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Maps on Mn preserving Lie products

By GREGOR DOLINAR (Ljubljana)

Abstract. Let Mn be the Lie algebra of all n× n complex matrices with the Lie

product [A, B] = AB − BA and let φ : Mn → Mn satisfy φ([A, B]) = [φ(A), φ(B)],

A, B ∈ Mn. Then φ(Mn) is a commutative subset of Mn or there exist an invertible

matrix T ∈ Mn, a function ϕ : Mn → C satisfying ϕ(C) = 0 for every trace zero

matrix C ∈ Mn, and a homomorphism f of the complex field, such that φ([aij ]) =

T [f(aij)]T
−1 + ϕ([aij ])I for all [aij ] ∈ Mn, or φ([aij ]) = −T [f(aij)]

tT−1 + ϕ([aij ])I for

all [aij ] ∈ Mn.

1. Introduction and statement of the result

Let Mn be the space of all n×n complex matrices. There are three standard
products on Mn which induce the structure of an algebra, matrix multiplication,
the Jordan product, and the Lie product [A,B] = AB − BA, A,B ∈ Mn. Maps
which preserve matrix multiplication were characterized by Jodeit and Lam [3],
maps which preserve the Jordan product were studied by Molnár [4] and it is
the aim of this paper to characterize the maps, which are multiplicative for the
Lie product, that is φ([A,B]) = [φ(A), φ(B)]. We do not assume that φ is either
linear or bijective.

Theorem. Let φ : Mn → Mn be a map satisfying

φ([A, B]) = [φ(A), φ(B)], A, B ∈ Mn. (1)
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Then φ(Mn) is a commutative subset of Mn or there exist an invertible matrix

T ∈ Mn, a function ϕ : Mn → C satisfying ϕ(C) = 0 for every trace zero matrix

C ∈ Mn, and a homomorphism f of the complex field, such that

φ([aij ]) = T [f(aij)]T−1 + ϕ([aij ])I, [aij ] ∈ Mn,

or
φ([aij ]) = −T [f(aij)]tT−1 + ϕ([aij ])I, [aij ] ∈ Mn.

A similar statement has recently been proved by Šemrl [5] under the strong
additional assumption of bijectivity.

When considering homomorphisms of matrix algebras, Jordan algebras, and
Lie algebras we assume that such maps are linear and multiplicative with respect
to the corresponding product. So all mentioned results are non-linear extensions
of classical structural results for homomorphisms of matrix algebras, Jordan al-
gebras, and Lie algebras.

Recently the author also characterized bijective maps preserving Lie products
on upper triangular matrices over an arbitrary field with characteristic zero [1].

2. Proof

We will distinguish the higher dimensional case n ≥ 3 and the case n = 2.
The case n = 1 is trivial.

Let n ≥ 3. We begin with some easy observations. First, notice that φ(0) =
φ([A,A]) = [φ(A), φ(A)] = 0. Second, recall that a matrix A ∈ Mn has trace zero
if and only if it can be written as A = BC − CB = [B, C] for some B, C ∈ Mn

(see for example [2, p. 288, Theorem 4.5.2]). If trA = 0 and A = [B,C], then
φ(A) = φ([B, C]) = [φ(B), φ(C)] and therefore tr φ(A) = 0. So, φ maps the set
of trace zero matrices into the set of trace zero matrices. Furthermore,

φ(−A) = φ(−[B, C]) = φ([C,B]) = −[φ(B), φ(C)] = −φ(A) (2)

for every trace zero matrix A.
In order to prove the theorem we will consider the two cases when φ maps

all trace zero matrices into zero and when this is not the case.
The first case is trivial. Assume that φ maps the set of trace zero matrices

into 0. Then we obtain [φ(A), φ(B)] = φ([A,B]) = 0 for every A,B ∈ Mn, since
[A,B] is a trace zero matrix which is mapped to 0 by φ. So, φ(A) and φ(B)
commute for every A,B ∈ Mn, and φ(Mn) is therefore a commutative subset
of Mn.
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In the rest of the proof we will assume that there is a matrix A0 ∈ Mn

such that tr A0 = 0 and φ(A0) 6= 0. Observe that A0 is not a scalar matrix.
Throughout the symbol N0 will stand for the matrix N0 =

∑n−1
i=1 Ei,i+1.

