d(T (a)) = lim
a→0

v(T (a)) =
1

r
;

(iii) v(T
(
2
√
r2 − 1 )

)
=

2r

1 + r2
.

We note that Proposition 4.5 (iii) corresponds to the case when the angle

of T opposite to a is a right angle. Let us introduce some further notation that

will be used through the proof of Lemma 4.2. We define

a∗∗ = 2
√
r2 − 1

√
5

7
< a∗ − 0.01

√
r − 1;

m∗∗ =

√
5 + 2r2

7
> m∗; (5)

and compare the quantities in Proposition 4.5:

Proposition 4.6.

1

r
+

1

28
(r − 1) < d(T∗) <

r

m4
∗∗

− 1

9
(r − 1);

r

m4
∗∗
<

r

m4
∗
<

2r

1 + r2
.

Proof. Since arctan t > t− 1
3 t

3 and 1 ≤ r ≤
√

3, we obtain
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d(T∗) −
1

r
>

8√
3(r2 − 1)

·
[√

3(r − 1)

3 + r
− 1

3

(√
3(r − 1)

3 + r

)3 ]
− 1

r

=
(27 − 10r − r2) · (r − 1)

r(r + 3)3
>
r − 1

28
.

Next arctan t < t and 1 ≤ r ≤
√

3 yield

r

m4
∗∗

− d(T∗) >
49r

(5 + 2r2)2
− 8

(3 + r)(1 + r)

=
(−32r3 + 17r2 + 53r + 200) · (r − 1)

(5 + 2r2)2(3 + r)(1 + r)
>
r − 1

9
.

Finally the second set of inequalities follow as m∗∗ > m∗, and as m∗ =√
r2 + 3/3 yields r

m4
∗

< 2r
1+r2 . �

Next let S∗∗ = conv{o, w1, w2, w3} be an (1,m∗∗, r)-orthoscheme, and let R∗∗
be the face opposite to o. In particular, the side w2w3 of R∗∗ is of length a∗∗/2.

Proposition 4.7. There exists a positive absolute constant c with the fol-

lowing property. If r ∈ (1,
√

3] then

d(R∗∗) < d(T∗) − c(r − 1).

Proof. During the argument, γ1, γ2, . . . denote suitable positive absolute

constants.

We choose w′
2 in a way that S∗ = conv{o, w1, w

′
2, w3} is an (1,m∗, r)-ortho-

scheme, and w2 and w′
2 lie on the same side of aff{o, w1, w3}. Writing R∗ to

denote the face of S∗ opposite to o, we have

d(R∗) = d(T∗).

We write p to denote the intersection point of the segments w1w2 and w′
2w3,

and q to denote the midpoint of the segmentw′
2p. Further, letR′=conv{w1, w

′
2, q},

R′′ = conv{w1, q, p} and R = conv{w1, p, w3}. Our first goal is to prove

d(R) < d(R∗) − γ1(r − 1). (6)

Since A(R′) > γ2A(R∗), it is sufficient to verify

d(R′′) ≤ d(R) and (7)
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d(R′) ≤ d(R) − γ3(r − 1). (8)

We parametrize the side w′
2w3 of R∗ as u(ω) where ω is the angle ∠w′

2w1u(ω)

and 0 ≤ ω ≤ π
3 . Moreover we define ϕ(ω) = ∠u(ω)ow1, thus ϕ(ω) is an increasing

function of ω, and ‖u(ω) − v1‖ = tanϕ(ω). Let ω′ and ω′′ be the parameters

satisfying q = u(ω′) and p = u(ω′′), respectively, hence (5) yields

ω′ > γ4, and ϕ(ω′) > γ4

√
r − 1, and ϕ(ω′′) − ϕ(ω′) > γ4

√
r − 1. (9)

Rotating some plane about the line aff{o, w1} and using ‖u(ω)−w1‖ = tanϕ(ω)

lead to

A(R′) =

∫ ω′

0

1

2
tan2 ϕ(ω) dω and A(pS2(R′)) =

∫ ω′

0

(1 − cosϕ(ω)) dω.

