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Maps on M,, preserving Lie products

By GREGOR DOLINAR (Ljubljana)

Abstract. Let M, be the Lie algebra of all n X n complex matrices with the Lie
product [A,B] = AB — BA and let ¢ : M,, — M, satisfy ¢([A, B]) = [#(A), #(B)],
A,B € M,. Then ¢(M,) is a commutative subset of M, or there exist an invertible
matrix T € M, a function ¢ : M, — C satisfying p(C) = 0 for every trace zero
matrix C € M,, and a homomorphism f of the complex field, such that ¢([ai;]) =
T[f(aiy))T~" + @([as;])] for all [aij] € M, or ¢([ai;]) = =T[f(ai)]"T~" + ¢([ai;])I for
all [aij] e M,.

1. Introduction and statement of the result

Let M,, be the space of all n x n complex matrices. There are three standard
products on M,, which induce the structure of an algebra, matrix multiplication,
the Jordan product, and the Lie product [4, B] = AB — BA, A, B € M,,. Maps
which preserve matrix multiplication were characterized by JODEIT and LawM [3],
maps which preserve the Jordan product were studied by MOLNAR [4] and it is
the aim of this paper to characterize the maps, which are multiplicative for the
Lie product, that is ¢([4, B]) = [¢(A), p(B)]. We do not assume that ¢ is either
linear or bijective.

Theorem. Let ¢ : M,, — M, be a map satisfying

¢([A,B]) = [¢(A),¢(B)], A,Be M,. (1)
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Then ¢(M,,) is a commutative subset of M, or there exist an invertible matrix
T € M, a function ¢ : M, — C satisfying ¢(C) = 0 for every trace zero matrix
C € M, and a homomorphism f of the complex field, such that

¢(laij]) = Tf(ai) T + @(lag))I,  [ai] € My,

¢(lai;]) = =T[f (ai; )'T~" + e(lag]) I, ai] € M.

A similar statement has recently been proved by SEMRL [5] under the strong
additional assumption of bijectivity.

When considering homomorphisms of matrix algebras, Jordan algebras, and
Lie algebras we assume that such maps are linear and multiplicative with respect
to the corresponding product. So all mentioned results are non-linear extensions
of classical structural results for homomorphisms of matrix algebras, Jordan al-
gebras, and Lie algebras.

Recently the author also characterized bijective maps preserving Lie products
on upper triangular matrices over an arbitrary field with characteristic zero [1].

2. Proof

We will distinguish the higher dimensional case n > 3 and the case n = 2.
The case n =1 is trivial.

Let n > 3. We begin with some easy observations. First, notice that ¢(0) =
o([A4, A]) = [¢(A), p(A)] = 0. Second, recall that a matrix A € M, has trace zero
if and only if it can be written as A = BC — CB = [B, C] for some B,C € M,
(see for example [2, p. 288, Theorem 4.5.2]). If trA = 0 and A = [B, ], then
o(4) = ¢([B,C]) = [¢(B),#(C)] and therefore tr ¢(A) = 0. So, ¢ maps the set

of trace zero matrices into the set of trace zero matrices. Furthermore,
¢(—A) = ¢(=[B,C]) = ¢([C, B]) = —[¢(B), ¢(C)] = —¢(A) (2)

for every trace zero matrix A.

In order to prove the theorem we will consider the two cases when ¢ maps
all trace zero matrices into zero and when this is not the case.

The first case is trivial. Assume that ¢ maps the set of trace zero matrices
into 0. Then we obtain [¢(A), p(B)] = ¢([A, B]) = 0 for every A, B € M, since
[A, B] is a trace zero matrix which is mapped to 0 by ¢. So, ¢(A) and ¢(B)
commute for every A, B € M, and ¢(M,) is therefore a commutative subset
of M,.
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In the rest of the proof we will assume that there is a matrix Aqg € M,
such that tr Ag = 0 and ¢(Ag) # 0. Observe that Ay is not a scalar matrix.

Throughout the symbol Ny will stand for the matrix Ny = Z:’:_ll E;it1.

Lemma 1. Let the map ¢ be as in the theorem. Suppose there exists a
matrix Ag € M, such that tr Ay = 0 and ¢(Ag) # 0. Then ¢(A) is a nonscalar
matrix for every nonscalar matrix A € M,,.

