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Geometrical structures on Lie algebroids

By LIVIU POPESCU (Craiova)

Abstract. In this paper we study on the prolongation of Lie algebroid the notions
such as: nonlinear connection, related connections, torsion and curvature, semispray
and complex structures. The case of homogeneous connections and some examples are
presented.

1. Introduction

The Lie algebroid is a generalization of the notions of Lie algebra and inte-
grable distribution. A unitary study of Lie algebroids has realized by K. MACKEN-
ZIE in [12]. A. WEINSTEIN [15] developed a generalized theory of Lagrangian Me-
chanics on Lie algebroids and obtained the equations of motion, using the Poisson
structure on the dual and Legendre transformation. Later, E. MARTINEZ [11] de-
veloped the Klein’s formalism on Lie algebroids using the notion of prolongation
of Lie algebroid over a smooth map [7], and has proposed a modified version of
symplectic formalism, in which the bundles tangent to ' and E* are replaced
by the prolongations 7F and 7 E*. The notion of nonlinear connection on Lie
algebroid is a natural extension of the usual concept on the tangent bundle (see
[4], [1]). In the last years diverse aspects of this topic have been studied in a
number of works. In [2] a generalized notion of connection over a vector bundle
map is presented. The nonlinear connection on the prolongation of Lie algebroid
over the vector bundle projection of a dual bundle is investigated in [8]. In [13]
a definition for torsion and curvature of a connection on affine Lie algebroid is
given and the connection generated by a pseudo-SODE is pointed out.
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The purpose of the present paper is to study the nonlinear connection on
the prolongation of Lie algebroid and its properties. The paper is organized as
follows. In Section 2 the known results on Lie algebroid and its prolongation over
the vector bundle projection are recalled. In section 3 we introduce the nonlinear
connection on the prolongation Lie algebroid 7 E such that 7TE =V7TE@Q HTE.
We show that the vertical part of the bracket of horizontal sections from the
basis represents the local coordinates of the curvature tensor of the connection.
We study the related connections and show that a connection on T'F generates
a connection on 7 E. We introduce an almost complex structure and prove that
its integrability is characterized by a zero torsion and curvature property of the
connection. The nonlinear connection generated by a semispray and its properties
are studied, and in the homogeneous case a canonical connection associated to a
Finsler function is determined.

2. Preliminaries on Lie algebroids

2.1. The notion of Lie algebroid. Let M be a differentiable, n-dimensional
manifold and (T'M, 7y, M) its tangent bundle. Let (E, 7, M) be a vector bundle
with the dimension of type fibre m. A Lie algebroid over a manifold M (see [12])
is a vector bundle (E, 7, M) equipped with a Lie algebra structure [, ] on its
space of sections, denoted I'(F), and a map o : E — TM (called the anchor)
which induces a Lie algebra homomorphism (also denoted o) from sections of E
to vector fields on M, satisfying the Leibniz rule

[s1, [s2] = fls1,82] + (o(s1)f)s2, (1)

where f € C°(M) and s1, s2 € I'(E). Therefore, we have
[0(s1),0(s2)] = o[s1,82], [s1,[52,83]] + [s2, 83, 51]] + [53, [s1,82]] = 0

and the triple (E,[ ,],0) is called a Lie algebroid over M. If w is a k-form,
w e /\k(E) =T((E*)* — M, then the exterior derivative dw € A" (E) is given
by the formula

k+1

dw(s1,. .y Spt1) = Z(—l)i+1a(si)w(sl, ey 8y Sktl)
i=1

+ Z (—1)i+jw([81‘)8j],81,...,§i,...,§j,...,8k+1). (2)
1<i<j<k+1
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For £ € T(E) can be defined the Lie derivative with respect to £ given by
Le =igod+doig. If we take the local coordinates (2°) on an open U C M
and a local basis {s,} of sections of the bundle 7=(U) — U, then we have the

local coordinates (x%,y%) on E. These coordinates determine the local functions
i

o (x), L z(x) on M given by
, 0 y )

U(s&) :Uaﬁv [Sa,Sg] :Laﬁs’yv 1= ]-777/7 CV»»B»’Y: 17m7 (3)
and satisfying the relations