Lemma 1. Let the map φ be as in the theorem. Suppose there exists a

matrix A0 ∈ Mn, such that tr A0 = 0 and φ(A0) 6= 0. Then φ(A) is a nonscalar

matrix for every nonscalar matrix A ∈ Mn.

Proof. Let us assume for the moment that A0 is in the Jordan canonical
form. We start by proving that every nonscalar diagonal matrix is mapped to
a nonscalar matrix. We do this by induction on the number of pairs of equal
neighboring elements on the diagonal.

Let B =
∑n−1

i=1 biEi,i+1, where bi 6= 0 for every i = 1, . . . , n − 1. Then it
is easy to see that there exists a matrix C = diag{d1, . . . , dn} +

∑n−1
i=1 ciEi+1,i

such that A0 = [B, C]. Since φ(A0) = [φ(B), φ(C)] 6= 0, it follows that φ(B) is a
nonscalar matrix. So, if D = diag{d1, . . . , dn} with di 6= di+1, i = 1, . . . , n − 1,
then [D, N0] =

∑n−1
i=1 (di − di+1)Ei,i+1 and, because φ([D, N0]) is nonscalar, also

φ(D) is nonscalar.
Let 0 ≤ k ≤ n−3 and suppose that φ(D) is a nonscalar matrix for any matrix

D = diag{d1, . . . , dn} with di = di+1 for at most k indices i ∈ {1, . . . , n− 1}.
It is not difficult to see that for any matrix B =

∑n−1
i=1 biEi,i+1, where bi = 0

for at most k+1 indices i ∈ {1, . . . , n−1}, there exists a matrix C =
∑n−1

i=1 ciEi+1,i

such that
[B, C] = diag{d1, . . . , dn}

is a diagonal matrix with di = di+1 for at most k indices i ∈ {1, . . . , n − 1}. By
the induction hypothesis, φ(diag{d1, . . . , dn}) is nonscalar and therefore φ(B) is
a nonscalar matrix as well.

Let D = diag{d1, . . . , dn} with di = di+1 for at most k + 1 indices i ∈
{1, . . . , n− 1}. Then

[D,N0] =
n−1∑

i=1

(di − di+1)Ei,i+1 =
n−1∑

i=1

biEi,i+1

where bi = 0 for at most k + 1 indices i ∈ {1, . . . , n − 1}. Hence φ([D, N0]) 6= 0
and therefore φ(D) is a nonscalar matrix.

It follows that every nonscalar diagonal matrix is mapped to a nonscalar
matrix.

Finally, let A be an arbitrary nondiagonal matrix. Then aij 6= 0 for some
indices 1 ≤ i, j ≤ n, i 6= j. Since

aijEii − aijEjj = [Eji, [Ejj , [Eii, A]]]
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and φ(aijEii − aijEjj) is nonscalar, we see that φ(A) is a nonscalar matrix.
If A0 is not in the Jordan canonical form, then there exists an invertible

matrix S such that SA0S
−1 is in the Jordan canonical form. As in the begin-

ning of the proof we write SA0S
−1 = [B,C] and therefore A0 = S−1[B,C]S =

[S−1BS, S−1CS]. Since φ(A0) = [φ(S−1BS), φ(S−1CS)] 6= 0, it follows that
φ(S−1BS) is a nonscalar matrix. We proceed in the same way as above. First
we prove that φ(S−1DS) is not a scalar matrix for any nonscalar diagonal ma-
trix D, and then that φ(S−1AS) is a nonscalar matrix when A is not a diagonal
matrix. ¤

Lemma 2. Let D ∈ Mn. Then D = S diag{n, n − 1, . . . , 1}S−1 + λI for

some invertible matrix S ∈ Mn and λ ∈ C if and only if there exist matrices

N1, N2 ∈ Mn, such that [D,N1] = N1, [D,N2] = N2, and the (n − 2)-fold Lie

product

[. . . [[N2, N1], N1], . . . , N1]

is a nonscalar matrix.