In addition, we obtain the analogous formulae for R′′ and R by integrating on

the intervals [ω′, ω′′] and [ω′′, π
3 ], respectively. Now we define

g(ϕ) =
1 − cosϕ
1
2 tan2 ϕ

=
2 cos2 ϕ

1 + cosϕ
.

For 0 ≤ ϕ < ψ ≤ π
3 , we have

g(ϕ) − g(ψ) = 4 sin
ψ − φ

2
sin

ψ + φ

2
· cosϕ+ cosψ + cosϕ cosψ

(1 + cosϕ)(1 + cosψ)
> 0.

Since g(ϕ(ω)) is increasing, we deduce (7) as

d(R′′) < g(ϕ(ω′′)) < d(R).

Moreover (9) yields that g(ω′′) − g(ω′) > γ5(r − 1), which in turn yields (8).

Therefore we conclude (6).

Next we prove d(R∗∗) ≤ d(R). We write Φ to denote the linear transforma-

tion satisfying

Φw1 = w1, and Φw2 = w′
2 and Φw3 = w3,

and define E = ΦB3. Since 〈Φwi,Φwj〉 ≤ 〈wi, wj〉 for any 1 ≤ i, j ≤ 3, we deduce

that E ∩ S∗ ⊂ B3 ∩ S∗. Therefore

d(R∗∗) =
V (B3 ∩ S∗∗)

V (S∗∗)
=
V (E ∩ S∗)

V (S∗)
≤ V (B3 ∩ S∗)

V (S∗)
= d(R).

In turn we conclude Proposition 4.7. �
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We write T∗∗ to denote the triangle inscribed into D that has two equal sides,

and whose third (shortest) side is a∗∗. In addition we define

Ξ∗∗ =
1

2

(
d(T∗) + max

{
1

r
, d(T∗∗)

})
< d(T∗)

(compare Lemma 4.1 and Proposition 4.6).

Proposition 4.8. Let us assume that b = c and T has no obtuse angle.

(i) If a ≥ a∗∗ then
r

m2
am

2
b

> d(T∗) +
1

9
(r − 1).

(ii) There exists positive a00 < a∗∗ with the following property:

if a < a00 then
r

m2
am

2
b

< Ξ∗∗;

if a > a00 then
r

m2
am

2
b

> Ξ∗∗.

Proof. Let 2ω be the angle of T opposite to a, and let s = sin2 ω. In

particular s ∈ (0, 1
2 ] where s = 1

2 and s = 1
4 correspond to the cases when T has

a right angle or is regular, respectively, and if s tends to zero then T approaches

a diameter of D. Writing Ω = r2 − 1, we have

m2
am

2
b = f(s) for f(s) =

[
1 + Ω(1 − 2s)2

]
· (1 + Ωs).

We deduce by Proposition 4.6 that

r

f(0)
< Ξ∗∗ < d(T∗) and

r

f(1
2 )
>

r

f(1
4 )
> d(T∗). (10)

Let us observe that

f ′(s) = 12Ω2s2 + 8(Ω − Ω2)s+ Ω2 − 3Ω, (11)

hence 0 < Ω ≤ 2 implies that f ′(0) < 0 and f ′(1
2 ) = Ω > 0. Since f ′ is

quadratic in s with positive main coefficient, we deduce that f is first decreasing

then increasing on [0, 1
2 ]. It follows that r

m2
a
m2

b

= r
f(s) is first an increasing, and

afterwards a decreasing function of s, and hence of a. We define a00 to be the

smallest positive a such that for the corresponding s00, we have r
f(s00) = Ξ∗∗

(compare (10)). In particular (10) and 2r
1+r2 >

r
m4

∗∗

> d(T∗) + 1
9 (r − 1) complete

the proof of Proposition 4.8. �
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In order to apply (3) and (4) for stability statements, we need estimates on

the variation of the area of a triangle.

