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Polynomial hypergroup structures and applications
to probability theory

By WALTER R. BLOOM (Murdoch) and HERBERT HEYER (Tübingen)

Abstract. A new trend in enlarging the repertoire of concrete hypergroups is

the construction of polynomial hypergroup structures on higher-dimensional Euclidean

spaces. It turns out that stochastic processes taking values in such structures and their

duals reveal surprising phenomena. In the present exposition recent progress in the

theory achieved by Koornwinder, Connett and Schwartz, and by the Tunisian School

will be discussed and made accessible also to the non-specialized reader.

1. Introduction

There are two significant aspects motivating an up-to-date exposition on
progress in the theory of commutative hypergroups with base space a compact
subset K of k-dimensional euclidean space and whose convolution in the set M(K)
of bounded measures on K is defined via sequences of k-variable polynomials
on K. Firstly, this survey shows how new hypergroup structures can be introduced
for geometric configurations in R2 such as the unit square, the unit disk, the
parabolic bi-angle and the simplex. Secondly, it is of interest to study stochastic
processes with independent increments in these configurations, their structure
and their long-term behaviour.

For general compact commutative hypergroups an elaborate harmonic analy-
sis is available based on the generalized translation operation in M(K). Basic re-
sults have been obtained in analogy to but remarkably distinct from the classical
framework of a compact abelian group. It is worth recalling that in general there
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is no dual hypergroup attached to the given hypergroup K, that the Plancherel
measure rarely has full support, and that positive definite functions can be un-
bounded. However there is a Haar measure for K, corresponding Lp-spaces, and
an extended Fourier–Stieltjes theory. For details of the general theory of hyper-
groups reaching beyond the compact and the commutative cases the reader is
referred to the authors’ monograph [2].

The present exposition can be considered as a supplement to [7] which deals
exclusively with the disk hypergroup, an example of a 2-dimensional structure;
this booklet did not treat in any detail the more general structure. In the mean-
time analytic and probabilistic results have been proved for even more interesting
2-dimensional configurations by Connett and Schwartz, and Koornwinder

in the first case, and Mokni and Trimèche, and Mili in the second. The ana-
lytic contributions published between 1975 and 1996 are mainly concerned with
the proofs that the configurations K carry polynomial hypergroup structures. The
probabilistic results achieved around 1999 are grounded on the cone-embedding
of the compact set K.

In this paper we first review the fundamental notions from the theory of hy-
pergroups (Section 2), and then specialize the discussion to k-variable polynomial
hypergroups in Section 3. Section 4, which is central to the paper, is concerned
with the highly sophisticated constructions leading to hypergroup structures for
some cone-embedded compact subsets K. Sections 5 and 6 will cover applications
of this theory to probability theory on these spaces, where the canonical decom-
position of generalized Laplacians and a Central Limit Theorem for appropriately
stopped random variables in K give an insight into the probabilistic significance
of the underlying hypergroup structure.

2. Compact commutative hypergroups

We commence with a convolution structure arising from a pair (G,H) con-
sisting of a locally compact group G and a compact subgroup H of G admitting
a normalized Haar measure ωH . We observe that the set

K := G//H := {HxH : x ∈ G}

of H-double cosets of G can be made into a locally compact space by furnishing it
with the natural quotient topology, but not in general into a group or semigroup.
Still the Banach space M b(K) of bounded measures on K carries a convolution
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structure inherited from that of M b(G), Indeed for x, y ∈ G the convolution
product of the Dirac measures at the corresponding double cosets is defined by

εHxH ∗ εHyH :=
∫

H

εHxhyH ωH(dh).

Evidently this convolution of Dirac measures yields a probability measure with
compact but not necessarily singleton support. It turns out that ∗ can be extended
to all measures in M b(K) in such a way that

(
M b(K), ∗) becomes a Banach ∗-

algebra with unit element HeH and involution HxH 7→ Hx−1H. Moreover,
(K, ∗) is a hypergroup in the sense of Dunkl, Jewett and Spector, satisfying the
following axioms.

Given an arbitrary locally compact space K there is a convolution ∗ in M b(K)
such that

K1 (M b(K), ∗) is a Banach ∗-algebra.

K2 The mapping (µ, ν) 7→ µ∗ν from M b(K)×M b(K) into M b(K) is continuous
with respect to the weak topology τw in M b(K).

K3 For x, y ∈ K the convolution εx ∗ εy belongs to the set M1
c (K of probability

measures on K with compact support.