Proof. Suppose D = S diag{n, n − 1, . . . , 1}S−1 + λI for some invertible
matrix S ∈ Mn and λ ∈ C. Then for N1 = S(

∑n−1
i=1 Ei,i+1)S−1 = SN0S

−1 and
N2 = SE12S

−1 we have [D,N1] = N1, [D,N2] = N2, and the (n − 2)-fold Lie
product

S[. . . [[E12, N0], N0], . . . , N0]S−1 = SE1nS−1

is nonscalar.
Suppose now that there exist matrices N1 and N2 such that [D, N1] = N1,

[D, N2] = N2, and the (n− 2)-fold Lie product

[. . . [[N2, N1], N1], . . . , N1]

is nonscalar. Without loss of generality we may assume that D is in the Jordan
canonical form with its eigenvalues ordered d1 ≥ d2 ≥ · · · ≥ dn. Then, since
[D, N1] = N1 and [D, N2] = N2, it is easy to see that N1 = [pij ] and N2 = [qij ]
are strictly upper triangular matrices and that pi,i+1(di − di+1) = pi,i+1, and
qi,i+1(di − di+1) = qi,i+1 for every i = 1, . . . , n − 1. Let [ck

ij ] denote the k-
fold Lie product [. . . [[N2, N1], N1], . . . , N1]. Suppose there exists an index i0 ∈
{1, . . . , n − 1} such that pi0,i0+1 = qi0,i0+1 = 0. We will prove that in this
case [cn−2

ij ] = 0 which contradicts the assumption that [cn−2
ij ] is nonscalar. We

distinguish four cases.
First, if i0 = 1, then ck

ij = 0 for i + k ≥ j and ck
1,k+2 = 0 for every k = 1,

. . . , n− 2. Hence [cn−2
ij ] = 0.



Maps on Mn preserving Lie products 471

Second, let 1 < i0 ≤ n−1
2 . Notice that in this case i0 − 1 ≤ n − i0 − 1. We

obtain c1
ij = 0 for i + 1 ≥ j and also c1

i0−1,i0+1 = c1
i0,i0+2 = 0. Inductively we see

that ci0−1
ij = 0 for i + (i0 − 1) ≥ j and also ci0−1

1,i0+1 = ci0−1
2,i0+2 = · · · = ci0−1

i0,2i0
= 0.

So, after n−i0−1 steps we obtain that cn−i0−1
1,n−i0+1 = cn−i0−1

2,n−i0+2 = · · · = cn−i0−1
i0,n = 0

and therefore cn−i0−1
ij = 0 for i + (n− i0 − 1) + 1 ≥ j. Since n− i0 − 1 < n− 2,

it follows that [cn−2
ij ] = 0.

Third, let n−1
2 < i0 < n − 1. Notice that n − i0 − 1 ≤ i0 − 1. It follows

that cn−i0−1
ij = 0 for i + (n − i0 − 1) ≥ j and also cn−i0−1

i0,n = cn−i0−1
i0−1,n−1 = · · · =

cn−i0−1
2i0−n+1,i0+1 = 0. Hence, after i0 − 1 steps, ci0−1

ij = 0 for i + (i0 − 1) + 1 ≥ j. In
this case i0 − 1 < n− 2 and therefore again [cn−2

ij ] = 0.
Fourth, if i0 = n − 1, then ck

ij = 0 for i + k ≥ j and ck
n−1−k,n = 0 for every

k = 1, . . . , n− 2. It follows that [cn−2
ij ] = 0.

So, for every index i ∈ {1, . . . , n−1} at least one of pi,i+1 or qi,i+1 is nonzero
and therefore di − di+1 = 1 for every i ∈ {1, . . . , n− 1}. ¤

Let us denote

D0 = diag{n, n− 1, . . . , 1} − n + 1
2

I = diag
{

n− 1
2

,
n− 3

2
, . . . ,−n− 1

2

}
.

