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IP sets, Hilbert cubes

By Norbert Hegyvári

Abstract. Given a subset E of the set of natural numbers, FS(E) is defined as

the collection of all sums of elements of finite subsets of E and any translation of FS(E)

is said to be a Hilbert cube. We estimate the rate of growth of E given that FS(E)

avoids a set of multiplies of a given infinite set of primes. The results are related to

a result which states that there exists an infinite Hibert cube contained in the set of

square-free numbers.

1. Introduction

There is an interesting and permanent dialog between ergodic theory and
combinatorial number theory. Important configurations in ergodic theory and
in the combinatorial number theory as well are sets called IP-sets and Hilbert
cubes. Given a subset E of the set of natural numbers FS(E) is defined as the
collection of all sums of elements of finite subsets of E (sometimes the empty set
is excluded). If E is infinite then the set FS(E) is said to be an IP-set (which is
an important notion in ergodic theory). A more general configuration is a Hilbert
cube which is a translation of FS(E), i.e. if E = {x1, x2, . . . } is a finite or infinite
set of integers with xi 6= xj whenever i 6= j and a0 is a given integer, then

H = H(a0, x1, x2, . . . ) =
{

a0 +
∑

εixi : εi ∈ {0, 1} and
∑

εi < ∞
}

called a Hilbert-cube (briefly H-cube) or a combinatorial cube.
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The existence of a “big” H-cube in a dense set was a crucial point of Sze-
merédi’s proof of his theorem on arithmetic progressions,. Many authors have
investigated infinite H-cubes in special sets (see e.g. [HI], [HE-SÁ], [BE-RU].)

A stronger version of an IP-set will be an IP-set. We define FS(A) the set
of all sums of the form

∑
xiai where xi is an integer and fulfils the condition

0 ≤ xi ≤ i. Furthermore we assume that
∑

xi < ∞. If a set contains an FS(A)
then it is said to be IP-set.

It is reasonable to distinguish the notion of IP-set (IP-set) and Hilbert cube.
Clearly the set of odd numbers contains an infinite Hilbert cube, but does not
contain an IP-set. (In fact an FS(E) is a subset of the set of odd numbers if
and only if E = {2k − 1} for some natural number k). An interesting result
of E. G. Strauss is that for every ε > 0 there exists a sequence A for which
d(A) ≥ 1 − ε but A does not contain an infinite Hilbert cube (see in [HI]).
Therefore it is a harder job to show that a set does not contain an infinite Hilbert
cube than to prove that a given set contains an IP-set.

In [BE-RU] Bergelson and Ruzsa proved the following interesting fact:
Let A be the sequence of squarefree numbers. The set A− a contains an IP-set if
and only if a ∈ A. (Consequently, for every a ∈ A there exists an infinite Hilbert
cube H = H(a, x1, x2, . . . ) in A.) They derived this result from the following

Theorem A. Let X ⊆ N be a set such that 1 /∈ X, any two elements of X

are coprime, and
∑

x∈X

1/x < ∞. (1)

Define Bc(X) as the set of natural numbers that are not divisible by any element

of X. Then Bc(X) contains an IP-set.

The aim of this note is to investigate related questions. We can ask a gener-
alization of this result as follows:

Let S be an arbitrary semigroup, and let A be a subset of it. Assume that
there exists an n, such that any j-element subset of A, 1 ≤ j ≤ n does not
generate S. Let B(A) =

⋃
i∈I〈Ai〉, where 〈Ai〉 is the semigroup generated by Ai,

for every i the cardinality of Ai is at most n, and {Ai : i ∈ I} is a (disjoint)
partition of A.

Let Bc(A) = S \ B(A). Our question is the following: for which A will
contain Bc(A) an infinite IP-set (Hilbert-cube)? If S = N, and the Ai’s are the
one-element subsets of A then we obtain the original question of Bergelson and
Ruzsa. In the present paper we are going to investigate the case when S = Nk.
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2. Notations

For A ⊆ Nk we define B(A) as the set of all multiples of elements of A, i.e.,

B(A) =
⋃

a∈A

〈a〉 ∩ Nk = {λa : a ∈ A and λ ∈ N}.

