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Algebraic approach to equivariance of solutions
for an iterative equation

By WEINIAN ZHANG (Chengdu) and BING XU (Chengdu)

Abstract. Describing the symmetry of a mapping by equivariance with respect to
a linear transformation group, the reference [Proc. Roy. Soc. Edinburgh A130 (2000),
1153-1163] gave the existence of equivariant solutions of the polynomial-like iterative
equation under the action of topologically finitely generated subgroups of GL(R) on R
and the orthogonal group O(N) on RY (N > 2). In this paper, based on the algebraic
structure of closed subgroups of GL(R), we prove the equivariance of solutions on R
with respect to closed subgroups of GL(R) and extend the result of O(N)-equivariance
of solutions to the group O(N) x (cZy) on RY.

1. Introduction

Related to problems of iterative roots (see [9], [22]), invariant curves (see [9],
[14], [17]) and normal forms of dynamical systems (see (2.16) in [1]), equations
involving iteration become interesting. For a self-mapping f on a Banach space
X over R and a positive integer n, the n-th iterate f™ is defined by f"(x) =
f(f""Y(z)) and f°(z) = x. An interesting form of such equations is the so-called
polynomial-like iterative equation, a linear combination of iterates of the unknown

mapping f, i.e.,
Mf(@)+ X f? (@) + -+ A\ f"(2) = F(z), z€X, (1.1)

where F' : X — X is a given mapping and all coefficients \; (i = 1,2,...,n)
are real constants. For linear F', equation (1.1) on R was investigated in [2], [§],
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[13], [15], [16], [20], [21]. For nomlinear F, equation (1.1) on R was discussed
in [12], [28] for n = 2 and in [23, 24] for general n. In [22] and [27] the open
problems on the C™ smoothness and the leading coefficient were put forwarded
and later discussed in [11] and [26]. Solutions in R™ and analytic solutions in C
were discussed in [10], [19]. In many of those works fixed points of mappings f
and F' are involved, that the normalization condition

Zn:Ai =1 (1.2)
=1

is imposed naturally.

As in many references [4], [5], [18], symmetry of a mapping is described by
equivariance of the mapping with respect to a Lie group I' of linear transforma-
tions. The reason why one prefers the terminology of Lie group to the general
one is, as told on p. 13 of [18], that “this combination of algebra and calculus
leads to powerful techniques for the study of symmetry which are not available
for, say, finite groups”. For a Lie group I' of linear transformations of X, say that
[+ X — X is I'-equivariant if

f(yz) =~f(z), VzxeX, yeTl.

Sometimes we also say that f : A C X — X is of [-equivariance if f is a restriction
of a T'-equivariant mapping on the subset A. In [25] equivariance of continuous
solutions for equation (1.1) was discussed under the action of topologically finitely
generated subgroups of GL(R) on R and the orthogonal group O(N) on R¥
(N >2).

In this paper, based on the algebraic structure of closed subgroups of GL(R),
we prove the equivariance of solutions of equation (1.1) on R with respect to
closed subgroups of GL(R), so a more general version of equivariance of solutions
of equation (1.1) is obtained by a different proof. The idea of this proof is to
reduce the equivariant problem by ‘factoring out’ the group action algebraically
to a non-equivariant one. Then, we discuss equation (1.1) on R" and extend the
result of O(N)-equivariance of solutions to the group O(N) x (¢Zy), where (¢In)
is the group of positive dilations.

2. Equivariance to closed subgroups of GL(R)

Consider Lie group I of linear transformations on RY. and refer to standard
group theory texts such as FucHs [3] and HALL [6] for group-theoretic back-
ground. As in [4], [5], for any z € RY the subgroup ¥, := {y € I : yvo = z},
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called the isotropy group, is a closed subgroup of I' by continuity. Our discussion
is focused at closed subgroups of T'.

In the case N = 1, invertible linear transformations of R take the form
x — vz where 0 # v € R. Without loss of generality, any Lie group acting linearly
on R can therefore be identified with a subgroup of GL(R), the multiplicative
topological group of nonzero reals, which we can identify with Ry = R\{0}. All
such groups are Abelian.