Proposition 4.9. There exist positive absolute constants c̃1 and c̃2 with the

following properties. Let T be not ε1-close but ε2-close to T∗ for ε2 > ε1 > 0.

(i) If ε1 < 0.05 then

A(T ) < (1 − c̃1ε
2
1)A(T∗);

(ii) if ε2 < 0.05 then

A(T ) > (1 − c̃2ε
2
2)A(T∗).

Proof. If T has an angle that is at most π
4 or at least 5π

12 then T has an angle

that is at least 3π
8 , hence has a side whose length is at least

sin 3π

8

sin π

3

a∗ > 1.06a∗.

Moreover A(T ) ≤ sin 3π

4
+2 sin 5π

8

3 sin 2π

3

A(T∗) < 0.99A(T∗) in this case. Therefore we

may assume that all angles of T are between π
4 and 5π

12 .

Let θ1, θ2 and θ3 be the angles enclosed by the radii that connect the centre

of D to the vertices of T . We have θ1 + θ2 + θ3 = 2π, π
2 ≤ θi ≤ 5π

6 for i = 1, 2, 3,

and

A(T ) =
sin θ1 + sin θ2 + sin θ3

3 sin 2π
3

·A(T∗).

We note that if π
2 ≤ θ ≤ 5π

6 then

sin
2π

3
−1

2

(
θ− 2π

3

)
−1

2

(
θ− 2π

3

)2

< sin θ < sin
2π

3
−1

2

(
θ − 2π

3

)
−1

4

(
θ − 2π

3

)2

according to the Taylor formula. Since one θi satisfies |θi − 2π
3 | ≥ γ1ε1 in the case

of (i), and all θi satisfy |θi − 2π
3 | ≤ γ2ε2 in the case of (ii) where γ1 and γ2 are

positive absolute constants, we conclude Proposition 4.9. �

To prove Lemma 4.2, we verify the following statement: If T is not ε-close

to T∗ for positive ε < c′1 then

d(T ) < d(T∗) − c′2(r − 1) · ε2 (12)

where c′1 and c′2 are positive absolute constants. It is easy to see that (12) yields

Lemma 4.2.

We divide the proof of (12) into the four cases Cases 1–4 below. During the

argument in Cases 1–4, we always assume that T is not ε-close to T∗ for positive

ε < c′1 and for a suitable positive absolute constant c′1. In addition γ1, γ2, . . .

denote suitable positive absolute constants, and a, b and c denote the sides of T .
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Case 1 The angle of T opposite to a is obtuse, and c ≤ b ≤ a∗∗.

We write q to denote the centre of D. Moreover let Ta, Tb and Tc denote the

convex hulls of q on the one hand, and a, b and c, respectively, on the other hand.

We observe that conv{o, Ta}, conv{o, Tb} and conv{o, Tc} can be dissected into

two (1,ma, r)-orthoschemes, (1,mb, r)-orthoschemes and (1,mc, r)-orthoschemes,

respectively. Now Lemma 3.1 and the inequalities mb,mc ≥ m∗∗ imply that

d(Tb), d(Tc) ≤ d(R∗∗). Since ma < mb,mc, it follows by Lemma 3.1 that d(Ta) >

d(Tb), d(Tc). Now T is the difference of Tb∪Tc and Ta, thus Proposition 4.7 yields

d(T ) < max{d(Tb), d(Tc)} ≤ d(R∗∗) ≤ d(T∗) − γ1(r − 1).

Since a∗∗ >
√

2
√
r2 − 1, Case 1 covers all isosceles triangles with an obtuse angle.

Case 2 b = c, and the angle of T opposite to a is at most π
2 .

We may parametrize T by a as the family T (a), 0 < a ≤ 2
√
r2 − 1. If a > a∗

then applying (4) to [a∗, a], and using Proposition 4.8 (i) and Proposition 4.9

yield (12).