Observe that D0 is a trace zero matrix. The map φ takes trace zero matrices to
trace zero matrices, and by Lemma 1 nonscalar matrices to nonscalar matrices.
By (1) and since φ(D0) satisfies Lemma 2, we have φ(D0) = TD0T

−1 for some
invertible matrix T . Notice that if the map φ satisfies condition (1), then the
map A 7→ T−1φ(A)T satisfy condition (1) as well. Without loss of generality we
may therefore assume that

φ(D0) = D0. (3)

It is easy to see that the matrix D is diagonal if and only if [D0, D] = 0, further,
B =

∑n−1
i=1 biEi,i+1 for some b1, . . . , bn−1 ∈ C if and only if [D0, B] = B, and

similarly, C =
∑n−1

i=1 ciEi+1,i for some c1, . . . , cn−1 ∈ C if and only if [C, D0] = C.
It follows by (1) and (3) that φ maps diagonal matrices to diagonal matri-
ces, φ(

∑n−1
i=1 biEi,i+1) =

∑n−1
i=1 piEi,i+1, and φ(

∑n−1
i=1 ciEi+1,i) =

∑n−1
i=1 qiEi+1,i,

where bi, ci, pi, qi ∈ C, i = 1, . . . , n− 1.

Lemma 3. If
∑n−1

i=1 biEi,i+1 is of rank n− 1, then also φ(
∑n−1

i=1 biEi,i+1) =∑n−1
i=1 piEi,i+1 is of rank n− 1.

Proof. Suppose
∑n−1

i=1 biEi,i+1 is of rank n− 1. Then there exists a matrix∑n−1
i=1 ciEi+1,i such that

[
n−1∑

i=1

biEi,i+1,

n−1∑

i=1

ciEi+1,i

]
= D0.
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It follows that
[
φ

(
n−1∑

i=1

biEi,i+1

)
, φ

(
n−1∑

i=1

ciEi+1,i

)]
=

[
n−1∑

i=1

piEi,i+1,

n−1∑

i=1

qiEi+1,i

]

= p1q1E11 +
n−1∑

i=2

(piqi − pi−1qi−1)Eii − pn−1qn−1Enn = D0.

Since p1q1 > 0 and piqi − pi−1qi−1 ≥ 0 for 2 ≤ i ≤ n+1
2 , we obtain inductively

that piqi > 0 for every i ≤ n+1
2 . Similarly, pn−1qn−1 > 0 and pi−1qi−1 − piqi ≥ 0

for n+1
2 ≤ i ≤ n− 1, therefore piqi > 0 also for every i ≥ n−1

2 . Hence pi 6= 0 for
every i = 1, . . . , n− 1. ¤

Let φ(N0) =
∑n−1

i=1 piEi,i+1 where, by Lemma 3, pi 6= 0 for every i = 1,
. . . , n − 1. If P = diag{1, p1, p1p2, . . . , p1p2 . . . pn−1}, then PD0P

−1 = D0 and
P (

∑n−1
i=1 piEi,i+1)P−1 = N0. Therefore we may assume without loss of generality

that φ(N0) = N0.
Because [N0,

∑n−1
i=1 biEi,i+1] = 0 if and only if

∑n−1
i=1 biEi,i+1 = αN0, it fol-

lows that

φ(αN0) = f(α)N0,

where f : C → C. Notice that f(α) = 0 if and only if α = 0, that f(1) = 1,
and that f(−α) = −f(α) by (2). We will prove that f is a homomorphism of the
field C.

For every α, β ∈ C we have

[D0, αD0 + βN0] = βN0,

and
[αD0 + βN0, N0] = αN0.

Hence
[D0, φ(αD0 + βN0)] = f(β)N0 (4)

and
[φ(αD0 + βN0), N0] = f(α)N0. (5)

By (4) the matrix φ(αD0 + βN0) − f(β)N0 is diagonal with trace zero because
tr(αD0+βN0) = 0, and therefore we obtain by (5) that φ(αD0+βN0) = f(α)D0+
f(β)N0.