PROOF. Let us assume for the moment that Ag is in the Jordan canonical
form. We start by proving that every nonscalar diagonal matrix is mapped to
a nonscalar matrix. We do this by induction on the number of pairs of equal
neighboring elements on the diagonal.

Let B = 307 b;E; 411, where b; # 0 for every i = 1,...,n — 1. Then it
is easy to see that there exists a matrix C = diag{dy,...,d,} + E?:_ll ciEiv1,
such that Ag = [B, C]. Since ¢(Ag) = [¢(B), ¢(C)] # 0, it follows that ¢(B) is a
nonscalar matrix. So, if D = diag{dy,...,d,} with d; # d;+1, i =1,...,n— 1,
then [D, No| = Z?:_ll(di —d;iy1)E; i+1 and, because ¢([D, Ny]) is nonscalar, also
¢(D) is nonscalar.

Let 0 < k < n—3 and suppose that ¢(D) is a nonscalar matrix for any matrix
D = diag{ds, ...,d,} with d; = d;41 for at most k indices i € {1,...,n —1}.

It is not difficult to see that for any matrix B = Z?;ll biE; i+1, where b; =0
for at most k+1 indices i € {1,...,n—1}, there exists a matrix C = Z::ll ciFit1,
such that

[B,C]| = diag{ds,...,dn}

is a diagonal matrix with d; = d;;1 for at most k indices i € {1,...,n — 1}. By
the induction hypothesis, ¢(diag{d,...,d,}) is nonscalar and therefore ¢(B) is
a nonscalar matrix as well.

Let D = diag{dy,...,d,} with d; = d;41 for at most k + 1 indices i €
{1,...,n—1}. Then

n—1 n—1
[D,No] = > (di = di1)Eiiv1 = Y biFiia
=1 i=1

where b; = 0 for at most k£ + 1 indices ¢ € {1,...,n — 1}. Hence ¢([D, Ny]) # 0
and therefore ¢(D) is a nonscalar matrix.

It follows that every nonscalar diagonal matrix is mapped to a nonscalar
matrix.

Finally, let A be an arbitrary nondiagonal matrix. Then a;; # 0 for some
indices 1 <14,j <m, i # j. Since

aijEii — aijEjj = [Eji, [Ej;, (B, All]



470 Gregor Dolinar

and ¢(a;; E;; — a;5E;;) is nonscalar, we see that ¢(A) is a nonscalar matrix.

If Ag is not in the Jordan canonical form, then there exists an invertible
matrix S such that SAypS~! is in the Jordan canonical form. As in the begin-
ning of the proof we write SAqS~! = [B,C] and therefore Ag = S71[B,C]S =
[ST1BS,S71CS]. Since ¢(Ag) = [p(S7IBS),¢(S~1CS)] # 0, it follows that
#(S71BS) is a nonscalar matrix. We proceed in the same way as above. First
we prove that ¢(S~1DS) is not a scalar matrix for any nonscalar diagonal ma-
trix D, and then that ¢(S~!AS) is a nonscalar matrix when A is not a diagonal
matrix. (I

Lemma 2. Let D € M,,. Then D = Sdiag{n,n —1,...,1}S~t + X[ for
some invertible matrix S € M, and A\ € C if and only if there exist matrices
Ni,Ny € M, such that [D, N1] = Ny, [D, N3] = N», and the (n — 2)-fold Lie
product

[...[[N2, N1], N1l ..., Nq]

is a nonscalar matrix.

PROOF. Suppose D = Sdiag{n,n —1,...,1}S71 + I for some invertible
matrix S € M,, and A € C. Then for N; = S(Z;:ll E;it1)S™! = SNyS~! and
Ny = SE155871 we have [D, N;] = Ny, [D, Na] = Ny, and the (n — 2)-fold Lie
product

S[...[[E12, No], No, ..., No]S™ = SE,, 87!

is nonscalar.
Suppose now that there exist matrices N7 and Ny such that [D, N;| = Ny,
[D, No] = N, and the (n — 2)-fold Lie product

[...[Na, Ny], N1l ..., Vi)

is nonscalar. Without loss of generality we may assume that D is in the Jordan
canonical form with its eigenvalues ordered d; > dy > --- > d,. Then, since
[D, N1] = N7 and [D, N3] = N, it is easy to see that Ny = [p;;] and Ny = [g;]
are strictly upper triangular matrices and that p;;y1(d; — dit1) = piiy1, and
Gii+1(di — dix1) = @41 for every i = 1,...,n — 1. Let [cf]] denote the k-
fold Lie product [...[[Na, N1], N1],..., N1]. Suppose there exists an index iy €
{1,...,n — 1} such that pi,io+1 = Gip,ip+1 = 0. We will prove that in this
case [c?j_Q] = 0 which contradicts the assumption that [c?j_g] is nonscalar. We
distinguish four cases.