K4 There exists a unit element εe (for some distinguished e ∈ K) and an invo-
lution µ 7→ µ− in M b(K) satisfying e ∈ supp (εx ∗ εy) ⇐⇒ x = y− for all
x, y ∈ K.

K5 The mapping (x, y) 7→ supp (εx ∗ εy) from K × K into the space C (K) of
compact subsets of K furnished with the Michael topology τM is continuous.
(For a definition of τM and a useful equivalent description in the metrisable
case see [10].)

We refer to the hypergroup (K, ∗) as being commutative if εx ∗ εy = εy ∗ εx

for all x, y ∈ K, and hermitian if the involution is the identity mapping.
Clearly every locally compact group is a hypergroup, and G’elfand pairs

(G,H) yield commutative double coset hypergroups. The following two G’elfand
pairs lead to the class of hypergroups that will be central to our discussion
throughout the remaining part of this paper.

2.1. Example (Jacobi pair). Let G := SO(d) and H := SO(d − 1) for d ≥ 3.
Then G/H can be identified with the d-dimensional unit sphere Sd−1 and G//H

with the unit interval I := [−1, 1]. The convolution ∗ in M b(I) induced from G is
described by the sequence

(
Qα,β

n

)
n≥0

of Jacobi polynomials for α = β = d−3
2 .
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2.2. Example (Disk pair). Let G := U(d) and H := U(d − 1) for d ≥ 3. Then
G/H ∼= S2d−1 and G//H ∼= D := {z ∈ C : |z| ≤ 1}. The convolution for measures
on the unit disk D is induced from the group G; it is described by the sequence(
Qα

m,n

)
m,n≥0

of disk polynomials for α = d− 2.

Both examples give compact commutative hypergroups with polynomial con-
volution structures over I and D respectively. The construction of the convolution
suggests that I and D admit hypergroup structures beyond “integer dimensions”.

We now recall some fundamental notions from the theory of a commutative
hypergroup (K, ∗).
2.3. The generalized translation operator T x for x ∈ K is defined by

T xf(y) :=
∫

K

f d (εx ∗ εy)

for y ∈ K whenever f is appropriately integrable on K.

2.4. There exists a non-zero translation invariant measure ωK ∈ M+(K) (the set
of non-negative measures on K) which is unique to within a positive multiplicative
constant. This Haar measure gives rise to an elaborate analysis of the spaces
Lp(K, ωK), in particular of the hypergroup algebra L1(K,ωK).

2.5. Characters of K are introduced as continuous hermitian homomorphisms
χ : K → D, where the latter property is given by

χ(x)χ(y) = T xχ(y)

for all x, y ∈ K. The set K∧ of non-vanishing characters of K together with the
compact open topology τco is a locally compact space, called the dual of K. It is
only very rarely that K∧ itself carries a hypergroup structure.

2.6. There exists an injective Fourier–Stieltjes transform µ 7→ ∧
µ from M b(K)

into the space Cb (K∧) of bounded continuous functions on K∧ given by

∧
µ(χ) :=

∫

K

−
χdµ

for all χ ∈ K∧. Moreover, the Fourier–Stieltjes transform admits the Lévy conti-
nuity property. The Fourier transform

f 7→
∧
f := (fωK)∧



Polynomial hypergroup structures and applications to probability theory 203

gives an isometric isomorphism from L2 (K, ωK) into L2 (K∧, πK), where πK ∈
M+ (K∧) denotes the Plancherel measure of K associated with the Haar measure
ωK . It is a crucial deviation from classical harmonic analysis that in general
the Plancherel measure does not have full support. Indeed, the representation
theory even in the commutative case is far from complete, hardly surprising as
commutative hypergroups encompass G’elfand pairs; this should not constitute a
drawback but rather an encouragement for further research.

In order to illustrate the above fundamental notions we consider our main
example.

2.7. Example. The disk hypergroup (D, ∗α) := (D, ∗(Qα
m,n)) where the convolu-

tion ∗α is defined via the sequence
(
Qα

m,n

)
of disk polynomials of order α > 0

given by
Qα

m,n(z) := Q
α,|m−n|
m∧n

(
2|z|2 − 1

) |z||m−n|

for all z ∈ D and m,n ∈ Z+, where
(
Qα,β

n

)
n≥0

denotes the sequence of Jacobi
polynomials with parameters α ≥ β > −1 and either β > − 1

2 or α + β ≥ 0.
As carried out in detail in [7] we employ the well-known product formula for
disk polynomials in order to introduce the convolution ∗α in M b (D). In fact for
z, w ∈ D there exists a probability measure µx,y on D such that