Let us prove that f is multiplicative. Since

[αD0, βN0] = αβN0



Maps on Mn preserving Lie products 473

it follows that
[f(α)D0, f(β)N0] = f(αβ)N0

and therefore f(αβ) = f(α)f(β) for every pair of complex numbers α and β.
In order to prove that φ is additive we write the equation

[D0 − αN0, D0 + βN0] = (α + β)N0

and obtain
[D0 − f(α)N0, D0 + f(β)N0] = f(α + β)N0.

So, f(α + β) = f(α) + f(β), α, β ∈ C.
And since f is a nontrivial homomorphism of the complex field, f(r) = r for

every rational number r.
Furthermore, [

1
n− 1

D0, E1n

]
= E1n,

hence [
1

n− 1
D0, φ(E1n)

]
= φ(E1n)

and φ(E1n) = ηE1n, where η is a nonzero constant. If we write

[
α

n− 1
D0, E1n

]
= αE1n,

we see that [
f(α)
n− 1

D0, ηE1n

]
= φ(αE1n),

so
φ(αE1n) = f(α)ηE1n.

Similarly the equation [
En1,

1
n− 1

D0

]
= En1

yields in the same way
φ(αEn1) = f(α)νEn1

for some nonzero constant ν.
Since [[E1n, En1], E1n] = 2E1n, it follows that [[ηE1n, νEn1], ηE1n] = 2ηE1n,

hence
ην = 1. (6)
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Let C0 =
∑n−1

i=1 ciEi+1,i be such that [N0, C0] = D0. Then c1 = cn−1 = n−1
2 .

Since [N0, φ(αC0)] = f(α)D0, it follows that φ(αC0) = f(α)C0. Now,

[
E1n,

2
n− 1

C0

]
= E1,n−1 − E2n

so [
ηE1n,

2
n− 1

C0

]
= φ(E1,n−1 − E2n)

and
φ(E1,n−1 − E2n) = η(E1,n−1 − E2n).

Lemma 4. Suppose E is a diagonal matrix. Then E = E11 + λI or E =
−Enn + λI for some λ ∈ C if and only if

[E, [E, N0]] = [E,N0]

and

[[E,E1,n−1 − E2n], N0] = E1n.

Proof. If E = E11 + λI or E = −Enn + λI for some λ ∈ C, then it is easy
to check that E fulfills the two conditions.

Suppose E = diag{e1, . . . , en} and [E, [E, N0]] = [E,N0]. Then (ei−ei+1)2 =
ei − ei+1 for every i = 1, . . . , n− 1. So ei − ei+1 is equal to 0 or 1. Without loss
of generality we may assume that e1 = 1. Then e1 ≥ e2 ≥ · · · ≥ en and ei is
an integer for every i = 1, . . . , n. Since [[E, E1,n−1 − E2n], N0] = E1n, we obtain
the equation e1 + e2 − en−1 − en = 1. Because e1 = 1 ≥ e2 ≥ · · · ≥ en−1 ≥ en

are integers and e1 − e2 is equal to 0 or 1, and also en−1 − en is equal to 0 or 1,
this equation has only two solutions, e1 = · · · = en−1 = 1, en = 0, and e1 = 1,
e2 = · · · = en = 0. ¤

Since φ(E1n) = ηE1n and φ(E1,n−1 − E2n) = η(E1,n−1 − E2n), it follows by
Lemma 4 that φ(E11) = E11 + λI or φ(E11) = −Enn + λI for some λ ∈ C.

If φ satisfies condition (1), then the map A 7→ −T−1φ(A)tT , where T =∑n
i=1(−1)iEi,n+1−i, satisfies condition (1) as well. Also, since −T−1Dt

0T = D0,
−T−1N t

0T = N0, and −T−1(−Enn + λI)tT = E11 − λI, we may assume without
loss of generality that φ(E11)− E11 is a scalar matrix.

Let us find the image of the matrix E1k. Since the k-fold Lie product
[. . . [[E11, αN0], N0], . . . , N0] equals αE1,k+1, 1 ≤ k ≤ n− 1, it follows that

φ(αE1k) = f(α)E1k
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for every k = 2, . . . , n. In particular for k = n this implies that η = 1 and
therefore by (6) also ν = 1.

