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Further computational experiences on norm form equations
with solutions forming arithmetic progressions

By ANDRÁS BAZSÓ (Debrecen)

Abstract. In this paper we present our computational experiences on those special

solutions of the norm form equation NK/Q(x0 + x1α + · · · + xn−1α
n−1) = 1 for which

x0, . . . , xn−1 ∈ Z are consecutive elements of an arithmetic progression.

1. Introduction

The study of the subject of our paper has been initiated by Bérczes and
Pethő [6], [5]. The problem itself first raised when Buchmann and Pethő [10]
found by chance that in the field K := Q(α) with α7 = 3, the integer

10 + 9α + 8α2 + 7α3 + 6α4 + 5α5 + 4α6

is a unit. This means that the equation

NK/Q(x0 + x1α + · · ·+ x6α
6) = 1

has a solution (x0, . . . , x6) ∈ Z7 such that the coordinates form an arithmetic
progression. This led Bérczes and Pethő in [6] to investigate in more general con-
text norm form equations with solutions whose coordinates form an arithmetic
progression. They proved general effective and qualitative results in this direc-
tion. Further, Bérczes and Pethő [5] and Bérczes, Pethő and Ziegler [7]
considered certain families of norm form equations and for these equations, they
found all solutions whose coordinates form an arithmetic progression. The aim
of our paper is to extend the result of Bérczes and Pethő [5].
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2. Results

Let α be an algebraic integer of degree n ≥ 3 and K =: Q(α). Consider the
equation

NK/Q
(
x0 + x1α + · · ·+ xn−1α

n−1
)

= 1 (1)

in x0, . . . , xn−1 ∈ Z.
Let α be a root of the polynomial xn − a, where a is an integer such that

xn − a is irreducible. Bérczes and Pethő [5] proved that equation (1) has no
solution in integers forming an arithmetic progression when 4 ≤ a ≤ 100. Now
we extend their result for negative values of the parameter a. More precisely,
for −100 ≤ a ≤ −2 we determine all such solutions of equation (1) for which
x0, . . . , xn−1 ∈ Z are consecutive terms of an arithmetic progression.

Our main result is the following theorem.

Theorem. Let n ≥ 3 be an integer, let α be a root of the irreducible polyno-

mial xn − a ∈ Z[x]. Put K := Q(α) and suppose that −100 ≤ a ≤ −2. Then the

only solutions of equation (1) which form an arithmetic progression are (2, 1, 0)
when (n, a) = (3,−7), and (−2,−1, 0) when (n, a) = (3,−9).
In the case when (n, a) = (11,−67) our result is conditional and depends on the

truth of the generalized Riemann Hypothesis.

3. Auxiliary results

Lemma 3.1 (Á. Pintér). Let

F (x, y) = axn − byn, a 6= b

be a binary form of degree n ≥ 3, with positive integer coefficients a and b. Set

A = max {a, b, 3}. Suppose that

F (x, y) = c

with x > |y| > 0, 3 log(1.5|c/b|) ≤ 7400 log A
λ and log 2c

log 2 ≤ 8 log A. Then we have

n ≤ min
(

7400
log A

λ
, 3106 log A

)
:= B(A),

where λ is an arbitrary constant.

Proof. See Á. Pintér [18]. ¤

Now we consider the equation

Aan + Bbn = Cc2 (2)
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in a, b, c ∈ Z. Following the method of Bennett and Skinner [4] we first asso-
ciate elliptic curves to solutions (a, b, c) of (2) as follows. We assume that aA, bB

and cC are pairwise coprime, and that C is squarefree. Without loss of generality,
we may suppose we are in one of the following situations:

(i) abABC ≡ 1 (mod 2) and b ≡ −BC (mod 4),

(ii) ab ≡ 1 (mod 2) and either ord2(B) = 1 or ord2(C) = 1,

(iii) ab ≡ 1 (mod 2), ord2(B) = 2 and c ≡ −bB/4 (mod 4),

(iv) ab ≡ 1 (mod 2), ord2(B) ∈ {3, 4, 5} and c ≡ C (mod 4),

(v) ord2(Bbn) ≥ 6 and c ≡ C (mod 4),

where ord2(u) denotes the largest integer k with 2k|u.
In cases (i) and (ii), we will consider the curve

E1(a, b, c) : Y 2 = X3 + 2cCX2 + BCbnX.