Qα
m,n(z)Qα

m,n(w) =
∫

D
Qα

m,n dµz,w

for all m,n ∈ Z+. With
εz ∗α εw := µz,w

we obtain a hypergroup structure in D. The hypergroup (D, ∗α) is non-hermitian
(with involution z 7−→ z̄) having 11 := (1, 0) ∈ C as its unit. The normed Haar
measure ωα of D can be computed as

ωα(d(x, y)) =
α + 1

π

(
1− x2 − y2

)α
dxdy

so that the convolution of Dirac measures takes the form

εz ∗ εw(f) =
α

α + 1

∫

D
f

(
zw +

√
1− z2

√
1− w2 v

) 1
1− |v|2 ωα(dv)

for all f ∈ Cb (D). The characters of (D, ∗α) are given by

χm,n(z) := Qα
m,n(z)
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so that the dual D∧ ∼= Z2
+, which also turns out to be a hypergroup. In fact(

Z2
+,
∧∗α

)
is a discrete commutative hypergroup with convolution given by

εm,n
∧∗α εk,l ({(r, s)}) := h(m,n; k, l; r, s)

where the h(m, n; k, l; r, s) are the coefficients given in the non-negative lineariza-
tion

Qα
m,n(z)Qα

k,l(z) =
∑

r,s≥0

Qα
r,s(z)h(m,n; k, l; r, s)

valid for all (m,n), (k, l) ∈ Z2
+ and z ∈ D. The Fourier–Stieltjes transform of

µ ∈ M b (D) is given by
∧
µ(m, n) :=

∫

D
Q

α

m,ndµ.

Finally we note that (D, ∗α) has the Pontryagin property in the sense that
(D∧)∧ ∼= D.

Starting from the disk hypergroup D we can easily derive the hypergroup
structure of the half-disk

D+ :=
{
(x, y) ∈ R2 : x2 + y2 ≤ 1, y ≥ 0

}

which appears as the dual E∧ of a hypergroup E. The hypergroup structure
of E was established via half-disk polynomials in [11] (the latter can be viewed
as special Koornwinder type III polynomials; see Section 5 below). Independent
of this rather technical approach we can show that D+ and E are hypergroups as
follows: D+ is the quotient hypergroup D/{−1, 1} where {−1, 1} is a subgroup
of D, and consequently E ∼= D∧+ becomes a subhypergroup of D∧∼= Z2

+.
Examples 2.1, 2.2 and 2.7 suggest a more general constructive approach to

compact commutative hypergroups. Given an arbitrary compact subset K of
Rk (k ≥ 1) the following can be stressed as a challenging research programme
(see [4]).

2.8. Polynomial hypergroup problem (PHP). Find a suitable family P of k-
variable polynomials on K that provide a convolution in M b(K) such that (K, ∗P)
becomes a (compact commutative) hypergroup.

An ambitious far-reaching solution to this problem would be the identification
of all hypergroups (K, ∗) with compact Euclidean base space K such that K∧

contains a ”rich” family P of polynomials on K. We shall return to attempts to
reach such a solution in the next section.
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3. k-variable polynomial hypergroups

We are given a compact subset K of Rk (k ≥ 1) and a measure ω ∈ M+(K).
Let P ⊂ C [X1, X2, . . . , Xk] be a family of polynomials on K that are orthogonal
with respect to ω in the sense that

I. for all P, Q ∈ P with P 6= Q∫

K

PQdω = 0

and

II. for each ` ≥ 1 the set P≤` of polynomials in P with degree not exceeding `

spans C [X1, X2, . . . , Xk]≤`.

Moreover we assume that

III. there exists e ∈ K such that P (e) = 1 for all P ∈ P and that

IV. for x, y ∈ K there exists µx,y ∈ M1(K) satisfying the product formula

P (x)P (y) =
∫

K

P dµx,y

whenever P ∈ P.

Clearly from III and IV it follows that

sup
x∈K

|P (x)| = P (e) = 1

for all P ∈ P. Now introducing the convolution product

εx ∗P εy := µx,y

for x, y ∈ K and extending it to all of M b(K) we obtain a commutative Banach
algebra

(
M b(K), ∗) with unit εe.

In order that (K, ∗P) becomes a hypergroup two additional properties need
to be satisfied.