Let C(I) consist of all continuous real-valued functions on I := [—1,1] and

Fr(H)={fecd)| f(yz) =~f(x),Vy €T and Va,vzx € I},
F(Iym,M)={fec()|f1)=1, f(-1)=-1, and
m(y —x) < f(y) — f(z) < M(y — =), Vy >z €I},
Fr(I;m, M) = F(I;m, M)N Fr(l),

where M > 1> m > 0. The main result in this section is the following.

Theorem 1. Suppose that I is a closed subgroup of GL(R) and that M > 1.
If F € Fr(I;0,M) and (1.2) holds with \y > 0,A\; > 0 (i = 2,...,n), then
equation (1.1) has a continuous solution f € Fr(I;0,M/\1), which possesses
T'-equivariance.

Before proving the theorem, observe that GL(R) = {¢Z | 0 # ¢ € R}, where
7 = idg, the identity on R. The following lemma shows the algebraic structure
of closed subgroups of GL(R).

Lemma 1. The closed subgroups of G = GL(R) are:

In order to prove this lemma, we need the following well-known result, which
is Theorem 438 in [7] p. 375.

Lemma 2 (Kronecker’s Theorem). Suppose that aq,as € R. (i) If the ratio
a1/az is rational then {kay +lag : k, | € Z} = {ka : k € Z} for a constant a € R.
(ii) If the ratio ai/aq is irrational then the closure of {kay + lag : k, 1 € Z} is R.
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PROOF OF LEMMA 1. Observe that GL(R) is isomorphic to GLT(R) x Zs
where GL™T(R) is the group of dilations x — ax for real a > 0 and Zy = {—1,1}.
The subgroups of GL(R) therefore fall into three classes:

Case (1) those contained in GLT (R),

Case (2) those that contain Zs, and

Case (3) those that satisfy neither of these conditions.

The logarithm function provides an isomorphism between GL™(R) and the addi-
tive group of R.

Let H be a closed subgroup of GL™(R), that is, H* = {logh : h € H}, the
image of H under logarithm is a closed subgroup of the additive group R. Then,
by Lemma 2, either H* = {0}, or H* is generated by one element a and hence
is cyclic, or H* contains a non-cyclic subgroup with a generating set containing
two elements a,a’ where a’ is not a rational multiple of @ and the closure of the
group (a,a’) generated by a,a’ is the whole of R. This proves (a), (c) and part
of (b) where ¢ > 1.

If H D Zs then it is clear that H = Hy X Zy where Hy is a closed subgroup
of GLT(R). This proves (d), (e) and (f).

In the third case, H must be of the form H = {h,o(h)} where h € H' C
GLT(R) and o : H — Zs is a surjective homeomorphism. This is possible only
when H' = (cp) is cyclic and ¢p > 1, in which case o(cj) = (—1)" and we can
express H as (—cp). This proves the other part of (b) where ¢ < —1.

Therefore, we have completed the proof of Lemma 1. (|

The following known result of continuous solutions is also useful.

Lemma 3 ([23]). Suppose that F : J = [a,b] — J (where a < b) is an
increasing function with fixed points at a and b and Lipschitz constant M > 1
and that (1.2) holds with Ay > 0,\; > 0 (i = 2,...,n). Then (1.1) has an
increasing continuous solution f on J which has the Lipschitz constant M /A
and fixes a and b.

PrOOF OF THEOREM 1. It suffices to prove Theorem 1 for each of these six
cases provided in Lemma 1.

Case (a) is just the non-equivariant case. Note that F' € Fp([;0, M) implies
in particular that F' is monotonic increasing, a condition that occurs already in
the non-equivariant case as in [23] and [24], so we can obtain our result directly
from Lemma 3.

In Case (b), there is no loss of generality in assuming that I' = (¢) where
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c > 1. It follows that

1 1
F(ic—kx> =+ F(0), k=0,12..., (2.3)
since F(cx) = c¢F(x), Yo € I. Moreover, F(1) = 1 and F(-1) = —1 for any
F € Fr(I;0,M). By continuity, (2.3) implies that F'(0) = 0. Notice that the
actions of ' on Iy = [0,1] and I = [—1, 0] are independent of each other because
—1¢T. So, it suffices to observe Fr(I4+;0,M). From (2.3), we see that

1 1
F(C—k>zc—k, k:O,1,2...,

Let Jy := [1/c**1,1/c¥]. Then the mapping F restricted on each Jj is in a
non-equivariant case and satisfies the conditions in Lemma 3.

