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Geometrical structures on Lie algebroids

By LIVIU POPESCU (Craiova)

Abstract. In this paper we study on the prolongation of Lie algebroid the notions

such as: nonlinear connection, related connections, torsion and curvature, semispray

and complex structures. The case of homogeneous connections and some examples are

presented.

1. Introduction

The Lie algebroid is a generalization of the notions of Lie algebra and inte-
grable distribution. A unitary study of Lie algebroids has realized by K. Macken-

zie in [12]. A. Weinstein [15] developed a generalized theory of Lagrangian Me-
chanics on Lie algebroids and obtained the equations of motion, using the Poisson
structure on the dual and Legendre transformation. Later, E. Martinez [11] de-
veloped the Klein’s formalism on Lie algebroids using the notion of prolongation
of Lie algebroid over a smooth map [7], and has proposed a modified version of
symplectic formalism, in which the bundles tangent to E and E∗ are replaced
by the prolongations T E and T E∗. The notion of nonlinear connection on Lie
algebroid is a natural extension of the usual concept on the tangent bundle (see
[4], [1]). In the last years diverse aspects of this topic have been studied in a
number of works. In [2] a generalized notion of connection over a vector bundle
map is presented. The nonlinear connection on the prolongation of Lie algebroid
over the vector bundle projection of a dual bundle is investigated in [8]. In [13]
a definition for torsion and curvature of a connection on affine Lie algebroid is
given and the connection generated by a pseudo-SODE is pointed out.
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The purpose of the present paper is to study the nonlinear connection on
the prolongation of Lie algebroid and its properties. The paper is organized as
follows. In Section 2 the known results on Lie algebroid and its prolongation over
the vector bundle projection are recalled. In section 3 we introduce the nonlinear
connection on the prolongation Lie algebroid T E such that T E = V T E⊕HT E.
We show that the vertical part of the bracket of horizontal sections from the
basis represents the local coordinates of the curvature tensor of the connection.
We study the related connections and show that a connection on TE generates
a connection on T E. We introduce an almost complex structure and prove that
its integrability is characterized by a zero torsion and curvature property of the
connection. The nonlinear connection generated by a semispray and its properties
are studied, and in the homogeneous case a canonical connection associated to a
Finsler function is determined.

2. Preliminaries on Lie algebroids

2.1. The notion of Lie algebroid. Let M be a differentiable, n-dimensional
manifold and (TM, πM , M) its tangent bundle. Let (E, π,M) be a vector bundle
with the dimension of type fibre m. A Lie algebroid over a manifold M (see [12])
is a vector bundle (E, π, M) equipped with a Lie algebra structure [ , ] on its
space of sections, denoted Γ(E), and a map σ : E → TM (called the anchor)
which induces a Lie algebra homomorphism (also denoted σ) from sections of E

to vector fields on M , satisfying the Leibniz rule

[s1, fs2] = f [s1, s2] + (σ(s1)f)s2, (1)

where f ∈ C∞(M) and s1, s2 ∈ Γ(E). Therefore, we have

[σ(s1), σ(s2)] = σ[s1, s2], [s1, [s2, s3]] + [s2, [s3, s1]] + [s3, [s1, s2]] = 0

and the triple (E, [ , ], σ) is called a Lie algebroid over M . If ω is a k-form,
ω ∈ ∧k(E) = Γ((E∗)k → M , then the exterior derivative dω ∈ ∧k+1(E) is given
by the formula

dω(s1, . . . , sk+1) =
k+1∑

i=1

(−1)i+1σ(si)ω(s1, . . . , ŝi, . . . , sk+1)

+
∑

1≤i<j≤k+1

(−1)i+jω([si,sj ], s1, . . . , ŝi, . . . , ŝj , . . . , sk+1). (2)
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For ξ ∈ Γ(E) can be defined the Lie derivative with respect to ξ given by
Lξ = iξ ◦ d + d ◦ iξ. If we take the local coordinates (xi) on an open U ⊂ M

and a local basis {sα} of sections of the bundle π−1(U) → U , then we have the
local coordinates (xi, yα) on E. These coordinates determine the local functions
σi