In cases (iii) and (iv), we will consider

E2(a, b, c) : Y 2 = X3 + cCX2 +
BCbn

4
X,

and in (v),

E3(a, b, c) : Y 2 + XY = X3 +
cC − 1

4
X2 +

BCbn

64
X.

After this via Galois representations, we can associate modular forms to these
elliptic curves, so in this way in fact we associate modular forms to the solutions
(a, b, c) of equation (2).

For a given prime q and non-zero integer u, set

Radq(u) :=
∏
p|u
p6=q

p

where the product is taken over all positive primes p distinct of q and dividing u.
Put

ε2 :=





1 if ord2(Bbn) = 6

2 if ord2(Bbn) ≥ 7

4 if ord2(B) = 2 and b ≡ −BC/4 (mod 4)

8 if ord2(B) = 2 and b ≡ BC/4 (mod 4) or if ord2(B) ∈ {4, 5}
32 if ord2(B) = 3 or if bBC is odd

128 if ord2(B) = 1

256 if C is even.
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Lemma 3.2 (M. A. Bennett and C. M. Skinner). Suppose that a, b,

c, A, B, C are non-zero integers with aA, bB, cC pairwise coprime, ab 6= ±1,

satisfying equation (2) with n 6= 7 a prime and (n, ABC) = 1. Then there exists

a cuspidal newform f =
∑∞

r=1 crq
r of weight 2, trivial Nebentypus character and

level N , with N := Rad2(AB) Rad2(C)2ε2.
Moreover, if we write Kf for the field of definition of the Fourier coefficients cr

of the form f and suppose that p is a prime coprime to nN , then

(i) if ab ≡ 0 (mod p) then

NormKf /Q (cp − ap) ≡ 0 (mod n),

where ap = ± (p + 1),

(ii) otherwise

NormKf /Q (cp − ap) ≡ 0 (mod n),

where ap = ±(p + 1) or ap ∈ {x : |x| < 2
√

p, x ≡ 0 (mod 2)}.
Further, if the solution (a, b, c) arises from a rational cuspidal newform cor-

responding to an elliptic curve E/Q then if p - ab we have ap = ap(E) =
p + 1−#E(Fp), where #E(Fp) is the number of points on E over the finite

field Fp.

Proof. For a proof see Bennett and Skinner [4], and Bugeaud,

Mignotte and Siksek [11]. ¤

4. Proof of the theorem

First we prove a lemma concerning a special family of generalized Thue-equa-
tions, and we use this lemma to prove our Theorem.

Lemma 4.1. The only solutions of the generalized Thue-equation

Xn − aY n = (a− 1)2 (3)

in (n, a,X, Y ) for −100 ≤ a ≤ −2, are those listed in Table 1 below.

In the case when (n, a) = (11,−67) the result depends on the truth of the gener-

alized Riemann Hypothesis.
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n a (X, Y )

3 −97 (35,−7)

3 −63 (4, 4), (16, 0), (64,−16)

3 −62 (1, 4)

3 −61 (13, 3)

3 −39 (16,−4)

3 −35 (11,−1), (46,−14)

3 −27 (10,−2)

3 −26 (3, 3), (9, 0), (27,−9)

3 −25 (1, 3)

3 −18 (−5, 3), (7, 1)

3 −12 (−11, 5)

3 −9 (7,−3)

3 −7 (−5, 3), (2, 2), (4, 0), (8,−4)

3 −6 (1, 2)

3 −3 (−2, 2)

4 −99 (−10, 0), (10, 0)

4 −80 (−9, 0), (−3,−3), (−3, 3), (3,−3), (3, 3), (9, 0)