V. There exists an involution µ 7→ µ− in M b(K) such that

e ∈ supp (εx ∗P εy) ⇐⇒ x = y−

for all x, y ∈ K, and

VI. the mapping

(x, y) 7→ supp (εx ∗P εy)

from K ×K into (C (K) , τM ) is continuous.
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3.1. Definition. A hypergroup (K, ∗P) constructed with Properties I–VI is re-
ferred to as a k-variable polynomial hypergroup (with defining family P).

For arbitrary compact hypergroups K the dual K∧ is always discrete. In
the special case of a k-variable polynomial hypergroup (K, ∗P) the dual is even
countable. In general K∧ does not carry a hypergroup structure, a 2-dimensional
exception being the disk hypergroup (D, ∗α) as was pointed out in Example 2.7.

For general k-variable polynomial hypergroups (K, ∗P) we observe

3.2. Remark. The Fourier–Stieltjes transform
∧
µ of µ ∈ M b(K) is given by

∧
µ(P ) =

∫

K

P dµ

for all P ∈ P, and the mappings µ 7→ ∧
µ and f 7→

∧
f are injective on M b(K) and

L1(K,ωK) respectively.

3.3. Remark. Identifying the Plancherel measure πK of K with the measure

π(P ) := ‖P‖−2
2 , P ∈ P

on P ∼= K∧, Plancherel’s formula provides an isometric isomorphism f 7→
∧
f from

L2 (K,ωK) onto `2 ({π(P ) : P ∈ P}).
We now investigate the special role played by the disk hypergroup within all

2-variable polynomial hypergroups; any result in this direction would support the
hope for a complete classification of 2-variable polynomial hypergroups.

We first briefly report on some work contained in [5].

3.4. Definition. Two hypergroups (K, ∗), (L, ◦) with respective compact base
spaces K, L ⊂ C ∼= R2 are said to be linearly equivalent if (L, ◦) is the image of
(K, ∗) under an affine-linear homeomorphism from K onto L.

In the following we restrict ourselves to non-hermitian hypergroups (K, ∗)
with compact base space.

3.5. Theorem. If (K, ∗) admits exactly two distinct non-constant polynomial
characters of degree 1 then (K, ∗) is equivalent to a canonical hypergroup (L, ◦)
defined by the following properties.

3.5.1. The unit of (L, ◦) is 1 ∈ C.

3.5.2. The involution of (L, ◦) is complex conjugation.
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3.5.3. L ⊂ D.

3.5.4. The polynomial characters of L of degree 1 are the functions

z 7−→ z and z 7−→ z.

3.6. Theorem. Let (L, ◦) be a canonical hypergroup. The following statements
are equivalent.

3.6.1. (L, ◦) = (D, ∗α) for some α > 0.

3.6.2. 1 is an accumulation point of L and the only w ∈ C satisfying

〈w, z − 1〉 = o(‖z − 1‖) for z → z0

with z ∈ L is w = 0, and {z ∈ L : |z| = 1} contains at least one point not a
4th, 5th or 6th root of unity.

3.7. Corollary. If (D, ∗) (as a non-hermitian hypergroup with an arbitrary con-
volution ∗) is canonical then (D, ∗) = (D, ∗α) for some α > 0.

4. Cone-embedded hypergroups

The new types of 2-variable polynomial hypergroups to be studied in the
sequel are constructed for the parabolic triangle B and for the triangle T as base
spaces. In the spirit of PHP quoted in Example 2.8 families P of 2-variable
polynomials on these spaces K have to be found such that the Properties I-VI are
fulfilled. Then a convolution ∗P turns the space K into a (compact commutative)
hypergroup (K, ∗P). Once the family P is chosen to be orthogonal (Property I)
and rich (Property II) the main task in establishing the hypergroup structure will
be the verification of the product formula (Property IV) and the continuity of the
support (Property VI).

The groundwork for the constructions has been laid out by Koornwinder

[9]; detailed proofs of Properties IV and VI can be found in Koornwinder and
Schwartz [10].

Before we enter a discussion of the construction of hypergroup structures for
B and T we note that following Mokni and Trimèche [13] there is a class of
2-dimensional compact spaces containing

B := {(x1, x2) ∈ R2 : 0 ≤ x2
2 ≤ x1 ≤ 1}, T := {(x1, x2) ∈ R2 : 0 ≤ x2 ≤ x1 ≤ 1}

and the square Q := I2 as distinguished examples.
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4.1. Definition. A compact subspace D of Rk (k ≥ 2) is said to be cone-embedded
if

(a) D0 = D.

(b) e := (1, 1, . . . , 1) ∈ ∂D.