. 80’i . 80’i . . 6[/5

B 7Y% _ i~y i By 5 rn _
Ui@ T8 oy Lags Z <Ua FYa Lonls, | =0, (4)
(@,8,7)

which are called the structure equations of Lie algebroid. In local coordinates the
differential d is determined by dz’ = 0% s, ds® = —%Lg‘wsﬁ A 87, where {s%} is
the dual basis of {s,} and we have the relations d?z' = 0 and d?s®* = 0. The

differential of a function f on M is given by df = g 3{1 ol s* and in particular we

A AN
have ' = ol,y°.

2.2. The prolongation of a Lie algebroid. Let (E,m, M) be a vector bundle.
For the projection w : E — M we can construct the prolongation of F (see [7],
[9], [11]). The associated vector bundle is (7 E,mq, E) where TE = UyepZyuE
with

TwE = {(uz,v0) € Ex x TuE | 0(uz) = Tym(ve), w(w) =2z € M},

and the projection ma(uy,vy) = TE(vy) = w, where g : TE — E is the tan-
gent projection. We have also the canonical projection 7m; : 7E — FE given by
71 (u,v) = u. The projection onto the second factor o' : TE — TE, o'(u,v) = v
will be the anchor of a new Lie algebroid over manifold E. An element of 7F
is said to be vertical if it is in the kernel of the projection 7. We will denote
(VT E, ), 1, E) the vertical bundle of (7 E, ma, E).

If f € C°°(M) we will denote by f¢ and f¥ the complete and vertical lift to
E of f defined by

fow)=oa()(f), ['(u)=f(n(u), ueE.
For s € I'(F) we can consider the vertical lift of s given by
s'(u) = s(m(u))y, u€E,

where |, : Er(y) — Tu(Ex(y)) is the canonical isomorphism. There exists a unique
vector field s® on F, the complete lift of s satisfying the two following conditions:



98 Liviu Popescu

i) s¢is m-projectable on o(s),
i) s¢(a) = Lo
for all « € T'(E*), where &(u) = a(r(u))(u), u € E (see [5], [6]).
Considering the prolongation 7 F of F over the projection 7, we may intro-
duce the wvertical lift s¥ and the complete lift s© of a section s € I'(E) as the
sections of TE — E given by (see [11])

sV (u) = (0,5"(u)), s°(u) = (s(n(u)),s°(w), wek.

Other two canonical objects on TFE are the Fuler section C and wvertical
endomorphism J. C is the section of TE — E defined by C(u) = (0,u}) for all
u € FE and J is the section of the bundle (7E) ® (T E)* — E characterized by

J(s)=0, J(s°)=5s", sel(F).

The vertical endomorphism satisfies J2 = 0, im J = ker J = VT E and is homo-
geneous of degree 0, that is [C, J] = —J. Moreover, the Nijenhuis tensor of the
vertical endomorphism vanishes (see [11]). Finally, a section £ of TE — E is
called semispray (or second order differential equation -SODE) on E if J(§) =C.
The local basis of ['(7 E) is given by { X, Vs }, where

0 0
J = (055

Xa == e} 3 é -
(1) = (salm(w) ok 5
and (%, 87%) is the local basis on T'E. The structure functions of 7 E are given

by the following formulas

.0 0
1 I 1 —
0 (Xy) =0, 95 ° Vo) 3 (5)

[Xow Xﬁ] = Llﬁx’yv [Xouvﬁ] =0, [Vou Vﬁ] =0. (6)

If V is a section of 7 E then in terms of basis {X,, Vo } itis V = Z9X,+V*V,,
and the vector field (V) € x(E) has the expression o (V) = 0%, Z* 2; —l—V"‘%.
The vertical lift of a section p = p®s, and the corresponding vector field are

p¥ = p*V, and ol (p¥) = pa%. The coordinate expressions of C and ¢*(C) are

0

CZyO‘Va, Ul(c):yaaiya

and the local expression of 7 is

T =X*®V,
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where{X'*, V*} denotes the corresponding dual basis of {X,,V,}. The local ex-
pression of the differential of a function L on TFE is dL = o g Ly + aaTLaVa,
and therefore, we have dz® = o X* and dy® = V. The differential of sections of

(TE)* is determined by

1
o e} B let
dX®* = _§L67X ANXY, dV*=0.
In the local coordinates a semispray has the expression

§(x,y) = y* X +E%(z,y)Va

and the associated vector field is o' (&) = o?,y® 3‘; + fa%. The integral curves
of o1 (&) satisfy the differential equations
dx? . dy®

=@y, —- = (ay). (7)

If [C,&] = &£ then & is called spray and £* are homogeneous of degree 2 in y©.

