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On the oscillatory behavior of solutions of
second order nonlinear differential equations

By S. R. GRACE (Giza)

Abstract. In this paper we study the problem of oscillation of Emden-Fowler
equations of the form

(E) (a(t)x́(t))′ + q(t)(|x(t)|c) sgn x(t) = 0 ,

where a, q : [t0,∞) → R are continuous, a(t) > 0 and
∞R
t

q(s)ds converges for t ≥ t0. The

obtained results are applicable to equation (E) for all c > 0, while all known oscillation
criteria for equation (E) with integrally small coefficient q are presented when c = 1.

1. Introduction

Consider the second order differential equation

(E) (a(t)x́(t))′ + q(t)(|x(t)|c) sgn x(t) = 0, c > 0 and ( ′ =
d

dt
) ,

where a, q : [t0,∞) → R = (−∞,∞) are continuous and a(t) > 0 for
t ≥ t0. We assume that:

∞∫
1

a(s)
ds = ∞, and(1)

∞∫

t

q(s)ds converges .(2)

We consider only such solutions of equation (E) which exist on some
interval [tx,∞), tx ≥ t0 ≥ 0. A solution of equation (E) is said to be
oscillatory if it has arbitrarily large zeros, and otherwise, it is said to be
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nonoscillatory. Equation (E) is called oscillatory if all of its solutions are
oscillatory.

Of particular interest is the problem of finding criteria for the oscilla-
tion of the differential equation (E) when q is allowed to take on negative
values and condition (2) is satisfied. Many criteria have been found which
involve convergence of the improper integral of the alternating coefficient
and which are motivated by the results of Kamenev [5], for the special
case c = 1 and a(t) = 1 (or almost linear equations of type (E)). For such
results on second order oscillation, we choose to refer to papers [1–7] and
the references cited therein.

It seems that all extensions of Kamenev’s results [5] are applicable to
equations of type (E) with c = 1. Therefore, the purpose of this paper is
to proceed further in this direction to present some new oscillation criteria
for equation (E) for all c > 0.

As long as the improper integral (2) converges we can define

g0(t) = (h(t))1/2

∞∫

t

q(s)ds , g1(t) =

∞∫

t

(g0(s)+)2ds ,

and

gn+1(t) =

∞∫

t

((g0(s) + M(h(s))1/2gn(s))+)2ds, for n = 1, 2, 3, . . . ,

where h(t) = 1
a(t) if c = 1 and h(t) = 1

a(t)

(
t∫

T

1
a(s)ds

)−1

if c 6= 1, and for

t ≥ T for some T ≥ t0, M is any positive constant, M = 1 if c = 1 and
g0(t)+ = max{g(t), 0}.

In the following theorem we make use of the following condition: For
any constant M > 0, there exists a positive integer N such that

(3) gn exists for n = 0, 1, . . . , N − 1 and gN does not exist.

Theorem 1. Suppose that conditions (1)–(3) hold. Then equation
(E) is oscillatory for all c > 0.

Proof. Let x(t) be a nonoscillatory solution of equation (E), say
x(t) > 0 for t ≥ t0 ≥ 0. Furthermore, we define

W (t) =
a(t)x́(t)
(x(t))c

for t ≥ t0 .

Then for t ≥ t0, we have

(4) Ẃ (t) = −q(t)− ca(t)
(x́(t))2

(x(t))c+1
.
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Thus, for t ≥ t0, we get

(5) W (t) + c

t∫

t0

a(s)
(

x́(s)
xm(s)

)2

ds = W (t0)−
t∫

t0

q(s)ds ,

where m = c+1
2 .

Next, we consider the following two cases:

Case 1. The integral

(6)

∞∫

t0

a(s)
(

x́(s)
xm(s)

)2

ds

is finite. In this case, there exists a positive constant A so that

t∫

t0

a(s)
(

x́(s)
xm(s)

)2

ds ≤ A for t ≥ t0 .

By the Schwarz inequality,
∣∣∣∣∣∣

t∫

t0

x́(s)
xm(s)

ds

∣∣∣∣∣∣

2

≤



t∫

t0

ds

a(s)







t∫

t0

a(s)
(

x́(s)
xm(s)

)2

ds




≤A

t∫

t0

ds

a(s)
,

or

|x1−m(t)− x1−m(t0)| ≤ |1−m|

A

t∫

t0

ds

a(s)




1/2

.

There exist t1 > t0 and a constant B > 0 so that

(7) |x1−m(t)| ≤ B




t∫

t0

ds

a(s)




1/2

for all t ≥ t1 .

Using (7) in (4), we get

(8) Ẃ (t) ≤ −q(t)−Mh(t)W 2(t) for t ≥ t1 ,
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where M = c/B2 and h(t) = 1
a(t)

(
t∫

t0

ds
a(s)

)−1

if c 6= 1, M = 1 and h(t) =

1/a(t) if c = 1. From (6) and (7) we see that

(9)

∞∫

t

h(s)W 2(s)ds < ∞ .

Thus, for z ≥ t ≥ t1, we have

(10) W (z) + M

z∫

t

h(s)W 2(s)ds ≤ W (t)−
z∫

t

q(s)ds ,

and hence, one can easily check that
(11) lim

t→∞
W (t) = 0

and

(12) W (t) ≥
∞∫

t

q(s)ds + M

∞∫

t

h(s)W 2(s)ds, t ≥ t1 .