(c) For every ` ∈ {1, 2, . . . , k} there is a C1-curve γ` : [0, 1] → ∂D such that

(c1) γ`(0) = e for all ` ∈ {1, 2, . . . , k},
(c2) {γ′`(0) : 1 ≤ ` ≤ k} is a basis for Rk,

(c3) whenever C is the convex cone generated by {R+γ′`(0) : 1 ≤ ` ≤ k} then
D is a subset of the cone e + C.

For later application we note that e + C is a proper cone in Rk in the sense
that

(e + C) ∩ (e− C) = {e}
and hence there exists a normal vector n for C0 (not necessarily unique) such
that

(e + C)\{e} ⊂ {x ∈ Rk : h(x) > 0}
where

h(x) := 〈n | x− e〉
for all x ∈ Rk.

The following general scheme directs the approach to verifying Properties IV–
VI for the compact spaces B and T.

4.2. Special case. For K := B or T we write K× := K\{e}. Then for Property IV
we establish separately the product formulae

IV.1. For x, y ∈ K

P (x)P (y) =
∫

∆

P (T (x, y; w))µ(dw),

IV.2. For x ∈ K

P (x)P (e) =
∫

∆0

P (T (x; w))µ0(dw)

where
(x, y;w) 7−→ T (x, y; w)

and
(x;w) 7→ T0(x; w)

are generalized translations on (K×)2 × ∆ and K× × ∆0 with compact
subsets ∆, ∆0 in Euclidean spaces of appropriate dimensions, and µ, µ0

are measures in M1((K×)2 ×∆),M1(K× ×∆0) respectively.
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In accordance with previous formulations of Property IV we have

T (x, y;∆) = supp µx,y = supp(εx ∗P εy)

and
T0(x;∆0) = supp µx,0 = supp(εx ∗P ε0).

We next demonstrate the equivalences:

V.1. e ∈ T (x, y;∆) ⇐⇒ x = y (x, y ∈ K×);

V.2. e ∈ T0(x;∆0) ⇐⇒ x = 0 (x ∈ K)
which imply Property V.
And in order to obtain Property VI it remains to prove the limit relation

VI.1. lim
(x,y)→(z,0),x,y∈K×

T (x, y;∆) = T0(x;∆0).

We note that
T (x, e;w) = x ⇐⇒ εx ∗ εe = εx

whenever w ∈ ∆.

To gain a better understanding of the very complicated generalized transla-
tion T we reformulate the well-known example of the square hypergroup.

4.3. Example. The square hypergroup is given by (K, ∗P) with K := S := I2

where P is the family of square polynomials in K [9]. Applying the notion of
product hypergroup we obtain the product formula for (S, ∗P) directly from that
of (I, ∗P), where the sequence P of (normalized) Jacobi polynomials is given for
α > β > − 1

2 by
{Q(α,β)

n : n ∈ Z+}
with

Q(α,β)
n (x) = F

(
−n, n + α + β + 1; α + 1;

1− x

2

)

for all x ∈ I, where F denotes the Gaussian hyperbolic function. It is known that
the family P satisfies Property I with the orthogonality (Haar) measure

ωα,β(dx) := cα,β(1− x)α(1 + x)βdx ∈ M1(I),

and clearly also Properties II and III. From [8] we obtain the product formula in
the form

Q(α,β)
n (x)Q(α,β)

n (y) =
∫

I×J

Q(α,β)
n (T (x, y; r, ψ)) να,β(d(r, ψ))
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with
να,β(d(r, ψ))

:=
2Γ(α + 1)

Γ(α− β)Γ(β + 1
2 )Γ( 1

2 )
(1− r2)α−β−122β+1 sin2β ψ drdψ ∈ M1(I × J)

where I := [0, 1] and J := [0, π].
With this more convenient form of the generalized translation T we then

have the product formula

Q(α,β)
n (2x2 − 1)Q(α,β)

n (2y2 − 1) =
∫

I×J

Q(α,β)
n (T ′(x, y; r, ψ)) να,β(d(r, ψ)).