α(x), Lγ
αβ(x) on M given by

σ(sα) = σi
α

∂

∂xi
, [sα, sβ ] = Lγ

αβsγ , i = 1, n, α, β, γ = 1,m, (3)

and satisfying the relations

σj
α

∂σi
β

∂xj
− σj

β

∂σi
α

∂xj
= σi

γLγ
αβ ,

∑

(α,β,γ)

(
σi

α

∂Lδ
βγ

∂xi
+ Lδ

αηLη
βγ

)
= 0, (4)

which are called the structure equations of Lie algebroid. In local coordinates the
differential d is determined by dxi = σi

αsα, dsα = − 1
2Lα

βγsβ ∧ sγ , where {sα} is
the dual basis of {sα} and we have the relations d2xi = 0 and d2sα = 0. The
differential of a function f on M is given by df = ∂f

∂xi σ
i
αsα and in particular we

have ẋi = σi
αyα.

2.2. The prolongation of a Lie algebroid. Let (E, π, M) be a vector bundle.
For the projection π : E → M we can construct the prolongation of E (see [7],
[9], [11]). The associated vector bundle is (T E, π2, E) where T E = ∪w∈ETwE

with

TwE = {(ux, vw) ∈ Ex × TwE | σ(ux) = Twπ(vw), π(w) = x ∈ M},
and the projection π2(ux, vw) = πE(vw) = w, where πE : TE → E is the tan-
gent projection. We have also the canonical projection π1 : T E → E given by
π1(u, v) = u. The projection onto the second factor σ1 : T E → TE, σ1(u, v) = v

will be the anchor of a new Lie algebroid over manifold E. An element of T E

is said to be vertical if it is in the kernel of the projection π1. We will denote
(V T E, π2|V TE

, E) the vertical bundle of (T E, π2, E).
If f ∈ C∞(M) we will denote by f c and fv the complete and vertical lift to

E of f defined by

f c(u) = σ(u)(f), fv(u) = f(π(u)), u ∈ E.

For s ∈ Γ(E) we can consider the vertical lift of s given by

sv(u) = s(π(u))v
u, u ∈ E,

where v
u : Eπ(u) → Tu(Eπ(u)) is the canonical isomorphism. There exists a unique

vector field sc on E, the complete lift of s satisfying the two following conditions:
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i) sc is π-projectable on σ(s),

ii) sc(α̂) = L̂sα

for all α ∈ Γ(E∗), where α̂(u) = α(π(u))(u), u ∈ E (see [5], [6]).
Considering the prolongation T E of E over the projection π, we may intro-

duce the vertical lift sv and the complete lift sc of a section s ∈ Γ(E) as the
sections of T E → E given by (see [11])

sv(u) = (0, sv(u)), sc(u) = (s(π(u)), sc(u)), u ∈ E.

Other two canonical objects on T E are the Euler section C and vertical
endomorphism J . C is the section of T E → E defined by C(u) = (0, uv

u) for all
u ∈ E and J is the section of the bundle (T E)⊕ (T E)∗ → E characterized by

J(sv) = 0, J (sc) = sv, s ∈ Γ(E).

The vertical endomorphism satisfies J2 = 0, im J = kerJ = V T E and is homo-
geneous of degree 0, that is [C,J ] = −J . Moreover, the Nijenhuis tensor of the
vertical endomorphism vanishes (see [11]). Finally, a section ξ of T E → E is
called semispray (or second order differential equation -SODE ) on E if J (ξ) = C.
The local basis of Γ(T E) is given by {Xα,Vα}, where

Xα(u) =
(

sα(π(u)), σi
α

∂

∂xi

∣∣∣∣
u

)
, Vα(u) =

(
0,

∂

∂yα

∣∣∣∣
u

)

and ( ∂
∂xi ,

∂
∂yα ) is the local basis on TE. The structure functions of T E are given

by the following formulas

σ1(Xα) = σi
α

∂

∂xi
, σ1(Vα) =

∂

∂yα
, (5)

[Xα,Xβ ] = Lγ
αβXγ , [Xα,Vβ ] = 0, [Vα,Vβ ] = 0. (6)

