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Minimal coverings of completely reducible groups

By A. ABDOLLAHI (Isfahan) and S. M. JAFARIAN AMIRI (Zanjan)

Abstract. Let G be a group that is a set-theortic union of finitely many proper
subgroups. Cohn defined ¢(G) to be the least integer m such that G is the union of m
proper subgroups. Determining o is an open problem for most non-solvable groups. In
this paper we give a formula for o(G), where G is a completely reducible group.

1. Introduction and results

Let G be a group that is a set-theoretic union of finitely many proper sub-
groups and by a cover (or covering) of G we mean any finite set of proper
subgroups whose set-theoretic union is the whole group G. COHN [4] defined
o(G) to be the least integer m (if it exists) such that G has a covering with
m subgroups (we call any such covering minimal) and otherwise o(G) = oo.
A result of NEUMANN [12] states that if G is a union of m proper subgroups,
then the intersection of these subgroups is of finite index in G. It follows that
in study of o(G), we may assume that G is finite. It is an easy exercise that
o(G) can never be 2, so 0(G) > 3. Groups that are the union of three proper
subgroups, as Cy x Cy is for example, are investigated in papers [6], [7], [14].
Also groups G with o(G) € {3,4,5} and o(G) = 6 are characterized in [4]
and [1], respectively. However TOMKINSON [15] proved that there is no group
with 0(G) = 7. CoHN [4] showed that for any prime power p® there exists
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a solvable group G with o(G) = p® + 1. In fact, TOMKINSON [15] established
that o(G) — 1 is always a prime power for solvable groups G. It is natural
to ask what can be said about o(G) for non-solvable groups. BRYCE, FEDRI
and SERENA begun this project in [3], where they calculated o(G) for the linear
groups G € {PSLQ(q), PGL4(q),SLs(q), PGLQ(q)}. They obtained the formula
%q(q + 1) for even prime powers ¢ > 4 and the formula %q(q + 1)+ 1 for odd
prime powers ¢ > 5. Moreover Lucipo [10] studied this problem for the sim-
ple Suzuki groups and found that ¢(Sz(q)) = 3¢*(¢*> + 1), where ¢ = 22™+1,
MAROTI [11] gave exact or asymptotic formulas for o(Sym,,) and o(Alt,). In
particular, it is shown in [11] that if n > 1 is odd, then o(Sym,,) = 2"~! unless
n =9 and o(Sym,,) < 2772 if n is even. Also Maréti proved that if n # 7,9,
then o(Alt, ) > 2"~2 with equality if and only if n is even but not divisible by 4.
HoOLMES in [8] obtained o(S) for some sporadic simple groups S. See also [9]
for some related results. Thus the situation for non-solvable groups seems to be
totally different from solvable ones.

A group G is called completely reducible if it is a direct product of simple
groups. In the sequel a completely reducible group will be called a CR~group.
Note that in a CR-group, every normal subgroup is a direct factor (see [13, The-
orem 3.3.12]). A CR-group is centerless if and only if it is a direct product of
non-abelian simple groups. A finite group G contains a normal centerless CR-
subgroup which contains all normal centerless CR~subgroups; this subgroup is
called the centerless CR-radical of G. For more details concerning CR-groups,
see [13, pp. 88-89]. In this paper we prove the following results.

Theorem 1.1. Let G be a finite group. If G = A1 X As X --- X A,,, where A;
is a non-abelian simple group for each i, then o(G) = min{o(A4;),...,0(A4,)}.

Theorem 1.2. Let G be a finite C R-group. Then o(G) = min {o(R),0 (%)},
where R is the centerless CR-radical of GG.

2. Proofs

We begin with the following easy lemma.

Lemma 2.1. Let G be a finite non-cyclic group. If M is a maximal subgroup
of G such that o(G) < o(M), then either M is a normal subgroup of G or
|IG: M| <o(G) -1

PROOF. Suppose that M ¢4 G. Then M has |G : M| conjugates in G. There

are maximal subgroups A; of G for which G = U?:(?)A,- and M = Uf:(?)(M NA;).
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Since 0(G) < (M), then there exists j € {1,...,0(G)} such that M = M N A;,.
Hence for every x € G, there exist i, € {1,...,0(G)} such that M* = A, .
Therefore |G : M| < 0(G). Now since G # Ugea MY, |G : M| < o(G) — 1. O

The following result which will be useful in the sequel, is a generalization of
Lemma 4 of [4]. Its proof is similar to that of Lemma 4 of [4] and we give it for
the reader’s convenience.

Proposition 2.2. Let G be a finite group such that G = H x K for two
subgroups H and K of G. If every maximal subgroup of G contains either H
or K, then 0(G) = min{o(H),o(K)}.

PROOF. Since every maximal subgroup M of G contains either H or K, M
is equal to either Hy x K or H x Ky, where Hy is maximal in H and K, maximal
in K. Thus we may assume that G = (Uj_; H x M;) J(Uj_, M; x K), where
p+q=0(G), p,g >0 and M, is maximal in K and N; is maximal in H. Now
we claim that one of p and ¢ must be zero.

