Minimal coverings of completely reducible groups

By A. ABDOLLAHI (Isfahan) and S. M. JAFARIAN AMIRI (Zanjan)

Abstract. Let G be a group that is a set-theortic union of finitely many proper subgroups. Cohn defined $\sigma(G)$ to be the least integer m such that G is the union of m proper subgroups. Determining σ is an open problem for most non-solvable groups. In this paper we give a formula for $\sigma(G)$, where G is a completely reducible group.

1. Introduction and results

Let G be a group that is a set-theoretic union of finitely many proper subgroups and by a cover (or covering) of G we mean any finite set of proper subgroups whose set-theoretic union is the whole group G. Cohn [4] defined $\sigma(G)$ to be the least integer m (if it exists) such that G has a covering with m subgroups (we call any such covering minimal) and otherwise $\sigma(G) = \infty$. A result of Neumann [12] states that if G is a union of m proper subgroups, then the intersection of these subgroups is of finite index in G. It follows that in study of $\sigma(G)$, we may assume that G is finite. It is an easy exercise that $\sigma(G)$ can never be 2, so $\sigma(G) \geq 3$. Groups that are the union of three proper subgroups, as $C_2 \times C_2$ is for example, are investigated in papers [6], [7], [14]. Also groups G with $\sigma(G) \in \{3,4,5\}$ and $\sigma(G) = 6$ are characterized in [4] and [1], respectively. However Tomkinson [15] proved that there is no group with $\sigma(G) = 7$. Cohn [4] showed that for any prime power p^a there exists

 $Mathematics\ Subject\ Classification:\ 20 D60.$

Key words and phrases: covering groups by subgroups, completely reducible groups; simple groups.

This work was in part supported by a grant from the Center of Excellence for Mathematics, University of Isfahan. The research of the first author was in part supported by a grant from IPM (No. 85200032).

a solvable group G with $\sigma(G)=p^a+1$. In fact, Tomkinson [15] established that $\sigma(G)-1$ is always a prime power for solvable groups G. It is natural to ask what can be said about $\sigma(G)$ for non-solvable groups. Bryce, Fedri and Serena begun this project in [3], where they calculated $\sigma(G)$ for the linear groups $G \in \{PSL_2(q), PGL_2(q), SL_2(q), PGL_2(q)\}$. They obtained the formula $\frac{1}{2}q(q+1)$ for even prime powers $q \geq 4$ and the formula $\frac{1}{2}q(q+1)+1$ for odd prime powers $q \geq 5$. Moreover Lucido [10] studied this problem for the simple Suzuki groups and found that $\sigma(Sz(q))=\frac{1}{2}q^2(q^2+1)$, where $q=2^{2m+1}$. Maróti [11] gave exact or asymptotic formulas for $\sigma(\operatorname{Sym}_n)$ and $\sigma(\operatorname{Alt}_n)$. In particular, it is shown in [11] that if n>1 is odd, then $\sigma(\operatorname{Sym}_n)=2^{n-1}$ unless n=9 and $\sigma(\operatorname{Sym}_n)\leq 2^{n-2}$ if n is even. Also Maróti proved that if $n\neq 7,9$, then $\sigma(\operatorname{Alt}_n)\geq 2^{n-2}$ with equality if and only if n is even but not divisible by 4. Holmes in [8] obtained $\sigma(S)$ for some sporadic simple groups S. See also [9] for some related results. Thus the situation for non-solvable groups seems to be totally different from solvable ones.

A group G is called *completely reducible* if it is a direct product of simple groups. In the sequel a completely reducible group will be called a CR-group. Note that in a CR-group, every normal subgroup is a direct factor (see [13, Theorem 3.3.12]). A CR-group is centerless if and only if it is a direct product of non-abelian simple groups. A finite group G contains a normal centerless CR-subgroup which contains all normal centerless CR-subgroups; this subgroup is called the centerless CR-radical of G. For more details concerning CR-groups, see [13, pp. 88–89]. In this paper we prove the following results.

Theorem 1.1. Let G be a finite group. If $G = A_1 \times A_2 \times \cdots \times A_n$, where A_i is a non-abelian simple group for each i, then $\sigma(G) = \min{\{\sigma(A_1), \ldots, \sigma(A_n)\}}$.

Theorem 1.2. Let G be a finite CR-group. Then $\sigma(G) = \min \{ \sigma(R), \sigma(\frac{G}{R}) \}$, where R is the centerless CR-radical of G.

2. Proofs

We begin with the following easy lemma.

Lemma 2.1. Let G be a finite non-cyclic group. If M is a maximal subgroup of G such that $\sigma(G) < \sigma(M)$, then either M is a normal subgroup of G or $|G:M| \leq \sigma(G) - 1$.