First, if 49 = 1, then cfj =0fori+k > j and le,m-z = 0 for every k =1,

...,n — 2. Hence [0?]72] =0.
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Second, let 1 < ig < "T’l Notice that in this case ig — 1 < n —ig— 1. We

obtain ¢j; = 0 for i +1 > j and also ¢ ; 11 = ¢} ;4o = 0. Inductively we see

i0,t0+
io—1 _ . . - o cloml o1 o io—l _
that ¢;37" =0 for i+ (ip — 1) > j and also ¢{; " = ¢y "o =+ =05, = 0.
- . . : Tlf’iofl _ n,i(),l _ _ n,i(),l _
So, after n—1ip —1 steps we obtain that ¢y, "y = ¢y, o= =¢ " =0

and therefore c?j*io*l =0fori+(n—ig—1)+1>j. Sincen—ig—1<n-—2

it follows that [CZ_Q] =0.

Third, let 25+ < ig < n — 1. Notice that n —ig — 1 < ig — 1. It follows
that i =0 for i+ (n—ig — 1) > j and also Tt =l = =
Cgi;?;—il,io—&-l = 0. Hence, after ig — 1 steps, c§§_1 =0fori+(ip—1)+1>j. In

this case i9p — 1 < n — 2 and therefore again [0?{2] =0.
Fourth, if ig = n — 1, then cfj =0fori4+k>jand szfkk,n = 0 for every
k=1,...,n—2. It follows that [CZ-_Q] =0.

So, for every index ¢ € {1,...,n—1} at least one of p; ;41 or ¢; ;+1 is nonzero
and therefore d; — d; 11 = 1 for every i € {1,...,n —1}. O
Let us denote
1 -1 n-3 -1
Dy = diag{n,n —1,...,1} — nt I:diag{n2 ’n2 ,...,—n2 }

Observe that Dy is a trace zero matrix. The map ¢ takes trace zero matrices to
trace zero matrices, and by Lemma 1 nonscalar matrices to nonscalar matrices.
By (1) and since ¢(Dy) satisfies Lemma 2, we have ¢(Dg) = TDoT~" for some
invertible matrix 7. Notice that if the map ¢ satisfies condition (1), then the
map A — T ¢(A)T satisfy condition (1) as well. Without loss of generality we
may therefore assume that

¢(Do) = Do. (3)
It is easy to see that the matrix D is diagonal if and only if [Dg, D] = 0, further,
B = " "b;E; ;1 for some by,...,b,_; € C if and only if [Dy, B] = B, and
similarly, C = Y07 ¢; i1 for some ¢y, . .., ¢,_1 € Cif and only if [C, D] = C.
It follows by (1) and (3) that ¢ maps diagonal matrices to diagonal matri-
ces, (30 biEii1) = Sory piBiis, and ¢(3X0 ) ¢iBi1i) = Sory aiBiti
where b;,ci,pi,¢; €C,i=1,...,n—1.

Lemma 3. If Z?:ll b;E; i+1 is of rank n — 1, then also (;5(22!11 biE;iy1) =

Z;:ll piFi i1 is of rank n — 1.
PROOF. Suppose Y7 b;E; ;11 is of rank n — 1. Then there exists a matrix
Z?z_ll ¢;Eiy1, such that

n—1 n—1
E biEi,iJrhE ¢;iEiv1:| = Do.
i=1 i=1
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It follows that

n—1 n—1 n—1 n—1
[qﬁ ( Z biEi,i+1> N ( Z CiEi+1,i>‘| = lz Dl iy1, Z Gt
i=1 i=1 i=1 i=1
n—1
=piq B+ Z(Pi%‘ —Pi—14i-1)Eii — pn—1@n—1Enn = Dy.
i=2
n+tl
2 )
. Similarly, pn—1¢n—1 > 0 and p;—1gi—1 — pig; >0
< i < n—1, therefore p;q; > 0 also for every i > ”Tfl Hence p; # 0 for

Since p1q; > 0 and p;q; — pi_1qi—1 > 0 for 2 < i < we obtain inductively

that p;q; > 0 for every i < nTJrl
+1

for %

everyi=1,...,n— 1. !