If V is a section of T E then in terms of basis {Xα,Vα} it is V = ZαXα+V αVα,
and the vector field σ1(V ) ∈ χ(E) has the expression σ1(V ) = σi

αZα ∂
∂xi +V α ∂

∂yα .
The vertical lift of a section ρ = ραsα and the corresponding vector field are
ρv = ραVα and σ1(ρv) = ρα ∂

∂yα . The coordinate expressions of C and σ1(C) are

C = yαVα, σ1(C) = yα ∂

∂yα

and the local expression of J is

J = Xα ⊗ Vα
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where{Xα,Vα} denotes the corresponding dual basis of {Xα,Vα}. The local ex-
pression of the differential of a function L on T E is dL = σi

α
∂L
∂xiXα + ∂L

∂yαVα,
and therefore, we have dxi = σi

αXα and dyα = Vα. The differential of sections of
(T E)∗ is determined by

dXα = −1
2
Lα

βγX β ∧ X γ , dVα = 0.

In the local coordinates a semispray has the expression

ξ(x, y) = yαXα + ξα(x, y)Vα

and the associated vector field is σ1(ξ) = σi
αyα ∂

∂xi + ξα ∂
∂yα . The integral curves

of σ1(ξ) satisfy the differential equations

dxi

dt
= σi

α(x)yα,
dyα

dt
= ξα(x, y). (7)

If [C, ξ] = ξ then ξ is called spray and ξα are homogeneous of degree 2 in yα.

3. Nonlinear connections

As in the classical case E = TM we can define the nonlinear connection.

Definition 3.1. A nonlinear connection (or connection) on T E is an almost
product structure N on π2 : T E → E (i.e. a bundle morphism N : T E → T E,
such that N 2 = id) smooth on T E\{0} such that V T E = ker(id+N ).

If N is a connection on T E then HT E = ker(id−N ) is the horizontal
subbundle associated to N and T E = V T E ⊕ HT E. Each ρ ∈ Γ(T E) can be
written as ρ = ρh + ρv where ρh, ρv are sections in the horizontal and respective
vertical subbundles. If ρh = 0 then ρ is called vertical and if ρv = 0 then ρ is
called horizontal. A connection N on T E induces two projectors h, v : T E → T E

such that h(ρ) = ρh and v(ρ) = ρv for every ρ ∈ Γ(T E). We have

h =
1
2
(id +N ), v =

1
2
(id−N ),

ker h = imv = V T E, imh = ker v = HT E.

(8)

Locally, a connection can be expressed as

N (Xα) = Xα − 2N β
αVβ , N (Vβ) = −Vβ , (9)



100 Liviu Popescu

where N β
α = N β

α (x, y) are the local coefficients of N . The sections

δα = h(Xα) = Xα −N β
αVβ , (10)

generate a basis of HT E. The frame {δα,Vα} is a local basis of T E called adapted.
The dual adapted basis is {Xα, δVα} where δVα = Vα −Nα

β X β .

Proposition 3.1. The Lie brackets of the adapted basis {δα,Vα} are

[δα, δβ ] = Lγ
αβδγ +Rγ

αβVγ , [δα,Vβ ] =
∂N γ

α

∂yβ
Vγ , [Vα,Vβ ] = 0, (11)

where

Rγ
αβ = σi

β

∂N γ
α

∂xi
− σi

α

∂N γ
β

∂xi
−N ε

β

∂N γ
α

∂yε
+N ε

α

∂N γ
β

∂yε
+ Lε

αβN γ
ε . (12)

Proof. Using (5) and (6) we get

[δα, δβ ] =
(

σi
β

∂N ε
α

∂xi
−N γ

β

∂N ε
α

∂yγ
− σi

α

∂N ε
β

∂xi
+N γ

α

∂N ε
β

∂yγ

)
Vε + Lγ

αβXγ .

If we replace Xγ = δγ +N ε
γVε then the first relation from (11) is obtained. ¤

We recall that the Nijenhuis tensor of an endomorphism A is given by

NA(z, w) = [Az, Aw]−A[Az, w]−A[z, Aw] + A2[z, w] (13)

Definition 3.2. The curvature of a connection N on T E is given by Ω = −Nh

where h is horizontal projector and Nh is the Nijenhuis tensor of h.