PROOF. Suppose that $M \not \triangleq G$. Then M has |G:M| conjugates in G. There are maximal subgroups A_i of G for which $G = \bigcup_{i=1}^{\sigma(G)} A_i$ and $M = \bigcup_{i=1}^{\sigma(G)} (M \cap A_i)$.

Since $\sigma(G) < \sigma(M)$, then there exists $j \in \{1, \ldots, \sigma(G)\}$ such that $M = M \cap A_j$. Hence for every $x \in G$, there exist $i_x \in \{1, \ldots, \sigma(G)\}$ such that $M^x = A_{i_x}$. Therefore $|G: M| \leq \sigma(G)$. Now since $G \neq \bigcup_{g \in G} M^g$, $|G: M| \leq \sigma(G) - 1$.

The following result which will be useful in the sequel, is a generalization of Lemma 4 of [4]. Its proof is similar to that of Lemma 4 of [4] and we give it for the reader's convenience.

Proposition 2.2. Let G be a finite group such that $G = H \times K$ for two subgroups H and K of G. If every maximal subgroup of G contains either H or K, then $\sigma(G) = \min{\{\sigma(H), \sigma(K)\}}$.

PROOF. Since every maximal subgroup M of G contains either H or K, M is equal to either $H_0 \times K$ or $H \times K_0$, where H_0 is maximal in H and K_0 maximal in K. Thus we may assume that $G = (\bigcup_{i=1}^p H \times M_i) \bigcup (\bigcup_{j=1}^q M_j \times K)$, where $p+q=\sigma(G), \ p,q\geq 0$ and M_i is maximal in K and N_j is maximal in H. Now we claim that one of p and q must be zero.

Let $G_1 = \bigcup_{i=1}^p H \times M_i$ and $G_2 = \bigcup_{j=1}^q N_j \times K$. If $q \neq 0$, then $G_1 \neq G$ and so there exists an element $a_2 \in G \setminus G_1$. Therefore $a_2 \notin M_i$ for all $i \in \{1, \dots, p\}$ and so $aa_2 \notin G_1$ for all $a \in H$. Hence $aa_2 \in G_2$ for all $a \in H$. Thus $aa' \in G_2$ for all $a \in H$ and $a' \in K$. Hence $G_2 = G$ and g = 0.

Now if p=0, then $G=G_2=(\cup_{j=1}^q N_j)K$, whence $H=\cup_{j=1}^q N_j$. This implies that $\sigma(H)\leq \sigma(G)=q$. Similarly if q=0, then $\sigma(K)\leq p=\sigma(G)$. But $\sigma(G)\leq \min\{\sigma(H),\sigma(K)\}$ – see for example Lemma 2 in [4] – which gives the result.

Recall that a finite group G is said to be *primitive* if it has a maximal subgroup M such that the core of M in G, $M_G = \bigcap_{g \in G} M^g$ is trivial. In this situation we call M a stabilizer of G. We need the following trichotomy of R. BAER on primitive groups.

Theorem 2.3 (BAER [2]). Let G be a finite primitive group with a stabilizer M. Then exactly one of the following three statements holds:

- (1) G has a unique minimal normal subgroup N, this subgroup N is self-centralizing (in particular, abelian), and N is complemented by M in G.
- (2) G has a unique minimal normal subgroup N, this N is non-abelian, and N is supplemented by M in G.
- (3) G has exactly two minimal normal subgroups N and N^* , and each of them is complemented by M in G. Also $C_G(N) = N^*$, $C_G(N^*) = N$ and $N \cong N^* \cong NN^* \cap M$.

Remark 2.4 (see Example 15.3(3) in p. 54 of [5]). Let G be a finite group.

- (1) If M is a maximal subgroup of G, then $\frac{G}{M_G}$ is a primitive group.
- (2) If G is a non-abelian simple group, then $G \times G$ is a primitive group in which the diagonal subgroup $D = \{(g, g) : g \in G\}$ is a stabilizer.

Lemma 2.5. Let H and K be non-abelian simple groups. If $G = H \times K$, then $\sigma(G) = \min{\{\sigma(H), \sigma(K)\}}$.

PROOF. If $H \cong K$, then $G \cong H \times H$ is a primitive group with stabilizer diagonal subgroup $D = \{(h,h) : h \in H\}$. We have $D \cong H$ and D is a maximal subgroup of G which is not normal in G. If $\sigma(G) < \sigma(H) = \sigma(D)$, then by Lemma 2.1, $|G:D| \leq \sigma(G) - 1$. Since |G:D| = |H|, we have $|H| < \sigma(H)$ which is a contradiction. Thus $\sigma(G) \geq \sigma(H)$. Now the corollary to Lemma 2 of [4] completes the proof.