Let ¢(Ng) = Z?;ll p;iE;i i11 where, by Lemma 3, p; # 0 for every i = 1,
.o.,n — 1. If P = diag{1,p1,p1p2,...,P1P2---Pn_1}, then PDgP~! = Dy and
P(Z?;ll piE; i+1)P~t = Ny. Therefore we may assume without loss of generality
that ¢(Ng) = No.

Because [No, S0 b;E;iy1] = 0 if and only if 32" b;F; ;41 = aNy, it fol-
lows that

#(aNo) = f(a)No,

where f : C — C. Notice that f(«) = 0 if and only if & = 0, that f(1) = 1,
and that f(—a) = —f(a) by (2). We will prove that f is a homomorphism of the
field C.

For every «, 8 € C we have

[Do,aDgy + 3No] = BNy,

and [aDg + BNy, No| = aNo.
Hence

[Do, ¢(aDo + BNo)| = f(8)No (4)
and

[¢(aDy + BNo), No] = f(a)No. (5)

By (4) the matrix ¢(aDg + BNo) — f(B8)No is diagonal with trace zero because
tr(aDy+GNg) = 0, and therefore we obtain by (5) that ¢(aDy+6Ny) = f(a) Do+
f(B)No.

Let us prove that f is multiplicative. Since

[aDg, BNo| = afNy
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it follows that
[f(a) Do, f(B)No] = f(aB)No

and therefore f(af) = f(a)f(B) for every pair of complex numbers « and .
In order to prove that ¢ is additive we write the equation

[Do — aNg, Do + BNo] = (a + 3)Ng

and obtain
[Do — f(a)No, Do + f(B)No] = f(e+ B)No.

So, fla+8) = f(a) + f(B), o, B8 € C.

And since f is a nontrivial homomorphism of the complex field, f(r) = r for
every rational number r.

Furthermore,

1
|: D07E1n:| :Elna
n—1

hence

[nllDo,¢(E1n)} = ¢(E1,)

and ¢(E1,) = nE1,, where 7 is a nonzero constant. If we write

[ c D07E1n]=aE1m
n—1

we see that

[mDo,nEln} = ¢(aE1y),

S0
¢(aBrn) = fla)nEin.

Similarly the equation
1

n—1

|:En1a DO:| = Enl

yields in the same way
¢(aEn1) = f(a)VEnl

for some nonzero constant v.
Since [[E1n, Fn1l, Fin] = 2E1,, it follows that [[nE1,, vEn1], nE1,] = 2nE1,,
hence
nv = 1. (6)
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Let Co = Z?;ll CiEi-i-l,i be such that [No, OO] = Do. Then Cl =Cp—-1 = n?fl
Since [Ny, ¢(aCy)] = f(a) Dy, it follows that ¢(aCy) = f(a)Cp. Now,

2

Env
[ 1

CO:| = El,nfl - E2n

SO
2
|:77E1n; C’O:| = ¢(E1,n—1 - EZn)
n—1
and
O(E1n—1 — Eapn) = n(E1,n—1 — Eay).
Lemma 4. Suppose E is a diagonal matrix. Then E = Fy1 + M or E =
—FE,, + M for some A € C if and only if
[E7 [EvNOH = [E,No]

and
[[Ea El,n—l - EQnLNO] = Eln-

Proor. If E = Fy; + Al or E = —FE,,, + A\l for some A € C, then it is easy
to check that E fulfills the two conditions.
Suppose E = diag{es, ..., e, } and [E, [E, Ng]] = [E, No]. Then (e;—e;11)% =

e; —ejyp foreveryi=1,...,n—1. So e; — e;41 is equal to 0 or 1. Without loss
of generality we may assume that e; = 1. Then e; > e > -+ > e, and e; is
an integer for every ¢ = 1,...,n. Since [[E, Eq n—1 — Ea,], No] = E1,,, we obtain
the equation e; + e —e,_1 —e, = 1. Because ey =1>e3 > - >e,.1 > €,
are integers and e; — e5 is equal to 0 or 1, and also e,_1 — e, is equal to 0 or 1,
this equation has only two solutions, e; = --- =e€e,-1 =1, ¢, = 0, and e; = 1,
eg=---=¢, =0. O

Since ¢(Ery) = nE1, and ¢(Eq p—1 — Ea,) = n(E1,n—1 — Ea,), it follows by
Lemma 4 that ¢(E11) = E11 + M or ¢p(F11) = —Eny, + A for some A € C.