Proposition 3.2. In the local coordinates we have

Ω = −1
2
Rγ

αβXα ∧ X β ⊗ Vγ ,

where Rγ
αβ are given by (12) and represent the local coordinate functions of the

curvature tensor Ω in the frame
∧2 T E∗ ⊗ T E induced by {Xα,Vα}.

Proof. Since h2 = h we obtain

Ω(z, w) = −[hz, hw] + h[hz, w] + h[z, hw]− h[z, w],

Ω(hz, hw) = −v[hz, hw], Ω(hz, vw) = Ω(vz, vw) = 0

and in local coordinates we get

Ω(δα, δβ) = −v[δα, δβ ] = −Rγ
αβVγ

which ends the proof. ¤
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The curvature of nonlinear connection is an obstruction to the integrability of
HT E, understanding that a vanishing curvature entails that horizontal sections
are closed under the Lie algebroid bracket of T E.

Remark 3.1. HT E is integrable if and only if the curvature vanishes.

In the following we will study the related connections which permit us to find
the relations between the coefficients of related nonlinear connections.

Let Ψ a morphism of vector bundles E and E. We recall that the connections
N on E and N on E are Ψ-related if Ψ◦N = N ◦Ψ. We consider the connections
N on T E and N on TE which are σ1-related and a connection N on T 2M which
is σ∗ -related with N on TE and σ̃-related with N on T E, where σ̃ : T E → T 2M

is given by σ̃ = σ∗ ◦ σ1 and σ∗ : TE → T 2M is the tangent application of σ. It
follows

N ◦ σ1 = σ1 ◦ N , N ◦ σ∗ = σ∗ ◦ N, N ◦ σ̃ = σ̃ ◦ N , (14)

Let us consider the adapted basis
(E

δi,
∂

∂yβ

)
of N and

(TM

δi , ∂
∂yj

)
of N given by

E

δi = ∂
∂xi − Nβ

i
∂

∂yβ and
TM

δi = ∂
∂xi −N j

i
∂

∂yj . Therefore, we get

σ∗

(
∂

∂xi

)
=

∂

∂xi
+

∂σk

∂xi

∂

∂yk
, σ∗

(
∂

∂yα

)
= σi

α

∂

∂yi
.

Theorem 3.1. The following relations hold

σ1(δα) = σi
α

E

δi, N β
α = σi

αN
β
i ,

σ∗(
E

δi) =
TM

δi ,
∂σj

∂xi
+ N j

i = Nβ
i σj

β

σ̃(δα) = σi
α

TM

δi , σi
α

∂σj

∂xi
+ σi

αN j
i = N β

α σj
β . (15)

Proof. The first relation from (14) leads to the relation N(σ1(δα)) = σ1(δα)

from which we get σ1(δα) = σi
α

E

δi and N β
α = σi

αN
β
i . In the similar way the others

relations are obtained. ¤

Proposition 3.3. For the curvature tensors of σ1-related connections N
and N we have the relation

Rγ
αβ = σi

ασj
βR

γ
ij , (16)

where Rγ
ij =

E

δi(Nγ
j ) −

E

δj(Nγ
i ) is the curvature tensor of nonlinear connection

on TE.
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Proof. Using the relation N ε
α = σi

αNε
i we obtain

Rγ
αβ = σj

βσi
α

(
E

δj (Nγ
i )−

E

δi

(
Nγ

j

))
+ Nγ

j

(
σi

β

∂σj
α

∂xi
− σi

α

∂σj
β

∂xi

)
+ Lε

αβN γ
ε

and from structure equations of Lie algebroid (4), the second term is given by
Nγ

j σj
εL

ε
βα = −N γ

ε Lε
αβ which concludes the proof. ¤

Remark 3.2. A σ1-related connection N on TE determines a connection N on
T E with the coefficients N β

α = σi
αN

β
i and curvature Rγ

αβ = σi
ασj

βR
γ
ij . Converse,

is not true, because σ is only injective.