4 −79 (−1,−3), (−1, 3), (1,−3), (1, 3)

4 −63 (−8, 0), (8, 0)

4 −48 (−7, 0), (7, 0)

4 −35 (−6, 0), (6, 0)

4 −24 (−5, 0), (5, 0)

4 −15 (−4, 0), (−2,−2), (−2, 2), (2,−2), (2, 2), (4, 0)

4 −14 (−1,−2), (−1, 2), (1,−2), (1, 2)

4 −8 (−3, 0), (3, 0)

4 −3 (−2, 0), (2, 0)

5 −31 (2, 2), (4, 0), (8,−4)

5 −30 (1, 2)

6 −63 (2, 2), (−2,−2), (2,−2), (−2, 2), (4, 0), (−4, 0)

6 −26 (3, 0), (−3, 0)

6 −7 (2, 0), (−2, 0)

8 −80 (3, 0), (−3, 0)

8 −15 (2, 0), (−2, 0)

10 −31 (2, 0), (−2, 0)

12 −63 (2, 0), (−2, 0)

Table 1.

Proof. Equation (3) is a so-called binomial Thue-equation. We note that a
wide range of diophantine problems leads to such equations (see e.g. [1], [2], [3],
[12], [13], [15], [17], [19], [18]).
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Clearly, it is enough to solve equation (3) for n = 4 and in the cases when n

is an odd prime. The other cases are simple consequences of these.
As a first step we use Lemma 3.1. Clearly, the conditions of Lemma 3.1 are

fulfilled, so it provides an upper bound B(a) for the degree n of the Thue-equation
(3) in terms of a. Since |a| ≤ 100, this shows that in order to prove Lemma 4.1
we have to consider only finitely many cases for n. The following table contains
the approximate value of the bound B(a) for some values of |a|.
|a| 10 20 30 40 50 60 70 80 90 100

B(a) 7151 9304 10564 11457 12150 12717 13195 13610 13976 14303

Table 2.

The second step is to use a well known local argument (see e.g. [16], [20],
[3] and [5]) to prove that apart of a few exceptions equation (3) has no solutions
in X, Y for −100 ≤ a ≤ −2 and 11 ≤ n ≤ B(a). For sake of completeness, we
sketch the main idea of this local method. Choose a small integer k such that
p = 2kn + 1 is a prime. Then both Xn and Y n are either 2kth roots of unity
(mod p) or zero. Thus we have to check the congruence

Xn − aY n ≡ (a− 1)2 (mod p)

only in (2k + 1)2 cases. Programmed in the computer algebra package MAGMA,
this method works very efficiently. Those values of 11 ≤ n ≤ B(a) and −100 ≤
a ≤ −2 for which this method does not prove the unsolvability of equation (3)
are listed in Table 3.

n 11 11 11 11 11 11 11 11 13 13 13 13 13

a −2 −36 −45 −46 −55 −67 −78 −89 −8 −12 −21 −28 −52

n 13 13 13 13 13

a −71 −76 −81 −82 −91

n 17 17 17 17 17 17 19 19 19 19 19 19 23

a −9 −42 −45 −46 −52 −100 −14 −51 −60 −68 −77 −99 −94

Table 3.

The third step is to solve one by one the remaining equations. Wherever it
is possible we use the Thue-solver implemented in the computer algebra packages
MAGMA [9] and PARI [21].

To solve the equations corresponding to pairs (n, a) with n ∈ {3, 4, 5, 7} and
−100 ≤ a ≤ −2 we use the package MAGMA. In order to solve the “exceptional”
equations corresponding to pairs (n, a) listed in Table 3 we use the Thue-solver
included in PARI. (For the main ideas behind the latest improvements on this
Thue-solver implemented by G. Hanrot see [14] and [8].)
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In the case when (n, a) = (23,−94) the Thue-solvers of the mentioned com-
puter algebra packages are unable to solve equation (3), and if

(n, a) ∈ {(11,−89) , (11,−67) , (11,−46) , (13,−82) , (19,−77)} ,

using PARI we are able to get only conditional result assuming the generalized
Riemann Hypothesis.