If ¢ satisfies condition (1), then the map A — —T~1¢(A)!T, where T =
S (=1)'E; 11—, satisfies condition (1) as well. Also, since =T~ 'D{T = Dy,
—~T7IN,T = Ny, and =T~ (—E,,,, + \X[)'T = E1; — M\, we may assume without
loss of generality that ¢(E;1) — F1; is a scalar matrix.

Let us find the image of the matrix Ejx. Since the k-fold Lie product
[. .. [[E117 O&No], No], .- 7]\/vo} equals aE17k+17 1 S k S n— 1, it follows that

p(aEry) = f(a) Bk
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for every k = 2,...,n. In particular for £ = n this implies that n = 1 and
therefore by (6) also v = 1.
To find the image of Ef; we inductively prove that

[No,. .., [No, [No,aEni]]...] = a i(_ni*l (7;:12) Ei1

where the Lie product is applied (n—2)-times. If Xy = S0 "(—1)i! ("= Eit14,
then
p(aXo) = f(a)Xo.

Now we express

(71)1@71 -1
e X0 mXoy[aXO,En] oo | = aFgg1,

((y)

where the Lie product is applied k-times, 1 < k < mn — 1, and therefore

P(aBr1) = f(a)Ep

for every k =2,...,n.
Let 4,5 € {1,...,n}, i # j, and o € C. Then

aF;; = [aE;, Eqjl,

hence
d(alij) = f(a)Eij.

Furthermore,

[Eij, [Eji, aBi]] = [aEi;, Ejq].
We know that ¢ maps diagonal matrices to diagonal matrices, so ¢(aF;) =

diag{ey,...,e,} is diagonal. Thus
(ei =€) (Eii — Ejj) = f(@)(Eii — Ejj).

Therefore ¢p(aE;;) — f(a)E;; is a scalar matrix for every i = 1,...,n.
Let A = [a;5] € M, be an arbitrary matrix. For ¢,j,k € {1,...,n}, i # j,
j # k, k # 1, we have
(Ejk, [Ejj, [Bii, All] = aij E;
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and therefore
[Ejk, [Ejj; [Eii, o(A)]]] = flaij) B

Let i € {2,...,n}. Then

[Eii, [Ev1, [Evi, A]]] = (a11 — ai) B,

and hence
[Eii, [E11, [Ev, 0(A)]]] = fann — ai) By = (f(a11) — f(aii))E.

It follows that
o([ai;]) — [f(aiz)]

is a scalar matrix for every matrix [a;;] € M,, and this concludes the proof of the
theorem for n > 3.

In the case n = 2 the proof is the same as in the higher dimensional case
with the exception of three steps, which must be proved separately.

First, let Dy = %(Eu — E53). The map ¢ preserves the trace, so ¢(Dy) =
SE12571 or ¢(Dg) = aSDyS~! for some invertible matrix S and a nonzero com-
plex number a.. Assume that ¢(Dy) = SE12S~1. Because [Dy, E12] = Eia, we ob-
tain [SE125 7, ¢(E12)] = ¢(E12). Hence, ¢(E12) = 0, a contradiction. If ¢(Dy) =
aSDyS™1, again because [Dyg, E12] = E12 we obtain [«SDyS™1, ¢(E12)] = ¢(E12).
If we solve the last equation, we see that o must be equal to 1 or —1. So, ¢(Dy)
is similar to Dy.

Second, because ¢(FE11) is diagonal and Eio = ¢(F12) = ¢([E11, E1a]) =
[@¢(E11), E12], it follows that ¢(F11) — E11 is a scalar matrix.

Third, in the same way as we proved that ¢(a«Do+BE12) = f(a)Do+f(8)E12,
we can prove also that ¢(aDg+ 3FE21) = f(a)Do+ f(8)E21. In order to complete
the proof in the case n = 2 it remains to solve the equations

o8B o)1 7))
RS A i R P

Notice that —A? = (Ey; — E12)A(Fa; — E12) ™! — tr(A)I for every matrix
A € My, so in the case n = 2 the statement of the theorem can be simplified.

and
0 0
1 0
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