Here T ′ := 2E2 − 1 where

E(x, y; r, ψ) := (x2y2 + (1− x2)(1− y2)r2 + 2xy(1− x2)1/2(1− y2)1/2r cosψ)1/2

for all |x|, |y|, r ∈ I and ψ ∈ J .
Related transforms that will be used in the sequel are

D(x, y; r, ψ) := xy + (1− x2)1/2(1− y2)1/2r cosψ,

C(x, y; r, ψ) :=
D(x, y; r, ψ)
E(x, y; r, ψ)

,

G(x1, x2, y1, y2; r1, ψ1, ψ2, ψ3) = D

(
C, D

(
x2

x1
,
y2

y1
; 1, ψ2

)
, ψ3

)
, and

H(x1, x2, y1, y2; r1, r2, r3, r4, ψ1, ψ2, ψ3)

= E

([
(1− r2)C2 + r2

]1/2
, E

(
x2

x1
,
y2

y1
; r3, ψ2

)
; r4, ψ3

)
.

Where there is no possible ambiguity we will suppress the variables and use
the symbols E, D, C, G and H accordingly.

5. Koornwinder type III polynomials

These are given for α, β > 1 and n, k ∈ Z+ with n ≥ k ≥ 0 by

Q
(α,β)
n,k (x1, x2) := Q

(α,β+k+ 1
2 )

n−k (2x1 − 1)xk/2
2 Q

(β,β)
k

(
x2√
x1

)
.

For fixed α, β the sequence{
Q

(α,β)
n,k : n ≥ k ≥ 0

}
⊂ C[X1, X2]≤n

is orthogonal with respect to the measure

ω (d(x1, x2)) := (1− x1)
α (

x1 − x2
2

)β
dx1dx2

on the parabolic bi-angle B.
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5.1. Special case. For the choices (α, β) :=
(
2d − 3,− 1

2

)
, d ≥ 2 and (α, β) :=(

3, 5
2

)
the polynomials Q

(α,β)
n,k are spherical functions of the compact G’elfand

pairs (G, H) with

G := Sp(d)× Sp(1),H := Sp(d− 1)× diag(Sp(1)× Sp(1))

where G/H := S4d−1 and G/H := S15 respectively.

The example of the first mentioned G’elfand pair (G, H) also shows that the
class P of Pontryagin hypergroups K defined by the property K∧∧ ∼= K does not
admit an induction principle. In fact, if L is a subhypergroup of K, and K/L

and L both belong to P, then K does not necessarily belong to P even if K∧ is
a hypergroup. From [17] we deduce the following details.

At first we note that the double coset hypergroup K := G//H is isomorphic
to the commutative hypergroup B associated with the Koornwinder polynomials
Q

(α,β)
n,k of Type III. The set

L := {(1, x2) : x2 ∈ I}

is a compact subhypergroup of K whose characters are given as mappings

(1, x2) 7→ Q
(− 1

2 ,− 1
2 )

k (x2)

on K for all k ∈ Z+. In other words, L is isomorphic to the compact hypergroup
I ∈P whose characters are the Chebychev polynomials of the first kind. Moreover

K∧ ∼=
{
(n, k) ∈ Z2

+ : n ≥ k
}

admits a dual hypergroup structure (as the dual of a double coset hypergroup
arising from a compact G’elfand pair), and

(K/L)∧ ∼= A (K∧, L) ∼= {(k, 0) : k ∈ Z+}

where A (K∧, L) denotes the annihilator of L in K∧. This shows that (K/L)∧

is isomorphic to the Jacobi polynomial hypergroup Z+ ∈ P associated with the
Jacobi polynomials

(
Q

(2d−3,0)
m

)
.

Altogether we obtain that K/L and L belong to P, and K∧ is a hypergroup
but, by [17], K doesn’t belong to P.
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5.2. Theorem. The parabolic bi-angle B can be made into a 2-variable polyno-
mial hypergroup (B, ∗α,β) with convolution ∗α,β induced by the family{

Q
(α,β)
n,k : n ≥ k ≥ 0

}

of Koornwinder type III polynomials satisfying for α ≥ β + 1
2 ≥ 0 the product

formulae (IV.1 and IV.2 of Case 4.2)

Q
(α,β)
n,k (x2

1, x2)Q
(α,β)
n,k (y2

1 , y2) =
∫

I×J3
Q

(α,β)
n,k

(
E2, EG

)
ρα,β (d(r1, ψ1, ψ2, ψ3))

whenever (x1, x2), (y1, y2) ∈ B\ {(0, 0)}, and

Q
(α,β)
n,k (x2

1, x2)Q
(α,β)
n,k (0, 0) =

∫

I×J

Q
(α,β)
n,k (E2, D) να,β+ 1

2
(d(r1, ψ1))

whenever (x1, x2) ∈ B and (y1, y2) = (0, 0). Here ρα,β ∈ M1(I × J3) is given by

ρα,β(d(r1, ψ1, ψ2, ψ3)) = νβ− 1
2
(dψ3)νβ− 1

2
(dψ2)να,β+ 1

2
(r1, ψ1)

where

νγ(dψ) :=
Γ(β + 3

2 )
Γ

(
1
2

)
Γ(β + 1)

sin2γ+1 ψ (dψ) ∈ M1(J).