In case (¢) G°-equivariance implies that F' is a scalar multiple of the identity,
and the condition on fixed points +1 implies that F' is the identity. Now f can
(and must) be chosen to be the identity.

Cases (d,e,f) are similar but with the additional constraint that the function
f must be odd; this can be achieved by working on the interval [0, 1] and extending
to [—1, 0] using equivariance under Zg = {—1,1}.

The proofs for cases (b,d,e) can be seen as ‘factoring out’ the group action
by working on the orbit space

R/T ={I'(z) : z € R},

where T'(z) = {yz : v € T'}. Since this is topologically equivalent to a bounded
closed interval, the non-equivariant theorem Lemma 3 can be applied; then the
resulting function is lifted back to the original space (uniquely). ([

3. Equivariance to O(N) X (cZn)

In this section consider the action of the group O(N) x (cZy) on RY (N > 2),
where Zy is the identity on RY and 0 < ¢ € R, and generalize the result in [25]
for O(N)-equivariance.

Let O. denote O(N) x (cZy) for short. In standard representation,

O(N) ={A € GL(N) : AAT =Ty},
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where AT denotes the transpose of A. For example, O(2) is generated by rota-

(10 _01).

Let B=BY = {z € RV | |z|| < 1} and (-,-) denote the usual inner product on
RY. Define

tions on R? and the flip

Fo.(B) ={fe€C(B)| f(yx) =7f(z), V7 € O and Vz,yx € B},
F(B;m,M)={f €C(B)| f fixes 9B pointwise, and for any v € B,
mlts — t)Joll? < (f(t20) — F(t10),0) < M(ts — ) o]
when to > t; and tyv,tv € B}

d
o Fo.(B;m, M) = F(B;m, M) Fo_(B)
when M >1>m > 0.

Theorem 2. Let F € Fo_(B;0,M) where M > 1. Then the equation
(1.1) where Ay > 0,\; >0 (i = 2,...,n) and Y ., A\; = 1 has a solution f €
Fo.(B;0,M/\), which is continuous and possesses O(N) x {c¢Iy)-equivariance.

Although O, is not compact, the theory of fixed-point spaces in [5] can still
be applied directly here.

Lemma 4. Suppose f be a O.-equivariant mapping on RY. If ¥ is a sub-
group of O, then the fixed-point space Fix(Y), defined by Fix(3) = {z € RY |
yx =z, Yy € ¥}, is invariant under f.

In fact, the proof is not related to the compactness of the group. For any
x € Fix(X), by the equivariance we see that vf(x) = f(yz) = f(z), Vy € X, that
is, f(z) € Fix(¥). The next is to characterize O.-equivariant mappings.

Lemma 5. (a) Let f : RY — RY be an O.-equivariant mapping. Then
there exists a function f* : Rt := {z € R: 2 > 0} — R such that f*(||z|) is
O.-invariant and

f@) = (=)=, Vo € RY. (3.4)
(b) Conversely if f is of the form (3.4) then f is O.-equivariant.

PROOF. (a) Choose a fixed unit vector u € RY and let ¥ be the isotropy

subgroup of w, that is, ¥ = {y € O, | yu = u}. By definition Fix(¥) = Ru. Let

r € RT. Since f is O.-equivariant, by Lemma 4 it maps Fix(2) to itself, therefore
f(ru) = ¢(r)u for some ¢ : RT — R. Let x € RY and r = ||z||, and define a real
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function f*:RT — R by

ey Jo(s)/s ass>0,
I(e) {O s =0.

If z # 0 then there exists v € O(N) C O, such that y(ru) = x. Therefore

(&) = Fr(w) = F(r) = 360 = o(ryyu = Ao = 2 (af

as required. If x = 0 then f(0) = f(z) = f(yx) = vf(0) for all v € O.. The fact
that Fix(O.) = {0} implies f(0) = 0. Clearly ( 3.4) holds for = = 0.
Furthermore, for all v € O, from ( 3.4) we have

v (lel)z = v f(2) = f(ye) = fF(llvzl)re
for all x € RY, whence f*(||z||) = f*(||y=||) and f*(||z||) is O.-invariant.