3. Nonlinear connections

As in the classical case £ = T'M we can define the nonlinear connection.

Definition 3.1. A nonlinear connection (or connection) on 7 E is an almost
product structure A" on w3 : TE — E (i.e. a bundle morphism N : TE — TE,
such that N2 = id) smooth on 7 E\{0} such that VT E = ker(id +\).

If NV is a connection on 7E then HTE = ker(id —A/) is the horizontal
subbundle associated to N and TE = VT E ® HTE. Each p € T'(TFE) can be
written as p = p" + p¥ where p", p¥ are sections in the horizontal and respective
vertical subbundles. If p" = 0 then p is called wvertical and if p¥ = 0 then p is
called horizontal. A connection N on 7 E induces two projectorsh,v:7E — TE
such that h(p) = p" and v(p) = p¥ for every p € I'(TE). We have

1 1
kerh=imv=V7TE, imh=kerv=HTE.
Locally, a connection can be expressed as

N(X,) = Xy —2NPVs, N(Vs) = =V, (9)
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where N = N&(x,y) are the local coefficients of A'. The sections
b = h(Xo) = Xo — NV, (10)

generate a basis of HT E. The frame {d,, V, } is a local basis of T E called adapted.
The dual adapted basis is {X'®, 6V} where §V* = V* — NgxP.

Proposition 3.1. The Lie brackets of the adapted basis {04, Va} are

ONY
00, 05] = Loy + RigVy,  [0a, Vsl = Dy Ve, Vsl =0,  (11)
where aN aN
ONY , ONY
Yoo i o i B are a = B I Y 12
Raﬂ 93 ort Ou ox’ 6] ayg +Na ays =+ aﬁNe' ( )

PRrROOF. Using (5) and (6) we get

(ONs A ONE JONG 0N y
e 5] = (Uﬁ ox? —N; oy " ox NS oy > Vet Last

If we replace X, = d, + N5V, then the first relation from (11) is obtained. O
We recall that the Nijenhuis tensor of an endomorphism A is given by
Na(z,w) = [Az, Aw] — A[Az,w] — Alz, Aw] + A?[z,w] (13)

Definition 3.2. The curvature of a connection A on 7 F is given by Q = —Ny,
where h is horizontal projector and Ny, is the Nijenhuis tensor of h.

Proposition 3.2. In the local coordinates we have
1
— _ Y : B
Q= QRaﬁXa NXP @V,

where Rlﬁ are given by (12) and represent the local coordinate functions of the
curvature tensor Q in the frame \*>TE* @ TE induced by {X,, Va}.

PROOF. Since h? = h we obtain
Q(z,w) = —[hz, hw] + h[hz, w] + h[z, hw] — h[z, w],
Q(hz, hw) = —v[hz, hw], Q(hz,vw) = Q(vz,vw) =0
and in local coordinates we get
Q(0a,0p) = —V[0a, 05l = =R} 5V,

which ends the proof. (|
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The curvature of nonlinear connection is an obstruction to the integrability of
HTE, understanding that a vanishing curvature entails that horizontal sections
are closed under the Lie algebroid bracket of 7 FE.

Remark 3.1. HTE is integrable if and only if the curvature vanishes.

In the following we will study the related connections which permit us to find
the relations between the coefficients of related nonlinear connections.