In the highly technical proof of the theorem most of the work has been done
in order to establish for α > β + 1

2 > − 1
2 the product formula

Q
(α,β)
n,k (x2

1, x2)Q
(α,β)
n,k (y2

1 , y2)

=
∫

I×J

Q
(β,β)
k (C)EkQ

(
α,β+k+ 1

2

)
n−k (2E2 − 1) να,β+ 1

2
(d(r1, ψ1))

=
∫

I×J

Q
(α,β)
n,k (E2, D) να,β+ 1

2
(d(r1, ψ1)).

From this it follows that

Q
(α,β)
n,k (x2

1, x2)Q
(α,β)
n,k (y2

1 , y2)

=
∫

I×J

EkQ

(
α,β+k+ 1

2

)
n−k (2E2 − 1)Q(β,β)

k (C) να,β+ 1
2
(d(r1, ψ1))

×
∫

J

Q
(β,β)
k

(
D

(
x2

x1
,
y2

y1
; 1, ψ2

))
νβ− 1

2
(dψ2)

=
∫

I×J3
EkQ

(
α,β+k+ 1

2

)
n−k (2E2 − 1)

×Q
(β,β)
k

(
D

(
D

E
, D

(
x2

x1
,
y2

y1
; 1, ψ3

)))
νβ− 1

2
(dψ3)νβ− 1

2
(dψ2)να,β+ 1

2
(r, ψ1)

=
∫

I×J3
Q

(α,β)
n,k (E2, EG) ρα,β(d(r1, ψ1, ψ2, ψ3)).
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6. Koornwinder type IV polynomials

These are defined for α, β, γ > −1 and n, k ∈ Z+ with n ≥ k ≥ 0 by

Q
(α,β,γ)
n,k (x1, x2) := Q

(α,β+γ+2k+1)
n−k (2x1 − 1) Q

(β,γ)
k

(
2x2

x1
− 1

)
.

For fixed α, β, γ the sequence

{
Q

(α,β,γ)
n,k : n ≥ k ≥ 0

} ⊂ C [X1, X2]≤n

is orthogonal with respect to the measure

ω (d (x1, x2)) := (1− x1)
α (x1 − x2)

β
xγ

2 dx1dx2

on the triangle T.

6.1. Theorem. The triangle T can be made into a 2-variable polynomial hyper-
group (T, ∗α,β,γ) with convolution ∗α,β,γ induced by the family of Koornwinder
type IV polynomials satisfying for α ≥ β + γ + 1 and β ≥ γ ≥ − 1

2 the product
formulae (IV.1 and IV.2 of 4.2)

Q
(α,β,γ)
n,k (x2

1, x
2
2)Q

(α,β,γ)
n,k (y2

1 , y2
2)

=
∫

I4×J3
Q

(α,β,γ)
n,k (E2, E2H2) ρα,β,γ(d(r1, r2, r3, r4, ψ1, ψ2, ψ3))

whenever (x1, x2), (y1, y2) ∈ T\{(0, 0)}, and

Q
(α,β,γ)
n,k (x2

1, x
2
2)Q

(α,β,γ)
n,k (0, 0)

=
∫

I2×J

Q
(α,β,γ)
n,k (E2, E2((1− r2)C2 + r2))σα,β,γ(d(r1, r2, ψ1))

whenever (x1, x2) ∈ T and (y1, y2) = (0, 0). The representing measures ρα,β,γ ∈
M1(I4 × J3) and σα,β,γ ∈ M1(I2 × J) are given by

ρα,β,γ(d(r1, r2, r3, r4, ψ1, ψ2, ψ3))

= νβ,γ(d(r4, ψ3))νβ,γ(d(r3, ψ2))τβ,γ− 1
2
(dr2)να,β+γ+1(r1, ψ1)

with

τξ,ζ(dr) :=
Γ(ξ + ζ + 2)

Γ(ξ + 1)Γ(ζ + 1)
(1− r)ξrζdr ∈ M1(I)
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and
σα,β,γ(d(r1, r2, ψ)) := τβ,γ− 1

2
(dr2)να,β+γ+1(r1, ψ) ∈ M1(I2 × J)

respectively.