To find the image of Ek1 we inductively prove that

[N0, . . . , [N0, [N0, αEn1]] . . . ] = α

n−1∑

i=1

(−1)i−1

(
n− 2
i− 1

)
Ei+1,i

where the Lie product is applied (n−2)-times. If X0 =
∑n−1

i=1 (−1)i−1
(
n−2
i−1

)
Ei+1,i,

then
φ(αX0) = f(α)X0.

Now we express

[
(−1)k−1

(
n−2
k−1

) X0, . . . ,

[ −1
n− 2

X0, [αX0, E11]
]

. . .

]
= αEk+1,1,

where the Lie product is applied k-times, 1 ≤ k ≤ n− 1, and therefore

φ(αEk1) = f(α)Ek1

for every k = 2, . . . , n.
Let i, j ∈ {1, . . . , n}, i 6= j, and α ∈ C. Then

αEij = [αEi1, E1j ],

hence
φ(αEij) = f(α)Eij .

Furthermore,
[Eij , [Eji, αEii]] = [αEij , Eji].

We know that φ maps diagonal matrices to diagonal matrices, so φ(αEii) =
diag{e1, . . . , en} is diagonal. Thus

(ei − ej)(Eii − Ejj) = f(α)(Eii − Ejj).

Therefore φ(αEii)− f(α)Eii is a scalar matrix for every i = 1, . . . , n.
Let A = [aij ] ∈ Mn be an arbitrary matrix. For i, j, k ∈ {1, . . . , n}, i 6= j,

j 6= k, k 6= i, we have
[Ejk, [Ejj , [Eii, A]]] = aijEik
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and therefore
[Ejk, [Ejj , [Eii, φ(A)]]] = f(aij)Eik.

Let i ∈ {2, . . . , n}. Then

[Eii, [E11, [E1i, A]]] = (a11 − aii)E1i,

and hence

[Eii, [E11, [E1i, φ(A)]]] = f(a11 − aii)E1i = (f(a11)− f(aii))E1i.

It follows that
φ([aij ])− [f(aij)]

is a scalar matrix for every matrix [aij ] ∈ Mn and this concludes the proof of the
theorem for n ≥ 3.

In the case n = 2 the proof is the same as in the higher dimensional case
with the exception of three steps, which must be proved separately.

First, let D0 = 1
2 (E11 − E22). The map φ preserves the trace, so φ(D0) =

SE12S
−1 or φ(D0) = αSD0S

−1 for some invertible matrix S and a nonzero com-
plex number α. Assume that φ(D0) = SE12S

−1. Because [D0, E12] = E12, we ob-
tain [SE12S

−1, φ(E12)] = φ(E12). Hence, φ(E12) = 0, a contradiction. If φ(D0) =
αSD0S

−1, again because [D0, E12] = E12 we obtain [αSD0S
−1, φ(E12)] = φ(E12).

If we solve the last equation, we see that α must be equal to 1 or −1. So, φ(D0)
is similar to D0.

Second, because φ(E11) is diagonal and E12 = φ(E12) = φ([E11, E12]) =
[φ(E11), E12], it follows that φ(E11)− E11 is a scalar matrix.

Third, in the same way as we proved that φ(αD0+βE12) = f(α)D0+f(β)E12,
we can prove also that φ(αD0 +βE21) = f(α)D0 +f(β)E21. In order to complete
the proof in the case n = 2 it remains to solve the equations

[
φ

([
α β

γ δ

])
,

[
0 1
0 0

]]
=

[
−f(γ) f(α− δ)

0 f(γ)

]

and [
φ

([
α β

γ δ

])
,

[
0 0
1 0

]]
=

[
f(β) 0

f(δ − α) −f(β)

]
.

Notice that −At = (E21 − E12)A(E21 − E12)−1 − tr(A)I for every matrix
A ∈ M2, so in the case n = 2 the statement of the theorem can be simplified.
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