Let ¥ a morphism of vector bundles E and E. We recall that the connections
N on E and N on E are U-related if Uo N = N oW¥. We consider the connections
N on TE and N on TE which are o'-related and a connection N on T?M which
is 0, -related with N on TE and G-related with N on 7E, where ¢ : TE — T?M
is given by ¢ = 0, o ¢! and o, : TE — T2?M is the tangent application of o. It
follows

Nool=6'oWN, Noo,=0,0N, Nosg=acoN, (14)
E T™
Let us consider the adapted basis (6i, %) of N and ( 0; ,aiyj) of N given by

L d B_d ™ o) j_o
0i = 57 — N 597 and 0; = 57 — IV; 37 Therefore, we get

DN_ o ot (o) 0
T\ 0xi) " ot " Bri oyk’ . Oy~ _Uo‘ﬁyi'

Theorem 3.1. The following relations hold

o' (6a) = 0.0, NP =i NP,
E TM oo’ . .
0.(5) = o o t N =N}
= i M i 007 i pjd B
7(6a) =0l 8, Tagai T oo N} = Njo. (15)

PROOF. The first relation from (14) leads to the relation N(a!(84)) = 01 (84)

E )
from which we get o' (d,) = ¢%,6; and NP = U;N?. In the similar way the others
relations are obtained. O

Proposition 3.3. For the curvature tensors of o'-related connections N’
and N we have the relation

Rl = 0a05R];,

(16)

B B
where R}, = 6;(N}]) — ¢;(N}) is the curvature tensor of nonlinear connection
onTE.
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PROOF. Using the relation N = o N5 we obtain

¥ D O ¥ ; 90, z‘aagi e A/Y
Ros = 0304 (%-(Ni)—(;i(Nj) + Nj T8 g o gyi + L5 sN:

and from structure equations of Lie algebroid (4), the second term is given by
N}UgL%a = —N7 L; ; which concludes the proof. g

Remark 3.2. A ol-related connection N on T'F determines a connection A on
TE with the coefficients N2 = ¢, N? and curvature R, 5 = 0404R;. Converse,
is not true, because o is only injective.

Let J be the vertical endomorphism. We have the following result

Remark 3.3. Let N be a bundle morphism of w3 : 7E — E, smooth on
TE\{0}. Then N is a connection on 7 F if and only if

jN:J7 NJ:_j~

The proof proceeds as in the case E = TM and will be omitted (see [10]).

Definition 3.3. The torsion of nonlinear connection A is the vector valued
two form ¢ = [J,h] where h is the horizontal projector and [.,.] is the Frolicher—
Nijenhuis bracket.

Proposition 3.4. t is a semibasic vector-valued form. Its local expression
is
1 v ypa B
=5t X N X @Y, (17)

where

s _ 0Ny ONg

=« L .. 1
af ayﬁ aya af ( 8)

PROOF. We have

(7, 0](2,w) = [Tz, hw] + [hz, Tw] + T [z, w] = T [z, hw] = Thz, w]
— hlz, Jw] — h[J z, w]

and in local coordinates we get

Ny ONg
t( X, Xpg) = <3y5 — 3y‘f —Lzﬁ Vy, tH(Xa,Vg) =t(Va,Vs) =0. U
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Now, let us consider the linear mapping F : TE — 7T E, defined by
F(hz) = —vz, F(vz)=hz,

for z € T(TE) and h,v are the horizontal and vertical projectors of nonlinear
connection on 7 F.

Proposition 3.5. The mapping F has the properties:
i) T is globally defined on TE
ii) Locally it is given by
F=—V,®X"+ 8, @V (19)
ili) F is an almost complex structure FoF = —id.
PROOF. It results by definition that F is globally defined and
(FoF) (hz) =F(—vz) = —hz, (FoF)(vz)=F(hz)=—vz.

In local coordinates we get F (d,) = —V, and F(V,) = 0, which ends the proof.
O

Proposition 3.6. The almost complex structure is integrable if and only if
the nonlinear connection is locally flat, that is the curvature and torsion vanish.