If n = 23 and a = −94, we use Lemma 3.2 (i). First using the local approach
with p = 599 we prove that equation (3) might have only solutions with xy ≡ 0
(mod p) and then we use Lemma 3.2 (i) with this value of p. Here both for the
local computations and for the computation of the needed Fourier coefficients of
all occurring newforms we use again MAGMA.

If
(n, a) ∈ {(11,−89) , (11,−46) , (13,−82) , (19,−77)} ,

we use Lemma 3.2 (ii). For instance, we consider the case when n = 11, a = −89.
Equation (3) then takes the form

a11 + 89b11 = (−90)2. (4)

Let us suppose that we have a solution (a, b, c) of (4) with the conditions of
Lemma 3.2. Then ε2 = 32 since bBC is odd and we have to consider the space of
modular forms of level

N = Rad2(1 · 89) · Rad2(1)2 · 32 = 89 · 32 = 2848.

17 cuspidal newforms occur at this level. Let us denote them by f1, . . . , f17 and
put p = 23. Then using MAGMA we get a contradiction on the case of all of
these newforms if ap = a23 = ±24 or a23 ∈ {x : |x| < 2

√
23, x ≡ 0 (mod 2)}

except f1 and f4 that are both rational newforms. Analyzing the conditions on
(a, b, c, A, B,C) we get that we can only be in case (i) among the above mentioned
(i)–(v) cases. So we associate to the solution (a, b, c) of equation (4) the elliptic
curve E1 that now takes the form

E1(a, b, c) : Y 2 = X3 − 180X2 + 89b11X.

The local method shows that b11 ≡ 22 (mod 23) always holds. Thus the curve
E1 has the following form over F23:

E1 : Y 2 = X3 + 4X2 + 3X,



496 András Bazsó

which is independent of (a, b, c). For the number of points on this curve over F23

we get that #E1(F23) = 24 so we have

a23 = 23 + 1− 24 = 0.

The Fourier series and the 23rd Fourier coefficient of f1 and f4 are

f1 = q + 2q5 − 2q7 − 3q9 + 4q11 + 4q13 − 2q17 + 8q19 + 6q23 + O
(
q24

)
, c23 = 6

and

f4 = q + 2q5 + 2q7 − 3q9 − 4q11 + 4q13 − 2q17 − 8q19 − 6q23 + O
(
q24

)
, c23 = −6,

respectively. Thus we get a contradiction in both cases since the corresponding
norms are not divisible by 11. In the other cases we do similar computations.

Unfortunately in the case n = 11, a = −67 we find no way to prove the result
unconditionally. ¤

Proof of the Theorem. Let x0, . . . , xn−1 ∈ Z be a solution of equa-
tion (1) which forms an arithmetic progression and put d := xi+1 − xi for
i =1, . . . , n− 1. Then equation (1) has the form

NK/Q
(
(1 + α + α2 + · · ·+ αn−1)x0 + (α + 2α2 + · · ·+ (n− 1)αn−1)d

)
= 1. (5)

In [6], Bérczes and Pethő showed that any solution x0, d of equation (5)
leads to a solution X, Y of equation (3) and these solutions are related to each
other by the formulas X := −x0(a−1)−dan and Y := −x0(a−1)−dan+d(a−1).
Lemma 4.1 gives us all solutions of equation (3), and these solutions are listed in
Table 1.

Now to prove our Theorem, we have to check whether a solution of equation
(3) leads to an integral solution of equation (1), which has coordinates forming
an arithmetic progression, or not. Using Table 1 we can verify that this condition
is fulfilled only if (n, a,X, Y ) ∈ {(3,−7,−5, 3), (3,−9, 7,−3)}. Any other solution
(X, Y ) of equation (3) leads to a pair (x0, d), where x0 and d are not both integers.
This concludes the proof of our Theorem. ¤
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