(b) If v € O, then

fove) = f*(lval)ye = f*(lzl)yve = v (lzlDz = vf(z), ¥z e RY,
that is, f is O.-equivariant. ([

PROOF OF THEOREM 2. Let U be any 1-dimensional linear subspace of RV,
By continuity and the fact that F' fixes 0B pointwise, F' maps U N B into itself,
where B = BY is the unit ball. Let u € U be a unit vector. Then U N B = {tu |
t € [-1,1]}. By Lemma 5, F(tu) = F*(|t|)tu for a function F* : RT — R. Let

F(t) = tF*(|t]), Vte[-1,1]. (3.5)

The continuity of F' guarantees F' is continuous on [—1.1]. In fact, from the proof
of Lemma 5 it is easy to guarantee the continuity of F*(t) and F(t) at t # 0.
Since F'(z) is continuous at z = 0, it follows from ( 3.4) that
151_1)%1+ F*(t)t =0.

This ensures the continuity of F' on the whole interval [—1, 1].

Now we claim that F' € Fryx(ey(1;0, M) where I = [~1,1], Zo = {—1,1} and
¢>0. Clearly F e C(I) and is odd, that is, F is Zs-equivariant. By Lemma 5,
F*(||z]]) is O(N) x (cZn)-invariant. Then

F(ct) = ctF*(|ct]) = ctF*(||ctul]) = ctF*(|[tu]]) = ctF*(|t]) = ¢ F(t),
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for all ¢ € I, where u € U is the unit vector. Hence F Fryx(ey(I). Moreover,
since u and —u belong to dB we have F*(1) = 1 and F(+1) = +1. Note that for
any ti,to € I with to > tq,

F(fz’u) — F(tlu) = F(fg)’u — F(tl)u = (F(tg) — F(tl))u,

and (F(tou) — F(tiu),u) = F(ta) — F(t1). Thus F € F(B;0, M) implies F €
F(I;0,M). Thus what we claimed is true.
From (3.5) we see

F(tu) = F(t)u. (3.6)
By Theorem 1, there exists a function f € Fryx(ey(13;0, M /A1) such that
Mf(@) + A f? (@) + -+ M (@) = F2) (3.7)
for t € I. Extend fto f: BN — RN by setting
f(@) = (=)= (3.8)

where N()
oo Fw itt>o,
/ (t>_{0 t=0.

Clearly f is continuous for z # 0 because of the continuity of f. At z = 0
it is obvious that lim, o ||f(2)|| = limae_o |f*(||z])]||z| = lime_o |f(||z]))] = 0.
Therefore f is continuous on BY. For any 0 # z € BN let t = ||z|| and v = x/||z|.
Then x = tv and f(z) = f(tv) = f(t)v as in (3.6). Clearly f™(z) = f™(t)v for
any integer n > 0. Therefore (3.7) implies that

MO+ A f2()v 4+ A f7(t)v = F(t)v,

so that
Af(@) + X f2 (@) + -+ X f (@) = F(a).

It is easy to verify that f defined in (3.8) is of O(N) x (¢Zy)-equivariance, since

f is of Zs x {(c¢)-equivariance. Hence we have obtained a solution f to (1.1) in

The corresponding results on uniqueness and stability can be given similarly.

4. Applications

Theorem 2, being the main result of this paper and proved on the basis of
Theorem 1, generalizes the N-dimensional result of equivariance given in [25]
from the group O(N) to O(N) x (¢Zy). In order to demonstrate how Theorem 2
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works on a practical example, let us simply consider a mapping F' on the unit
disk of R? defined in polar coordinates by F : (r,6) — (®(r),6), where ® is a C-
smooth function on I = [0, 1] of (})-equivariance. Function ® can be constructed
by linking C'-smooth functions ®, each of which is defined on |52, 5] for
k=0,1,2,... and satisfies

(@) ®u(zr) = 77 2u(zmr) = 7o,
(i) m < @) (r) < M,Vr € (527, 5% ), where 0 <m < 1 < M, and
(i) P(5r) = Cp(ger) = L.

One can easily see that

1 1
) (iQ—kr> =+539(r), k=012.... (4.9)
Since each v € O(N) x (3In) can be expressed as either v : (r,60) — (Frr,0 + )
or~: (r,0) — (2%73 —9), where k is a positive integer and « is a real number,
we can check with (4.9) that F is equivariant under the action of the group
O(N) x (3Zn). Thus conditions in Theorem 2 are fulfilled by this mapping F.
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