If a∗∗ ≤ a < a∗ then applying (3) to [a, a∗], and using again Proposition 4.8

(i) and Proposition 4.9 imply (12). In particular d(T∗∗) = d(T (a∗∗)) < d(T∗) −
γ1(r − 1) by (5), hence Proposition 4.6 yields

Ξ∗∗ < d(T∗) − γ2(r − 1). (13)

For a < a∗∗, we prove d(T ) ≤ Ξ∗∗. If a00 ≤ a < a∗∗ then we apply (3) to [a, a∗∗],

and use Proposition 4.8 (ii). If a < a00 then we choose a1 ∈ (0, a) satisfying

d(T (a1)) < Ξ∗∗. Therefore applying (3) to [a1, a] yields the existence of some

s ∈ (a1, a) satisfying

d(T (a)) =
A(T (a1))

A(T (a))
· d(T (a1)) +

(
1 − A(T (a1))

A(T (a))

)
· v(T (s)).

Since v(T (a)) < Ξ∗∗ according to Proposition 4.8 (ii), we deduce d(T ) ≤ Ξ∗∗, and

in turn (12) by(13).

Case 3 b > a ≥ a∗∗.

Let c̃1 and c̃2 be the positive absolute constants in Proposition 4.9, and let

γ =
√

c̃1

2c̃2

< 1. We may assume that ε < 0.05.

We fix c, and deform T = T (a) in a way that a increases until T becomes

isosceles at a = a2. Since mb < ma ≤ m∗∗ and d(T (a2)) ≤ d(T∗), we deduce by

Proposition 4.6 and (3) that

d(T (a2)) − d(T (a)) ≥ r − 1

9
· A(T (a2)) −A(T )

A(T )
. (14)
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If T (a2) is not γε-close to T∗ then Case 2 verifies (12). If T (a2) is γε-close

to T∗ then Proposition 4.9 yields that A(T (a2))−A(T ) ≥ 1
2 c1ε

2A(T∗), hence we

conclude (12) by (14).

Case 4 c ≤ b ≤ a and c ≤ a∗∗.

It is sufficient to prove that

d(T ) ≤ d(T∗) − γ3(r − 1). (15)

If the angle of T opposite to a is obtuse then (15) holds by Case 3 if b ≥ a∗∗, and

by Case 1 if b ≤ a∗∗.

Therefore we assume that the angle of T opposite to a is at most π
2 . In this

case a > a∗ > a∗∗, and we claim that

r

m2
am

2
b

> d(T∗). (16)

If b′ is the common side of the isosceles triangle inscribed into D whose one side is

a, and the angle opposite to a is at most π
2 then mb ≤ mb′ , hence Proposition 4.8

(i) yields (16).

Now we fix c, and deform T = T (b) in a way that b increases until b = a at

some b = b0, hence A(T (b)) strictly increases. Since v(T (b)) > d(T∗) for any b

according to (16), and d(T (b0)) < d(T ∗) according to Case 2, we conclude by (3)

that d(T ) ≤ d(T (b0)). Therefore (15) follows by Case 2 and by (5), completing

the proof of (12) in Case 4.

The arguments in Cases 1–4 prove (12) because T has two sides whose lengths

are either both at least a∗∗, or both at most a∗∗. In turn we conclude Lemma 4.2.

�

Reversing the analysis of Cases 2 and 3 above shows that Lemma 4.2 is

essentially optimal:

Remark 4.10. There exist positive absolute constants c1 and c2 with the

following properties. Given 1 < r ≤
√

3, if T is a triangle whose vertices lie on

rS2, whose affine hull touches B3, and that is ε-close to the regular triangle of

circumradius
√
r2 − 1 for positive ε < c1 then

d(T ) ≥ [1 − c2ε
2 · (r − 1)] ·

8 arctan
√

3(r−1)
3+r√

3(r2 − 1)
.

Corollary 4.11. There exist positive absolute constants c1, c2 and c3 with

the following properties. Given 1 < r ≤
√

3, let F be a polygon with extF ⊂ rS2
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such that aff F avoids intB3. If

d(F ) > [1 − ε (r − 1)] ·
8 arctan

√
3(r−1)
3+r√

3(r2 − 1)
(17)

for positive ε < c1 then F is c2
√
ε-close to the regular triangle of circumradius√

r2 − 1, and aff F is of distance at most c3ε(r − 1) from B3.