PROOF. Let Ny be the Nijenhuis tensor of the almost complex structure. We
find

Nr(da, 56) = tlﬁéw - ngVv
Ni(8a, Vs) = —R1s0, — 11V,

From (20) one reads immediately that Ny = 0 if and only if t =0 and Q@ =0. O

A curve u : [tg,t1] — F is called admissible if o(u(t)) = é(t) where c(t) =
m(u(t)) is the base curve. A nonlinear connection on 7 FE induces a covariant
derivative of the sections defined locally as follows

o 187lﬂ
D,n=p (Ua oz +N£> 53,

where p = p®s, and 7 = 1n®s,. The derivative is linear in the first argument and

respect multiplication of second argument by real numbers, but not necessarily
sums, except the case when the coefficients N2 are the local coefficients of a linear
connection. The linearity in the first argument permit us to define the derivative
of a section 7 € T'(F) with respect to a € E,, by setting

Dan = (Dpn)(w),

where p € T'(E) satisfying p(u) = a. Also, the covariant derivative allows us to
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take the derivative of sections along curves (see [3]). If we have a morphism of Lie
algebroids ([12]) ® : F' — E over the map ¢ : N — M and a sectionn: N — E
along ¢, i.e. n(n) € E,yny, n € N, then 7 can be written in the form

P

n=> Fi(&oy),

=1

for some sections {&1,...,&,} of E and some functions {Fi,...,F,) € C(N)
and the derivative of i along ¢ is given by

P

Dyn =Y [(or(b)F)é(p(n) + F(n)Dew&l, be Fy
=1

where op is the anchor map of the Lie algebroid F' — N (see [3]).

Let a : I — F be an admissible curve and let b : I — F be a curve in F, both
of them projecting by 7 onto the same curve v in M, w(a(t)) = w(b(t)) = v(¢).
Take the particular case of Lie algebroid structure TI — I and the morphism
®:TI — E, ®(t,t) = ty(t) over v: I — M. Then one can define the derivative
of b(t) along a(t) as Dg/q;b(t). In local coordinates, we obtain

&
Puot(t) = (G +AZa®) ss(4(0).

Definition 3.4. An admissible curve ¢(t) is a path (autoparallel) for nonlinear
connection N if and only if D, c(t) = 0.

In local coordinates we get

B
dd% + NP (z,y)c* = 0.

From the previous considerations we have

Proposition 3.7. An admissible curve ¢(t) in F is autoparallel for the non-
linear connection if and only if

dxt , dyP 3
— 1 (07 o — 21

where o = 2°(t) = a'(c(t)), y° = y°(t) = y° (e(t)), o, = 0% (t) = ot (c(t)).
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Let A be a nonlinear connection on 7 FE, £ an arbitrary semispray on 7FE
and h the horizontal projector of N'. We consider £ = h¢’ and for any other
semispray £’ on TE we have h(¢' — ¢£”) = h((¢’* — £"*)V,) = 0 and it results
that £ doesn’t depends on the choose of &'. We have J¢ = Jh&' = J& =Cso &
is a semispray, which is called the associated semispray to N.

Proposition 3.8. A nonlinear connection N and its associated semispray
have the same paths.

PROOF. For the arbitrary semispray &' = y*X, +£'*V,, the associated semi-
spray of N is £ = h¢’ = y* X, — NPy*Vs so € = —NPy®. From (7) and (21) it
results the conclusion. (]

Remark 3.4. If £ is a semispray on 7 F, then we have
JE Tz =-Tz z€el(TE). (22)

The proof follows the classical case E = TM (see [10]).

Ezample 3.1. Let L be a regular Lagrangian on E. One can associate to £
a remarkable semispray locally given by

2
LoL ., 0L , aaz:)7 (23)

<= g gt 9L e g8 00T
g g (Uﬁaxz Uaaxzay,@y Bay ayg

2
where go5 = ayaaiaﬁyﬁ and gapg°? = 0%, (see [11]).

Theorem 3.2. Let J be the vertical endomorphism on T E. If ¢ is a semi-

spray then
N=—-LT, (24)
is a connection on TE.
PROOF. Since N(v) = —L¢J(v) = —[§, Tv] + J[€,v] then using the Re-

mark 3.4 we get JN (v) = —J[¢, Tv]+ T?[€,v] = Jv and NJ (v) = —[§, T?v] +
JIE, TJv] = —Jv. By using the Remark 3.3 we get the proof of the theorem. O

Remark 3.5. The connection N' = —L¢J is induced by J and . Its local
coefficients are given by

NE = 5(=57% +v°La.) (25)
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PROOF. N(Xo) = —[6, T (Xa)] + T € Xa] = Ko+ 555V + T (W7 L3, -
ot % Vs) = a+( + y'VL ) V3 and using the relation (9) we obtain (25). O

o 9a

Proposition 3.9. The torsion of the connection N = —L¢J vanishes.