Let Bc(A) = Nk \ B(A) (the set of all vectors in Nk which are not a multiple of
any element of A). N denotes the set of non-negative integers, R the set of real
numbers. Let us denote by d(P,Q) the Euclidean distance between P,Q ∈ Rk.
If the point Q is the origin, then we write d(P ). Given a set A, |A| denotes the
cardinality of A. The counting function A(x) of A ⊆ Nk is defined by A(x) =
|{a ∈ A : d(a) ≤ x}|.

Let A,B ⊆ Rk. The set addition of A and B is defined by A + B = {a + b :
a ∈ A and b ∈ B}. If C ⊆ Rk and λ ∈ R, then let λC = {λc : c ∈ C}.

3. A result in Nk

In the present section we prove a k-dimensional analogue of Bergelson–
Ruzsa’s result.

Theorem 1. Let A ⊆ Nk, let k ≥ 2, and assume that

lim inf
x→∞

A(x)
xk−1

= 0. (2)

Then Bc(A) contains an IP-set.

Proof of Theorem 1. Our task is to find an IP-set containing in Bc(A).
By (2) we have that Bc(A) is a non-empty set, therefore we can select a ~x1 ∈
Bc(A). Furthermore let us assume that the set FS(X) has been defined and we
have FS(X) = {α1 ~x1 + α2 ~x2 + · · ·+ αn ~xn : αi ∈ N and αi ≤ i} ⊆ Bc(A).

Let M = M(n) =
∑

1≤i≤n i · d(~xi). Consider a k-dimensional ball

Gk(M) = {~x : ~x ∈ Rk and d(~x) ≤ M},

By the definition of M we conclude that FS(X) is a subset of Gk(M) ∩Nk.
By (2) we have that there exists an x > 2n ·M for which

A(x) ≤ c1

( x

M

)k−1
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holds, where c1 will be specified later. Let S be a k − 1 dimensional surface of a
sphere with radius x, i.e. S = {~z : ~z ∈ Rk and d(~z) = x}. Set a dense packing of
S by (k − 1)-dimensional balls with radius 2nM , where packing means that any
two different balls have at most one common point, and dense means that the
volume of the union of the balls is a positive proportion of the volume of S, i.e.
if G1, G2, . . . , Gs are the balls then there is a constant c(k) = c > 0 such that

c · vol(S) < vol (∪s
i=1Gi) =

∑

i=1

vol(Gi) = s · (c2M
k−1),

where c2 depends only on k. Hence we obtain

s >
c · vol(S)
c2Mk−1

= c3

( x

M

)k−1

,

where c3 depends only on k.
The convex hull of the origin and a Gi is said to be cell and denoted by Ci.

The number of cells is at least

c3l
( x

M

)k−1

.

Since A(x) ≤ c1

(
x
M

)k−1, if c1 < c3 then there is a cell C which does not contain
an element from A. We claim that the inside of C and B(A) are disjoint sets.
Assume now contrary to the assumption that there is a ~b ∈ B(A) and ~b lies in
the inside of C. Since ~b ∈ B(A) we have that there is a positive integer t such
that ~b/t ∈ A. But C is a convex set thus ~b/t lies in C which contradicts to the
fact that C and A are disjoint sets.

Dilate now C into 1
n+1C. By the definition of C we infer that 1

n+1C contains
a k-dimensional ball G∗ with radius M and center from Nk. Let xn+1 be the
center of G∗.

Recall that

FS(X) = {α1 ~x1 + α2 ~x2 + · · ·+ αn ~xn : αi ∈ N; 0 ≤ αi ≤ i}

and clearly

FS(X ∪ {xn+1}) =
n+1⋃

i=0

(FS(X) + i · xn+1).