Let J be the vertical endomorphism. We have the following result

Remark 3.3. Let N be a bundle morphism of π2 : T E → E, smooth on
T E\{0}. Then N is a connection on T E if and only if

JN = J , NJ = −J .

The proof proceeds as in the case E = TM and will be omitted (see [10]).

Definition 3.3. The torsion of nonlinear connection N is the vector valued
two form t = [J ,h] where h is the horizontal projector and [., .] is the Frolicher–
Nijenhuis bracket.

Proposition 3.4. t is a semibasic vector-valued form. Its local expression

is

t =
1
2
tγαβXα ∧ X β ⊗ Vγ , (17)

where

tγαβ =
∂N γ

α

∂yβ
− ∂N γ

β

∂yα
− Lγ

αβ . (18)

Proof. We have

[J , h](z, w) = [J z, hw] + [hz,Jw] + J [z, w]− J [z, hw]− J [hz, w]

− h[z,Jw]− h[J z, w]

and in local coordinates we get

t(Xα,Xβ) =

(
∂N γ

α

∂yβ
− ∂N γ

β

∂yα
− Lγ

αβ

)
Vγ , t(Xα,Vβ) = t(Vα,Vβ) = 0. ¤
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Now, let us consider the linear mapping F : T E → T E, defined by

F(hz) = −vz, F(vz) = hz,

for z ∈ Γ(T E) and h, v are the horizontal and vertical projectors of nonlinear
connection on T E.

Proposition 3.5. The mapping F has the properties:

i) F is globally defined on T E

ii) Locally it is given by

F = −Vα ⊗Xα + δα ⊗ δVα. (19)

iii) F is an almost complex structure F ◦ F = − id.

Proof. It results by definition that F is globally defined and

(F ◦ F) (hz) = F (−vz) = −hz, (F ◦ F) (vz) = F (hz) = −vz.

In local coordinates we get F (δα) = −Vα and F(Vα) = δα which ends the proof.
¤

Proposition 3.6. The almost complex structure is integrable if and only if

the nonlinear connection is locally flat, that is the curvature and torsion vanish.

Proof. Let NF be the Nijenhuis tensor of the almost complex structure. We
find

NF(δα, δβ) = tγαβδγ −Rγ
αβVγ

NF(δα,Vβ) = −Rγ
αβδγ − tγαβVγ

NF(Vα,Vβ) = −NF(δα, δβ). (20)

From (20) one reads immediately that NF = 0 if and only if t = 0 and Ω = 0. ¤

A curve u : [t0, t1] → E is called admissible if σ(u(t)) = ċ(t) where c(t) =
π(u(t)) is the base curve. A nonlinear connection on T E induces a covariant
derivative of the sections defined locally as follows

Dρη = ρα

(
σi

α

∂ηβ

∂xi
+N β

α

)
sβ ,

where ρ = ραsα and η = ηαsα. The derivative is linear in the first argument and
respect multiplication of second argument by real numbers, but not necessarily
sums, except the case when the coefficients N β

α are the local coefficients of a linear
connection. The linearity in the first argument permit us to define the derivative
of a section η ∈ Γ(E) with respect to a ∈ Eu by setting

Daη = (Dρη)(u),

where ρ ∈ Γ(E) satisfying ρ(u) = a. Also, the covariant derivative allows us to
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take the derivative of sections along curves (see [3]). If we have a morphism of Lie
algebroids ([12]) Φ : F → E over the map ϕ : N → M and a section η : N → E

along ϕ, i.e. η(n) ∈ Eϕ(n), n ∈ N , then η can be written in the form

η =
p∑

l=1

Fl(ξl ◦ ϕ),

for some sections {ξ1, . . . , ξp} of E and some functions {F1, . . . , Fp) ∈ C∞(N)
and the derivative of η along ϕ is given by

Dbη =
p∑

l=1

[(σF (b)Fl)ξl(ϕ(n)) + Fl(n)DΦ(b)ξl], b ∈ Fn

where σF is the anchor map of the Lie algebroid F → N (see [3]).
Let a : I → E be an admissible curve and let b : I → E be a curve in E, both

of them projecting by π onto the same curve γ in M , π(a(t)) = π(b(t)) = γ(t).
Take the particular case of Lie algebroid structure TI → I and the morphism
Φ : TI → E, Φ(t, ṫ) = ṫγ(t) over γ : I → M . Then one can define the derivative
of b(t) along a(t) as Dd/dtb(t). In local coordinates, we obtain

Da(t)b(t) =
(

dbβ

dt
+N β

α aα

)
sβ(γ(t)).