Proof. During the argument, γ1, γ2, . . . denote suitable positive absolute

constants.

First we provide the stability version (19) of Lemma 3.1 about orthoschemes

in a special case. For 1 ≤ ̺ < r ≤
√

3, we write T∗(r, ̺) to denote a regular

triangle that touches ̺B3 in its centroid, and whose vertices lie on rS2. In

particular T∗(r, 1) is the extremal triangle of Lemmas 4.1 and 4.2, and

d(T∗(r, ̺)) =
d(T∗(

r
̺
, 1))

̺2
=

8 arctan
√

3(r−̺)
3̺+r√

3(r2 − ̺2)
(18)

(compare Proposition 4.5 (i)). We observe that

∂

∂̺
d(T∗(r, ̺)) =

−32(6̺2 + 3̺r + r2)

(r + ̺)2
< −80

3
.

Therefore if 1 ≤ ̺ ≤ 1
2 (r + 1) then

d(T∗(r, ̺)) ≤ [1 − γ1(̺− 1)] · d(T∗(r, 1)). (19)

Now we prove Corollary 4.11 in the case when the polygon F is a triangle T .

Let ̺ be the distance of aff T from B3. If T ′ = 1
̺
T then d(T ) = d(T ′)

̺2 , hence

d(T ) ≤ d(T∗(r, ̺)) according to Lemma 4.1. Since d(T∗(r, ̺)) is a decreasing

function of ̺ (see Lemma 3.1), (19 yields that ̺ ≤ 1 + γ2ε(r − 1), and

d(T ′) ≥ [1 − ε · (r − 1)] · d
(
T∗

(
r

̺
, 1

))
≥
[
1 − γ3ε ·

(
r

̺
− 1

)]
· d
(
T∗

(
r

̺
, 1

))
.

As T∗(r, ̺) is γ4ε-close to T∗(r, 1), we conclude Corollary 4.11 for F = T by

Lemma 4.2.

Finally we assume that the polygon F in Corollary 4.11 has at least four

sides. Let D be the section of rB3 by aff F . We triangulate F into the triangles

T1, . . . , Tk, k ≥ 2, such that any vertex of some Ti is a vertex of F . In particular

d(F ) =
1

A(F )

k∑

i=1

A(Ti) · d(Ti).
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We observe that if some Ti does not contain the centre of D in its relative interior

then Ti is not γ5-close to T∗(r, 1). Therefore (17) and the case of triangles in

Corollary 4.11 yield that one Ti, say T1, contains the centre of D in its relative

interior. It also follows that T1 is γ6
√
ε-close to T∗(r, 1), and the total area of

T2, . . . , Tk is at most γ6ε. In particular any point of F is of distance at most

γ7ε
√
r − 1 from T1, hence we conclude Corollary 4.11. �

Remark 4.10 and the argument for Corollary 4.11 yield the following converse

of Corollary 4.11:

Remark 4.12. There exist positive absolute constants c1, c2 and c3 with the

following properties. Given 1 < r ≤
√

3, if T is a triangle whose vertices lie on

rS2, whose affine hull avoids intB3, and that is ε-close to the regular triangle of

circumradius
√
r2 − 1 for positive ε < c1 then

d(T ) ≥ [1 − c2ε · (r − 1)] ·
8 arctan

√
3(r−1)
3+r√

3(r2 − 1)
, (20)

and the distance of aff T from B3 is at most c3ε(r − 1).

5. Proof of Theorem 1.2

First we consider the case of the surface area, and the optimality of the

octahedron; namely, let

r =
√

3.

We write O3 to denote the regular octahedron circumscribed around the unit

ball, and T∗ to denote one of its faces. In particular A(pS2(T∗)) = 1
8A(S2), and

S(O3) = A(S2)
d(T∗) . Now we choose a positive absolute constant γ such that if T is

any triangle that avoids intB3, is γ-close to T∗, and whose vertices lie on rS2

then

A(pS2(T )) ≥ 1

8.5
A(S2). (21)

During the argument, γ1, γ2, . . . denote further positive absolute constants.