Consider the sequence of balls

G∗ = G∗1; G
∗
2; . . . ; G

∗
n+1,
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where the radius of G∗i is M and the center is i · xn+1. Note that for all G∗i ⊆ C.
Furthermore observe that for each i, 1 ≤ i ≤ n + 1

i · xn+1 + FS(X) ⊆ G∗i ,

and hence the set of union of these sets also lies in C. It means that
n+1⋃

i=1

(FS(X) + i · xn+1) ∩B(A) = ∅,

i.e.
FS(X ∪ {xn+1}) ∩B(A) = ∅,

as we wanted.
Hence the theorem. ¤

4. A result in N

In the present paragraph we shall investigate how sharp is the Bergelson–
Ruzsa’s theorem. What happens in Theorem A if we replace a convergent series
by a divergent one; what can we say about Bc(A)? Trivially for the sequence of
primes, which forms a divergent series, the set Bc(A) will not contain an infinite
Hilbert cube since it will be the empty set. But on the other hand it is not
completely clear that one can leave infinitely many primes from P , leaving P ′

such that Bc(P ′) does not contain an Hilbert cube. First we shall prove:

Proposition 1. There exists a subset P ′ of the set of primes P for which

|P \ P ′| = ∞, and Bc(P ′) does not contain an infinite Hilbert cube.

Furthermore we give an estimation that how “big” could be a Hilbert cube
contained in Bc(A), where A is a subsequence of all primes. So let
H = H(a0, x1, x2, . . . ) be a Hilbert cube in Bc(A) and let

HA(n) = H(n) = |{x1, x2, . . . } ∩ [1, n]|,
We prove

Theorem 2. Let 〈pi〉∞i=1 be an increasing sequence of primes and let A =
{pi : i ∈ N}. Assume that there is a Hilbert cube H(a0, x1, x2, . . . ) ⊆ Bc(A).
Then for each n ∈ N,

H(n) < 8
f(n)∑

i=1

p
3/2
i , (3)

where f(n) is the smallest s for which p1p2 . . . ps ≥ n.
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We apply Theorem 2 in the following case:

Corolary. Let α > 1 and let P ′ = 〈pi〉∞i=1 be an increasing sequence of

primes for which limi→∞
pi

iα = 1. Then we have

HP ′(n) < c(α)
(

log n

log log n

) 3α+2
2

.

Proof of the Corollary. First let us note that for every α > 1 there is
a sequence P ′ of primes for which limi→∞

pi

iα = 1. Indeed from the Prime Number
Theorem we have that qi ∼ i · log i, where qi is the ith prime in the sequence of
all primes. Now selecting an arbitrary sequence ij ∼ jα

α log j , we obtain

pj = qij ∼ ij · log ij ∼ jα.

Now using the Stirling’s formula we get that f(n) = c1
log n

log log n , where c1

depends only on α. By Theorem 2 we have

HP ′(n) < 8
f(n)∑

i=1

p
3/2
i < c1

∫ f(n)

i=1

i3α/2 < c(α)
(

log n

log log n

) 3α+2
2

. ¤

Remark. The related question of Bergelson and Ruzsa is the following: for a
given sequence A of primes B(A) = {k ·p : p ∈ A and k ∈ N} and the complement
of B(A) is the set of all integers which are composed solely of the primes not in A.
In the Proposition we show the existence an infinite cube in Bc(A).

We can ask an opposite question as well: Let A′ be any sequence of prime
numbers and let

∏
(A′) be the set of all integers can be divided by primes only

from A. Observe that
∏

(A′) is a generalized multiplicative IP-set. Then we ask:
what is the maximal additive Hilbert cube which avoids

∏
(A′)? We shall return

to this question in another paper.

Proof of Proposition 1. For the proof we need a lemma which is a spe-
cial case of a deep result of R. Tijdeman (see in [T]).

Define by U(P ′′) the set of all integers which are composed solely of the
primes of P ′′, i.e. U(P ′′) = {n : p|n ⇒ p ∈ P ′′} and let 〈ni〉∞i=1 enumerate U(P ′′)
in increasing order. ¤

Lemma 1. There exists an infinite sequence P ′′ of primes for which

ni+1 − ni >
√

ni. (4)
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Note that Lemma 1 also implies that

ni − ni−1 >

√
ni

2
. (5)

Indeed if ni ≤ 4ni−1 then ni − ni−1 >
√

ni−1 ≥
√

ni

2 or ni > 4ni−1 and then
ni − ni−1 > 3

4ni >
√

ni

2 .
Now let P ′ = P \P ′′. By Lemma 1 we get that |P \P ′| = |P ′′| = ∞. By the

definition of B(P ′), an integer m is an element of B(P ′) if m has a prime divisor
from the set P ′. Hence Bc(P ′) collects all integers composed solely of the primes
P ′′, i.e. m ∈ Bc(P ′) if and only if m =

∏
p∈P” pα and hence Bc(P ′) = U .