Thus we may assume that $H \ncong K$. Then by Theorem 2.3 G is not a primitive group and so M_G is non-trivial for every maximal subgroup M of G. Therefore $M_G = H$ or $M_G = K$ and so $H \le M$ or $K \le M$. The proof is now complete by Proposition 2.2.

PROOF OF THEOREM 1.1. We argue by induction on n. If n=1, then the result is clear and if n=2, then the result follows from Lemma 2.5. So we may assume that $n \geq 3$. If there exist distinct $i, j \in \{1, \ldots, n\}$ such that $A_i \cong A_j$ and i < j, then $G \cong G_1 = N \times A_i \times A_i$, where

$$N = \prod_{k \in \{1, \dots, n\} \setminus \{i, j\}} A_k.$$

Now consider $M = N \times D$, where $D = \{(a, a) : a \in A_i\}$ is the diagonal subgroup of $A_i \times A_i$. Then M is a maximal subgroup of G_1 which is not normal in G_1 , since $D \not \supseteq A_i \times A_i$. On the other hand, since $D \cong A_i$, by the induction hypothesis we have $\sigma(M) = \min\{\sigma(A_1), \ldots, \sigma(A_n)\}$. It follows from the corollary to Lemma 2 of [4] that $\sigma(G_1) \leq \sigma(M)$. Now suppose, aiming for a contradiction, that $\sigma(G_1) < \sigma(M)$. Then Lemma 2.1 implies that $|G_1| : M < \sigma(G)$. Therefore $\sigma(G) > |A_i| > \sigma(A_i)$, which is the contradiction we sought. Hence $\sigma(G) = \sigma(M) = \min\{\sigma(A_1), \ldots, \sigma(A_n)\}$.

Now assume that $A_i \ncong A_j$ for any two distinct $i, j \in \{1, \ldots, n\}$ and let $H = A_1 \times A_2 \times \cdots \times A_{n-1}$. We claim that every maximal subgroup S of G contains either H or A_n . If $A_n \not< S$, then $A_n \not< S_G$ and so $S_G = A_{i_1} \times \cdots \times A_{i_k}$, where $\{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n-1\}$. Since $\frac{G}{S_G}$ is a primitive group, Theorem 2.3 implies that k = n-1 and so $S_G = H \le S$. The proof is now complete by Proposition 2.2 and induction hypothesis.

PROOF OF THEOREM 1.2. Suppose that $G = A \times R$ such that A is an abelian CR-subgroup of G and R is the centerless CR-radical of G. We may assume that both A and R are non-trivial. We claim that every maximal subgroup M of G contains either A or R. If $A \nleq M$, then $A \nleq M_G$. Thus there exists a normal subgroup N of prime order such that $N \nleq M_G$. Since $\frac{G}{M_G}$ is a primitive group and $\frac{NM_G}{M_G}$ is a minimal normal subgroup of $\frac{G}{M_G}$, it follows from Theorem 2.3 that $\frac{G}{M_G}$ contains a unique minimal normal abelian subgroup. If $R \nleq M_G$, then there exists a non-abelian simple normal subgroup $S \leq R$ of G such that $S \nleq M_G$. Thus $\frac{SM_G}{M_G}$ is a minimal normal subgroup of $\frac{G}{M_G}$, and so it is abelian, a contradiction. This implies that $R \leq M_G \leq M$. Now the proof follows from Proposition 2.2. \square

Proposition 2.6. Let H be a finite CR-group whose center is of odd order and let Sym_n be the symmetric group of degree $n \geq 5$. Then $\sigma(H \times \operatorname{Sym}_n) = \min\{\sigma(H), \sigma(\operatorname{Sym}_n)\}$.

PROOF. By hypothesis and Proposition 2.2, it is enough to show that every maximal subgroup M of $G=H\times \operatorname{Sym}_n$ contains either H or Sym_n . If $H\not< M$, then $H\not< M_G$ and so, as H is a CR-group, there exists a (non-abelian or abelian) simple normal subgroup S contained in H such that $S\not< M_G$. Therefore $S\cap M_G=1$ and $\frac{SM_G}{M_G}\cong S$ is a (simple) minimal normal subgroup of $\frac{G}{M_G}$. Also $M_G\cap\operatorname{Sym}_n=1$, Alt_n or Sym_n .

We dismiss the first two of these possibilities.