Let Gy = U_  H x M; and Gy = U]_; N; x K. If ¢ # 0, then G # G and so
there exists an element a; € G\G;. Therefore ay ¢ M; for alli € {1,...,p} and
so aay ¢ Gy for all a € H. Hence aas € Gs for all a € H. Thus aa’ € G, for all
a € H and o’ € K. Hence G5 = G and p = 0.

Now if p = 0, then G = G2 = (Uj_;N;)K, whence H = Uj_,N;. This
implies that o(H) < o(G) = ¢. Similarly if ¢ = 0, then ¢(K) < p = o(G). But
0(G) < min{o(H),o(K)} — see for example Lemma 2 in [4] — which gives the
result. (]

Recall that a finite group G is said to be primitive if it has a maximal sub-
group M such that the core of M in G, Mg = NgegM? is trivial. In this situation
we call M a stabilizer of G. We need the following trichotomy of R. BAER on
primitive groups.

Theorem 2.3 (BAER [2]). Let G be a finite primitive group with a stabi-
lizer M. Then exactly one of the following three statements holds:

(1) G has a unique minimal normal subgroup N, this subgroup N is self-central-
izing (in particular, abelian), and N is complemented by M in G.

(2) G has a unique minimal normal subgroup N, this N is non-abelian, and N
is supplemented by M in G.

(3) G has exactly two minimal normal subgroups N and N*, and each of them
is complemented by M in G. Also Cg(N) = N*, Co(N*) = N and N 2
N*2 NN*NM.
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Remark 2.4 (see Example 15.3(3) in p. 54 of [5]). Let G be a finite group.

(1) If M is a maximal subgroup of G, then % is a primitive group.

(2) If G is a non-abelian simple group, then G x G is a primitive group in which
the diagonal subgroup D = {(g,g) : g € G} is a stabilizer.

Lemma 2.5. Let H and K be non-abelian simple groups. If G = H x K,
then o(G) = min{c(H),c(K)}.

Proor. If H =2 K, then G = H x H is a primitive group with stabilizer
diagonal subgroup D = {(h,h) : h € H}. We have D = H and D is a maximal
subgroup of G which is not normal in G. If 0(G) < o(H) = o(D), then by
Lemma 2.1, |G : D| < ¢(G) — 1. Since |G : D| = |H|, we have |H| < o(H) which
is a contradiction. Thus ¢(G) > o(H). Now the corollary to Lemma 2 of [4]
completes the proof.

Thus we may assume that H 22 K. Then by Theorem 2.3 G is not a primitive
group and so M is non-trivial for every maximal subgroup M of G. Therefore
Mg =H or Mg =K and so H < M or K < M. The proof is now complete by
Proposition 2.2. ([l

PROOF OF THEOREM 1.1. We argue by induction on n. If n = 1, then the
result is clear and if n = 2, then the result follows from Lemma 2.5. So we may
assume that n > 3. If there exist distinct 4, j € {1,...,n} such that A; = A, and
1< j,then G2 Gy =N x A; x A;, where

N = H Ay

ke{l,...,n}\{i,j}

Now consider M = N x D, where D = {(a,a) : a € A;} is the diagonal subgroup
of A; x A;. Then M is a maximal subgroup of G; which is not normal in G1, since
D 4 A; x A;. On the other hand, since D = A;, by the induction hypothesis we
have 0(M) = min{o(A;),...,0(A,)}. It follows from the corollary to Lemma 2 of
[4] that o(G1) < o(M). Now suppose, aiminig for a contradiction, that o(G1) <
o(M). Then Lemma 2.1 implies that |Gy : M| < o(G). Therefore o(G) >
|A;| > o(A;), which is the contradiction we sought. Hence o(G) = o(M) =
min{o(41),...,0(4,)}.

Now assume that A; 2 A; for any two distinct 4,5 € {1,...,n} and let
H = A x Ay x -+ x Ap_1. We claim that every maximal subgroup S of G
contains either H or A,,. If A,, £ S, then A, £ Sg and so Sg = A4;, X --- X A4;,,
where {i1,...,4} € {1,...,n — 1}. Since % is a primitive group, Theorem 2.3
implies that £k = n — 1 and so S¢ = H < S. The proof is now complete by
Proposition 2.2 and induction hypothesis. (|
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PROOF OF THEOREM 1.2. Suppose that G = Ax R such that A is an abelian
CR-subgroup of G and R is the centerless C R-radical of G. We may assume that
both A and R are non-trivial. We claim that every maximal subgroup M of G
contains either A or R. If A « M, then A £ Mg. Thus there exists a normal

subgroup N of prime order such that N £ M. Since %

and NTJWGG is a minimal normal subgroup of M£G’ it follows from Theorem 2.3 that

MQG contains a unique minimal normal abelian subgroup. If R £ M, then there

exists a non-abelian simple normal subgroup S < R of G such that S £ M¢. Thus
S]\%;G is a minimal normal subgroup of Mic’ and so it is abelian, a contradiction.