Now assume contrary to the assertion that Bc(P ′) contains an infinite Hilbert
cube, say H = H(a0, x1, x2, . . . ). Choose an element h from H, for which h > 4x2

1.
Since H is infinite such an element exists. By (4) and (5) we obtain

min{|m− h| : m ∈ Bc(P ′)} >

√
h

2
> x1. (6)

But h can be expressed as h = h′ + ε1x1, where ε1 = 0 or ε1 = 1, and x1 is not
a term of h′. If ε1 = 0 then h + x1 ∈ H, if ε1 = 1 then h − x1 ∈ H. Both cases
contradict (6).

Proof of Theorem 2. Assume that there exists an infinite cube H =
H(a0, x1, x2, . . . ) ⊆ Bc(A). We shall prove

H(n) < 8
f(n)∑

i=1

p
3/2
i .

Now for every k ≤ f(n) write pk = Mp + r, 0 < r < p, where p is an arbitrary
prime less than pk. Clearly there exists a positive integer r′ such that

r · r′ = p · s + a0,

for some s ∈ N. Since pk ∈ A we obtain that for every w ∈ N, (pw+r′)pk ∈ B(A)
and hence

(pw + r′)pk = p(pkw + r′M + s) + a0.

Define Hk the set of all elements of {x1 < x2 < . . . }∩ [1, n] which are not divisible
by pk. Thus if

xu /∈
f(n)⋃

k=1

Hk
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then we conclude
p1p2 · · · pk | xu ⇒ xu > n,

i.e. all elements of {x1, x2, . . . } \ ∪f(n)
k=1 Hk are bigger than n. Hence we have

H(n) ≤
f(n)∑

k=1

|Hk|.

We give an upper estimation for Hk. Let y1 < y2 < . . . yu ≤ n be the elements
of Hk. We shall prove u ≤ 4p

3/2
k p. Assume contrary to this assertion that

u > 4p
3/2
k p. Split the set {y1 < y2 < · · · < yu} into 2p many pairwise disjoint sets

with cardinality at least 2p
3/2
k . Denote them by Y1, Y2, . . . Ym, . . . Y2p. We claim

that it is enough to prove that for each set Ym there exists an nm such that

pknm + r′M + s ∈ FS(Ym). (7)

Indeed by the Erdős–Ginzburg–Ziv theorem (see [EGZ]) we can select p ele-
ments from the set {nm}1≤m≤2p having a sum ≡ 0 (mod p) i.e.

p∑

j=1

(pknmj + r′M + s) = p(pk · w + r′M + s),

with some integer w. But (pw + r′)pk = p(pkw + r′M + s) + a0 ∈ B(A) ∩
H(a0, x1, x2 . . . ) a contradiction.

Let Ym = Y = {y1, y2, . . . , ys}, s ≥ 2p3/2. We distinguish two cases; If there
is an r 6≡ 0 (mod pk) such that yi ≡ r (mod pk) has at least pk solution, then for
some z, z · r ≡ r′M + s (mod pk), which implies (5).

If for any r 6≡ 0 (mod pk) yi ≡ r (mod pk) has at most pk − 1 solution, then
we can select Y ′ = {yi1 , . . . , yiT

} ⊆ Y , for which the elements of Y ′ are pairwise
incongruent and T > 2

√
pk. ¤

Lemma 2. Assume Y ′ = {yi1 , . . . , yiT } a set of integers for which the el-

ements of Y ′ are pairwise incongruent and T > 2
√

pk. Then
∑

(Y ′) intersects

every residue classes (mod pk).

This is a theorem of Olson [OL].

But it gives again (5).
Finally note that if X ⊆ X ′ then Bc(X ′) ⊆ Bc(X ′), hence without loss of

generality 2 < p1.



IP sets, Hilbert cubes 53

We obtained Hk ≤ 4p
3/2
k p, and since this argument holds for all prime p for

the smallest we get
Hk ≤ 8p

3/2
k ,

which proves the theorem.
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