Definition 3.4. An admissible curve c(t) is a path (autoparallel) for nonlinear
connection N if and only if Dc(t)c(t) = 0.

In local coordinates we get

dcβ

dt
+N β

α (x, y)cα = 0.

From the previous considerations we have

Proposition 3.7. An admissible curve c(t) in E is autoparallel for the non-

linear connection if and only if

dxi

dt
= σi

αyα,
dyβ

dt
+N β

α yα = 0, (21)

where xi = xi(t) = xi(c(t)), yα = yα(t) = yα(c(t)), σi
α = σi

α(t) = σi
α(c(t)).



Geometrical structures on Lie algebroids 105

Let N be a nonlinear connection on T E, ξ′ an arbitrary semispray on T E

and h the horizontal projector of N . We consider ξ = hξ′ and for any other
semispray ξ′′ on T E we have h(ξ′ − ξ′′) = h((ξ′α − ξ′′α)Vα) = 0 and it results
that ξ doesn’t depends on the choose of ξ′. We have J ξ = J hξ′ = J ξ′ = C so ξ

is a semispray, which is called the associated semispray to N .

Proposition 3.8. A nonlinear connection N and its associated semispray

have the same paths.

Proof. For the arbitrary semispray ξ′ = yαXα +ξ′αVα, the associated semi-
spray of N is ξ = hξ′ = yαXα −N β

α yαVβ so ξβ = −N β
α yα. From (7) and (21) it

results the conclusion. ¤

Remark 3.4. If ξ is a semispray on T E, then we have

J [ξ,J z] = −J z, z ∈ Γ(T E). (22)

The proof follows the classical case E = TM (see [10]).

Example 3.1. Let L be a regular Lagrangian on E. One can associate to L
a remarkable semispray locally given by

ξε = gεβ

(
σi

β

∂L
∂xi

− σi
α

∂2L
∂xi∂yβ

yα − Lθ
βαyα ∂L

∂yθ

)
, (23)

where gαβ = ∂2L
∂yα∂yβ and gαβgεβ = δε

α (see [11]).

Theorem 3.2. Let J be the vertical endomorphism on T E. If ξ is a semi-

spray then

N = −LξJ , (24)

is a connection on T E.

Proof. Since N (υ) = −LξJ (υ) = −[ξ,J υ] + J [ξ, υ] then using the Re-
mark 3.4 we get JN (υ) = −J [ξ,J υ]+J 2[ξ, υ] = J υ and NJ (υ) = −[ξ,J 2υ]+
J [ξ,J υ] = −J υ. By using the Remark 3.3 we get the proof of the theorem. ¤

Remark 3.5. The connection N = −LξJ is induced by J and ξ. Its local
coefficients are given by

N β
α =

1
2
(−∂ξβ

∂yα
+ yεLβ

αε) (25)
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Proof. N (Xα) = −[ξ,J (Xα)] + J [ξ,Xα] = Xα + ∂ξβ

∂yαVβ + J (yβLγ
βαXγ −

σi
α

∂ξβ

∂xi Vβ) = Xα+
(

∂ξβ

∂yα + yγLβ
γα

)
Vβ and using the relation (9) we obtain (25). ¤

Proposition 3.9. The torsion of the connection N = −LξJ vanishes.

Proof. We have t = [J , h] = 1
2

(
[J , id] +

[J ,−[ξ,J ]
])

= 1
2

[J , [J , ξ]
]
. Us-

ing Jacobi identity we obtain that t = 0. Also, if we replace (25) into the relation
(18), by direct computation, the same result is obtained. ¤

Proposition 3.10. The associated semispray of N = −LξJ is given by
1
2 (ξ − [ξ, C]).