This implies that R < Mg < M. Now the proof follows from Proposition 2.2. O

is a primitive group

Proposition 2.6. Let H be a finite CR-group whose center is of odd order
and let Sym,, be the symmetric group of degree n > 5. Then o(H x Sym,) =
min{o(H),o(Sym,,)}.

PRroOOF. By hypothesis and Proposition 2.2, it is enough to show that every
maximal subgroup M of G=H x Sym,, contains either H or Sym,. If H £ M,
then H < Mg and so, as H is a CR-group, there exists a (non-abelian or abelian)
simple normal subgroup S contained in H such that S £ M¢g. Therefore SN
Mg =1 and %V—[GG >~ S is a (simple) minimal normal subgroup of MQG Also
Mg N Sym,, =1, Alt,, or Sym,,.

We dismiss the first two of these possibilities.
(1) If Mg N Sym,, = 1, then Sym,, & %Zm" < Mic Since Alt,, <Sym,,, K =

MGTA“" is a minimal normal subgroup of G = Mi Now we claim that

G G
K # SZV(I;G; if X = Alt, Mg = SMg and each product is direct. Now

M,
CX(Mg) = Z(Mg) Altn = Z(Mg)S SO Cx(Mg)/ = Altn = S/ S H, a con-

tradiction. Since % is primitive, Theorem 2.3 implies that C( S]\%G) =K.

Thus Sym,, & %ﬁm" < K = Alt,,, which is a contradiction.

(2) In this case Mg N Sym,, = Alt, and so %Zm" is a normal subgroup of
order 2, therefore central in the primitive group % Thus by Theorem 2.3,
MQG ~ (5. Since S = MM—GGS < Mi(w we have that S = (5 and so the center of
H is of even order, contradicting the hypothesis.

Hence Mg N Sym,, = Sym,, < Mg < M. This completes the proof. O

ACKNOWLEDGMENT. The authors are grateful to the referee for valuable
suggestions.



172 A. Abdollahi and S. M. Jafarian Amiri : Minimal coverings of completely. ..

(1]

References

A. ABpoLLAHI, M. J. ATAEI, S. M. JAFARIAN AMIRI and A. MOHAMMADI HASSANABADI,
Groups with a maximal irredundant 6-cover, Comm. Algebra 33 (1990), 3225-3238.

R. BAER, Classes of finite groups and their properties, Illinots J. Math. 1 (1957), 115-187.

R. A. BRrRYCE, V. FEDRI and L. SERENA, Subgroup coverings of some linear groups, Bull.
Austral. Math. Soc. 60 (1999), 227-238.

J. H. E. ConN, On n-sum groups, Math. Scand. 75 (1994), 44-58.

K. DoeErk and T. HAWKES, Finite soluble groups, Walter de Gruyter, Berlin, New York,
1992.

M. BRUCKHEIMER, A. C. BRYAN and A. MUIR, Groups which are the union of three sub-
groups, Amer. Math. Monthly 77 (1970), 52-57.

S. HABER and A. ROSENFELD, Groups as unions of proper subgroups, Amer. Math. Monthly
66 (1956), 491-494.

P. E. HOLMES, Subgroup coverings of some sporadic simple groups, J. Combin. Theory Ser.
A 113 (2006), 1204-1213.

P. E. HoLMES and A. MAROTI, Sets of elements that generate a linear or a sporadic simple
group pairwise, Preprint.

[10] M. S. Lucipo, On the covers of finite groups, Vol. 305, London Mathematical Society Lec-

ture Note Series (Groups St. Andrews, Vol. II, 2001), Cambridge University Press, Cam-
bridge, 2003, 395-399.

[11] A. MAROTI, Covering the symmetric group with proper subgroups, J. Comb. Theory Ser.

A 110 (2005), 97-111.

[12] B. H. NEUMANN, Groups covered by finitely many cosets, Publ. Math. Debrecen 3 (1954),

227-242.

[13] D. J. S. ROBINSON, A course in the theory of groups, 2nd edition, Springer-Verlag, New

York, 1995.

[14] G. Scorza, I gruppi che possono pensarsi come somma di tre loro sottogruppi, Boll. Un.

Mat. Ttal. 5 (1926), 216-218.

[15] M. J. TOMKINSON, Groups as the union of proper subgroups, Math. Scand. 81 (1997),

189-198.

ALIREZA ABDOLLAHI

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ISFAHAN

ISFAHAN 81746-73441

IRAN

AND

INSTITUTE FOR STUDIES IN THEORETICAL
PHYSICS AND MATHEMATICS (IPM)

E-mail: a.abdollahi@math.ui.ac.ir
URL: http://www.dr-abdollahi.ir

S. M. JAFARIAN AMIRI
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCES

ZANJAN UNIVERSITY

ZANJAN

IRAN

E-mail: sm_jaf@yahoo.ca

(Received October 10, 2006; revised December 22, 2006)