The heart of the proof is the following claim: Let N be a convex body

containing B3 such that all extreme points of N lie on rS2, and

S(N) < (1 + ε) ·
√

3(r2 − 1)

8 arctan
√

3(r−1)
3+r

· A(S2) = (1 + ε) · A(S2)

d(T∗)
. (22)
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Then N has eight two-dimensional faces F1, . . . , F8 such that aff F1, . . . , aff F8

bound a polytope N ′ that satisfies

(1 − γ1

√
ε)O3 ⊂ N ⊂ N ′ ⊂ (1 + γ1

√
ε)O3 (23)

possibly after rotating O3.

To prove (23), we may assume that N is a polytope according to Lemma 2.1.

Writing F1, . . . , Fk to denote the faces of N , we have

S(N) =

k∑

i=1

A(pS2(Fi))

d(Fi)
.

Since d(Fi) ≤ d(T∗) holds for any face Fi according to Lemma 4.1, we deduce that

the total area of the faces of N that are not γ-close to T∗ is at most γ2ε by (22)

and Lemma 4.2. Therefore (21) yields that if ε is small then N has exactly eight

faces that are γ-close to T∗, say F1, . . . , F8. It also follows that each of F1, . . . , F8

is actually γ3
√
ε-close to T∗ by Corollary 4.11, and any spherical circular disc of

radius γ4
√
ε intersects one of pS2(F1), . . . , pS2(F8).

We observe that if x ∈ Fi, and ui ∈ S2 is the exterior unit normal to Fi

for i = 1, . . . , 8 then ‖x‖/〈 x
‖x‖ , ui〉 ≤ 3. Thus writing F̃i to denote the 4γ4

√
ε

neighbourhood of Fi in aff Fi, the projections pS2(F̃i) cover S2 for i = 1, . . . , 8.

Therefore aff F1, . . . , aff F8 bound a polytope N ′, and the face F ′
i of N ′ containing

Fi is γ5
√
ε-close to T∗ for i = 1, . . . , 8.

Next let q1, . . . , q8 ∈ S2 be the points where the faces of O3 touch B3 where

q1 and q2 belong to faces with common edge. It follows that if F ′
i shares a common

edge with F ′
j and F ′

k for i, j, k ≤ 8 then

(1 − γ6

√
ε) · ∠q1oq2 ≤ ∠uiouj ≤ (1 + γ6

√
ε) · ∠q1oq2,

and the angle of the spherical arcs ujui and ukui is between 2π
3 + γ7

√
ε and

2π
3 − γ7

√
ε. Thus we may rotate O3 in a way that the distance of qi and ui is at

most γ8
√
ε for i = 1, . . . , 8. In turn we conclude (23).

Now let M ∈ Fr satisfy that S(M) ≤ (1+ε)S(O3) for small ε, hence S(N) ≤
(1+ε)S(O3) holds for N = M ∩rB3. Since M ⊂ N ′ for the N ′ in (23), we deduce

Theorem 1.2 when r =
√

3 and the surface area is maximized.

Still keeping r =
√

3, the case of the volume follows from the case of the sur-

face area because S(O3) = 3V (O3) and S(M) ≤ 3V (M) for M ∈ Fr. Finally the

case r =
√

15 − 6
√

5 can be handled analogously to the case r =
√

3, completing

the proof of Theorem 1.2. �
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Example 5.1. Given small positive α, let P ′ be the polyhedron in E
3 with

vertices

(±
√

3 cosα, 0,
√

3 sinα) (0,±
√

3 cosα,−
√

3 sinα) (0, 0,±
√

3).

Then elementary calculations yield that P = (1 + c1α
2)P ′ ∈ F√

3, V (P ) ≤ (1 +

c2α
2)V (O3) and P is not c3α-close to O3 where c1, c2 and c3 are positive absolute

constants.
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