Proof. The associated semispray is

hξ =
1
2
ξ +

1
2
N (ξ) =

1
2
(ξ − [ξ,J ξ] + J [ξ, ξ]) =

1
2
(ξ − [ξ, C]). ¤

3.1. Homogeneous connections. The morphism T = 1
2LCN is called the

tension of the nonlinear connection, where L is the Lie derivative LCN (Z) =
[C,NZ]−N [C, Z]. In the local coordinates we get

T (Xα) =
(
N β

α −
∂N β

α

∂yγ
yγ

)
Vβ , T (Vα) = 0 ⇒ T =

(
N β

α −
∂N β

α

∂yγ
yγ

)
Xα ⊗ Vβ .

It is obvious that T is vanishing if and only if the nonlinear connection is homo-
geneous of degree 1 with respect to yα.

Proposition 3.11. If ξ is a spray then N = −LξJ is a homogeneous non-

linear connection.

Proof. Using (25) we get T =
( − ∂ξγ

∂yα + yβ ∂2ξγ

∂yα∂yβ

)Xα ⊗ Vγ . But ξ is a

spray and it results that ξγ is homogeneous of degree 2, so 2ξγ = yβ ∂ξγ

∂yβ and
∂ξγ

∂yα = yβ ∂2ξγ

∂yα∂yβ and therefore the tension T = 0. ¤

Definition 3.5. A function F : E → [0,∞] which satisfies the following prop-
erties:

1) F is C∞ on E\{0}
2) F(λu) = λF(u) for λ > 0 and u ∈ Ex, x ∈ M

3) For each y ∈ Ex\{0} the quadratic form

gαβ(x, y) =
1
2

∂2F2

∂yα∂yβ
(26)

is positive definite, will be called the Finsler function on Lie algebroid.
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If we replace L = 1
2F2 = 1

2gαβyαyβ into the expression of semispray (23) we
obtain:

Remark 3.6. A homogeneous nonlinear connections has the coefficients given
by (25) with

ξδ =
1
2
gδβ

(
σi

α

∂gβγ

∂xi
+ σi

γ

∂gαβ

∂xi
− σi

β

∂gαγ

∂xi
+ gεαLε

βγ + gεγLε
βα − gεβLε

γα

)
yαyγ

and is called the canonical nonlinear connection associated to a Finsler function.

Remark 3.7. In the particular case of standard Lie algebroid E = TM and
σ = id the Cartan nonlinear connection (see [14]) is obtained.

Let us consider the canonical nonlinear connection and ‖y‖2 = gαβyαyβ = F2

is the square of the norm of the Euler section. The almost complex structure,
characterized by (19), does not preserve the property of homogeneity of the sec-
tions. Indeed, it applies the 1-homogeneous section δα onto the 0-homogeneous
section Vα, α ∈ 1,m. We can solve this problem by defining a new kind of almost
complex structure F0 : T E → T E given by

F0(δα) = −F
a
Vα, F0(Vα) =

a

F δα, a > 0.

It is not difficult to prove that F2
0 = − id and F0 preserves the property of the

homogeneity of the sections.

Theorem 3.3. The almost complex structure F0 is integrable if and only if

the following relations hold

Rγ
αβ =

1
a2

(
yαδγ

β − yβδγ
α

)
,

δα(F2)δγ
β = δβ(F2)δγ

α, (27)

where yα = gαβyβ , α, β, γ = 1,m.

Proof. For the Nijenjuis tensor NF0 we have

NF0(δα, δβ) =
(

tγαβ +
1

2F2

(
δβ(F2)δγ

α − δα(F2)δγ
β

))
δγ

+
(

1
a2

(yαδγ
β − yβδγ

α)−Rγ
αβ

)
Vγ ,
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NF0(δα,Vβ) =
(

1
F2

(yαδγ
β − yβδγ

α)− a2

F2
Rγ

αβ

)
δγ

−
(

tγαβ +
1

2F2

(
δβ(F2)δγ

α − δα(F2)δγ
β

))
Vγ ,

NF0(δα, δβ) = −F
2

a2
NF0(Vα,Vβ).

It follows that NF0 = 0 if and only if the relations (27) are satisfied. ¤
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