Now,

(13) W (t) ≥ (h(t))−1/2g0(t) + M

∞∫

t

h(s)W 2(s)ds, t ≥ t1 .

From (13),
W (t) ≥ (h(t))−1/2g0(t) ,

which implies that

(14) W 2(t) ≥ (h(t))−1(g0(t)+)2 .

If N = 1, then (9) and (14) imply that

g1(t) =

∞∫

t

(g0(s)+)2ds < ∞ ,

which cotradicts the nonexistence of gN (t) = g1(t). If N = 2, then from
(13) and (14) we get

W (t) ≥ (h(t))−1g0(t) + M

∞∫

t

(g0(s)+)2ds

=(h(t))−1g0(t) + Mg1(t) ,
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so
(h(t))1/2W (t) ≥ g0(t) + Mg1(t)(h(t))1/2 ,

from which it follows that

h(t)W 2(t) ≥ ((g0(t) + Mg1(t)(h(t))1/2)+)2 .

Then, in view of (9), an integration of the last inequality leads to a con-
tradiction of the nonexistence of gN = g2. Similar arguments lead to
contradiction for any integer N > 2.

Case 2. The integral
∞∫

a(s)
(

x́(s)
xm(s)

)2

ds

is infinite. Using (2) in (5) we have, for t ≥ T for some T ≥ t0

(15) −a(t)x́(t)/x−c(t) ≥ L + c

t∫

T

a(s)(x́(s))2/x1+c(s)ds ,

where L is a constant. By the assumption, we can choose a T1 > T so that

c

T1∫

T

a(s)(x́(s))2/x1+c(s)ds = 1 + L

and then for any t ≥ T1, we get

−a(t)(x́(t)/xc(t))(−cx́(t)/x(t))

−L +
T∫
t

a(s)(x́(s))2/x1+c(s)ds

≥ −cx́(t)/x(t) .

Integrating the above inequality from T1 to t we obtain

ln(−L + c

t∫

T1

a(s)(x́(s))2/x1+c(s)ds) ≥ c

t∫

T1

−x́(s)/x(s)ds =

= ln(x(T1)/x(t))c ,

which together with (15) yields

−a(t)(x́(t)/xc(t)) ≥ (x(T1)/x(t))c ,

from which it follows that

x́(t) ≤ −(−x(T1))c(1/a(t)) < 0 for t ≥ T1 ,
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or

x(t) ≤ x(T1)− (x(T1))c

t∫

T1

1/a(s)ds → −∞ as t →∞ ,

contradicting the fact that x(t) > 0 for t ≥ t0. This completes the proof.

The following criterion removes the condition that gn must fail to
exist for some n = N :

Theorem 2. Assume that conditions (1) and (2) hold. If gn exists
for all n = 1, 2, . . . and there exists an increasing sequence sj → ∞ as
j → ∞ such that gn(sj) → ∞ as n → ∞ for each j, then equation (E) is
oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (E), say
x(t) > 0 for t ≥ t0 ≥ 0. Proceeding as in the proof of Theorem 1 (case 1)
we again obtain (11) and (12), so that (13) and (14) hold. Since gn exists
for each n, an argument similar to the one used in Theorem 1 shows that

W (t) ≥ (h(t))−1/2g0(t) + Mgn(t) for n ≥ 1 .

Hence there exists sJ > t1 such that

W (sJ ) ≥ (h(sJ ))−1/2g0(sJ) + Mgn(sJ) →∞ as n →∞ ,

which contradicts (12). The rest of the proof is similar to the proof of
Theorem 1 and hence is omitted.

There are numerous known criteria related to Theorem 1; see for
example [1–7] and the references contained therein. None of these appear
to contain Theorem 1 with c 6= 1. In particular, it follows from Theorem 1
that all solutions of the differential equation

(E∗) (e−tx́(t)) + t−3/2(cos(ln t)− sin(ln t)) (|x(t)|c) sgn x(t) = 0 ,

c > 0, t ≥ t0 = 1 ,

are oscillatory for all c > 0, while none of the results cited above apply
to this equation. To check that equation (E∗) satisfies the conditions of
Theorem 1, observe that

∞∫

t

q(s)ds = t−1/2 sin(ln t), h(t) =
et

et − 1
,



On the oscillatory behavior of solutions . . . 357

g0(t) = (h(t))1/2

∞∫

t

q(s)ds =
(

et

et − 1

)
t−1/2 sin(ln t), and

g1(t) =

∞∫

t

(g0(s)+)2ds =
1
4

∞∫

t

es

es − 1
1
s
(sin(ln s) + | sin(ln s)|)2ds

≥ 1
2

∞∫

t

1
s
(sin2(ln s) + sin(ln s)| sin(ln s)|)ds

≥ 1
2

∞∑

n=k

exp(n+1)π∫

exp(nπ)

1
s
(sin2(ln s) + sin(ln s)·

· | sin(ln s)|)ds, k = [t]

≥
∞∑

n=k

exp(2n+1)π∫

exp(2nπ)

sin2(ln s)
s

ds =
∞∑

n=k

π∫

0

sin2(ln s)ds = ∞ .

Thus, g1 does not exist, i.e. condition (3) holds with N = 1.
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