- $(1) \ \ \text{If} \ M_G \cap \operatorname{Sym}_n = 1, \ \text{then} \ \operatorname{Sym}_n \cong \frac{M_G \operatorname{Sym}_n}{M_G} \trianglelefteq \frac{G}{M_G}. \ \text{Since Alt}_n \trianglelefteq \operatorname{Sym}_n, \ \overline{K} = \frac{M_G \operatorname{Alt}_n}{M_G} \ \text{is a minimal normal subgroup of} \ \overline{G} = \frac{G}{M_G}. \ \text{Now we claim that} \ \overline{K} \neq \frac{SM_G}{M_G}; \ \text{if} \ X = \operatorname{Alt}_n M_G = SM_G \ \text{and each product is direct.} \ \text{Now} \ C_X(M_G) = Z(M_G) \operatorname{Alt}_n = Z(M_G)S \ \text{so} \ C_X(M_G)' = \operatorname{Alt}_n = S' \leq H, \ \text{a contradiction.} \ \text{Since} \ \frac{G}{M_G} \ \text{is primitive, Theorem 2.3 implies that} \ C_{\overline{G}}(\frac{SM_G}{M_G}) = \overline{K}. \ \text{Thus} \ \operatorname{Sym}_n \cong \frac{M_G \operatorname{Sym}_n}{M_G} \leq \overline{K} \cong \operatorname{Alt}_n, \ \text{which is a contradiction.}$
- (2) In this case $M_G \cap \operatorname{Sym}_n = \operatorname{Alt}_n$ and so $\frac{M_G \operatorname{Sym}_n}{M_G}$ is a normal subgroup of order 2, therefore central in the primitive group $\frac{G}{M_G}$. Thus by Theorem 2.3, $\frac{G}{M_G} \cong C_2$. Since $S \cong \frac{M_G S}{M_G} \leq \frac{G}{M_G}$, we have that $S \cong C_2$ and so the center of H is of even order, contradicting the hypothesis.

Hence $M_G \cap \operatorname{Sym}_n = \operatorname{Sym}_n \leq M_G \leq M$. This completes the proof.

ACKNOWLEDGMENT. The authors are grateful to the referee for valuable suggestions.

References

- [1] A. ABDOLLAHI, M. J. ATAEI, S. M. JAFARIAN AMIRI and A. MOHAMMADI HASSANABADI, Groups with a maximal irredundant 6-cover, *Comm. Algebra* **33** (1990), 3225–3238.
- [2] R. BAER, Classes of finite groups and their properties, Illinois J. Math. 1 (1957), 115–187.
- [3] R. A. BRYCE, V. FEDRI and L. SERENA, Subgroup coverings of some linear groups, Bull. Austral. Math. Soc. 60 (1999), 227–238.
- [4] J. H. E. COHN, On n-sum groups, Math. Scand. 75 (1994), 44-58.
- [5] K. DOERK and T. HAWKES, Finite soluble groups, Walter de Gruyter, Berlin, New York, 1992.
- [6] M. BRUCKHEIMER, A. C. BRYAN and A. Muir, Groups which are the union of three subgroups, Amer. Math. Monthly 77 (1970), 52–57.
- [7] S. Haber and A. Rosenfeld, Groups as unions of proper subgroups, Amer. Math. Monthly 66 (1956), 491–494.
- [8] P. E. Holmes, Subgroup coverings of some sporadic simple groups, J. Combin. Theory Ser. A 113 (2006), 1204–1213.
- [9] P. E. HOLMES and A. MARÓTI, Sets of elements that generate a linear or a sporadic simple group pairwise, Preprint.
- [10] M. S. LUCIDO, On the covers of finite groups, Vol. 305, London Mathematical Society Lecture Note Series (Groups St. Andrews, Vol. II, 2001), Cambridge University Press, Cambridge, 2003, 395–399.
- [11] A. Maróti, Covering the symmetric group with proper subgroups, J. Comb. Theory Ser. A 110 (2005), 97–111.
- [12] B. H. NEUMANN, Groups covered by finitely many cosets, Publ. Math. Debrecen 3 (1954), 227–242.
- [13] D. J. S. Robinson, A course in the theory of groups, 2nd edition, Springer-Verlag, New York, 1995.
- [14] G. SCORZA, I gruppi che possono pensarsi come somma di tre loro sottogruppi, Boll. Un. Mat. Ital. 5 (1926), 216–218.
- [15] M. J. TOMKINSON, Groups as the union of proper subgroups, Math. Scand. 81 (1997), 189–198.

ALIREZA ABDOLLAHI
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ISFAHAN
ISFAHAN 81746-73441
IRAN
AND
INSTITUTE FOR STUDIES IN THEORETICAL
PHYSICS AND MATHEMATICS (IPM)

E-mail: a.abdollahi@math.ui.ac.ir URL: http://www.dr-abdollahi.ir

S. M. JAFARIAN AMIRI
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCES
ZANJAN UNIVERSITY
ZANJAN
IRAN

 $E ext{-}mail: sm_jaf@yahoo.ca$