ProOF. We have ¢ = [J,h] = § ([7,id] + [7,—[¢, J]) = 3[7,1T,€]]. Us-
ing Jacobi identity we obtain that ¢ = 0. Also, if we replace (25) into the relation
(18), by direct computation, the same result is obtained. ([

Proposition 3.10. The associated semispray of N' = —L¢J is given by
3(E—1[&.C).
2 )

PrRoOOF. The associated semispray is

1 1 1 1
hE= €+ SN O =5 [T+ TEE =5 - [C). D
3.1. Homogeneous connections. The morphism 7 = %ECN is called the

tension of the nonlinear connection, where £ is the Lie derivative LeN(Z) =
[C,NZ] — N]|C, Z]. In the local coordinates we get

NP
oy

ONP

T(X,) = (J\/g - y7> Vi, TWa)=0=7T = (Ng Er ) X ® Vs.
It is obvious that 7 is vanishing if and only if the nonlinear connection is homo-

geneous of degree 1 with respect to y©.

Proposition 3.11. If{ is a spray then N' = —L¢J is a homogeneous non-
linear connection.

PROOF. Using (25) we get 7 = (— Q6 4 B0 81/“6 ,,)XO‘ ®V,. But¢isa
spray and it results that £ is homogeneous of degree 2, so 267 = yﬂ 85 and
gy% =y’ 32;(%;[, and therefore the tension 7 = 0. (]

Definition 3.5. A function F : E — [0, co] which satisfies the following prop-
erties:

1) Fis C* on E\{0}
2) F(Au) =AF(u) for \>0andue E,, z € M
3) For each y € E,\{0} the quadratic form

1 9*F?

Jop(T,y) = 2 9y~0y° (26)

is positive definite, will be called the Finsler function on Lie algebroid.
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If we replace £ = £F? = gq3y*y” into the expression of semispray (23) we
obtain:

Remark 3.6. A homogeneous nonlinear connections has the coefficients given
by (25) with

1 . 9g 0 0
L i By i 9908 ) Jary
S =g ("a gui a7 oy

+ gEaL%'y + gE"/L%a - gEﬂL?yOC) yO‘y'y

and is called the canonical nonlinear connection associated to a Finsler function.

Remark 3.7. In the particular case of standard Lie algebroid £ = T'M and
o =id the Cartan nonlinear connection (see [14]) is obtained.

Let us consider the canonical nonlinear connection and [|y|* = Jopyy® = F?
is the square of the norm of the Fuler section. The almost complex structure,
characterized by (19), does not preserve the property of homogeneity of the sec-
tions. Indeed, it applies the 1-homogeneous section d, onto the 0-homogeneous
section V,, a € 1, m. We can solve this problem by defining a new kind of almost
complex structure Fo : 7E — 7 E given by

]:
Fo(0a) = ——Va, Fo(Va) = %@, a>0
It is not difficult to prove that F2 = —id and Fy preserves the property of the

homogeneity of the sections.

Theorem 3.3. The almost complex structure Fy is integrable if and only if
the following relations hold

1
Rl = =5 (vad} — 4503,
50 (F2)} = 65(F2)8), (27)

where Yo = gagy”, @, ,7 = 1,m.
PRrROOF. For the Nijenjuis tensor Ny, we have

L

(5152 - 8a(7283) )

1
(228~ o8 - R2 ) P
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a2

1
Nr, (0a, Vg) = (P(yaég —ysoa) — 72 RZﬂ) Oy

1
- (tgﬁ + 373 (55(#)53 - 5a(f2)5g)> v,

]:2
N]FO((SOH 55) = *?NFO(V(M Vﬁ)'

It follows that Ny, = 0 if and only if the relations (27) are satisfied. O
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