For the proof of the product formulae we first need to establish that

Q
(α,β,− 1

2 )

n,k (x2
1, x

2
2)Q

(α,β,− 1
2 )

n,k (y2
1 , y2

2)

=
∫

I×J

Q
(α,β,− 1

2 )

n,k (E2, D2) υα,β+ 1
2
(d(r1, ψ1))

for α > β − 1
2 > − 1

2 , then with β replaced by β + γ + 1
2

Q
(α,β,γ)
n,k (x2

1, x
2
2)Q

(α,β,γ)
n,k (y2

1 , y2
2)

=
∫

I2×J

Q
(α,β,γ)
n,k (E2, E2((1− r2)C2 + r2))τβ,γ− 1

2
(dr2)να,β+γ+1(r1, ψ1)

and finally we obtain for α ≥ β + γ + 1 and β ≥ γ ≥ − 1
2 the desired formulae

Q
(α,β,γ)
n,k (x2

1, x
2
2)Q

(α,β,γ)
n,k (y2

1 , y2
2)

=
∫

I2×J

Q
(α,β+γ+2k+1)
n−k (2E2 − 1)E2kQ

(β,γ)
k (2(1− r2)C2 + 2r2 − 1)

× τβ,γ− 1
2
(dr2)να,β+γ+1(r1, ψ1)

×
∫

I×J

Q
(β,γ)
k

(
2E2

(
x2

x1
,
y2

y1
; r3, ψ2

)
− 1

)
νβ,γ(d(r3, ψ2))

=
∫

I4×J3
Q

(α,β+γ+2k+1)
n−k (2E2 − 1)E2k

×Q
(β,γ)
k

(
2E2

(
((1− r2)C2 + r2)1/2, E

(
x2

x1
,
y2

y1
; r3, ψ2

)
; r4, ψ3

)
− 1

)

× νβ,γ(d(r4, ψ3))νβ,γ(d(r3, ψ2))τβ,γ− 1
2
(dr2)να,β+γ+1(d(r1, ψ1))

=
∫

I4×J3
Q

(α,β,γ)
n,k (E2, E2H2) ρα,β,γ(d(r1, r2, r3, r4, ψ1, ψ2, ψ3)).

6.2. Remark. In [10] the approach leading to a hypergroup structure on T has
been extended to the more general k-simplex

S(k) :=
{
(x1, x2, . . . , xk) ∈ Rk : 0 ≤ xk ≤ . . . ≤ x1 ≤ 1

}
.

The proof of the analogue of Theorem 6.1 is performed via induction with respect
to k, where the statement of Theorem 6.1 serves as the start k = 2 of the induction.



Polynomial hypergroup structures and applications to probability theory 215

6.3. Summary. In this section we have seen that the square Q, the parabolic
bi-angle B and the k-simplex S(k) for k ≥ 2 are examples of cone-embedded hyper-
groups. It is this class of k-variable polynomial hypergroups for which we intend
to discuss some properties of Lévy processes and random walks.

7. Lévy–Khintchine representations

We begin by describing Faraut’s approach [6] to canonical (Lévy–Khintchine
type) representations of generalized Laplacians on subsets K of Rk, k ≥ 1 (con-
taining a distinguished element e). For any such set K we consider the space

C∞(K) := Res KC∞(Rk)

of test functions on K furnished with the Fréchet topology, and the convex cone

M :=
{

f ∈ C∞(K) : sup
x∈K

f(x) = f(e) ≥ 0
}

in C∞ (K).

7.1. Definition. A (real) linear functional L on C∞(K) is said to be a generalized
Laplacian on K if 〈L, f〉 ≤ 0 for all f ∈ M. We denote the dual (convex) cone
of M by L(K). We note that

7.1.1. given L ∈ L(K) the restriction ResK× L of L to K× := K\{e} is a measure
in M+ (K×) and that

7.1.2. −εe ∈ L (K).

7.2. Special case. Consider K := Rk with e = 0. Faraut [6] showed

7.2.1. that the linear space generated by the cone M is given by

〈M〉 =
{

f ∈ C∞
(
Rk

)
:

∂f

∂xi
(0) = 0 for i = 1, 2, . . . , k

}

and that

7.2.2. for any linear functional L on C∞
(
Rk

)
the following statements are equiv-

alent.

(i) L ∈ L (K) is supported by {0}.
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(ii) There exist a constant a ≥ 0, a vector (b1, b2, . . . , bk) ∈ Rk and a quadratic
form

(ξ1, ξ2, . . . , ξn) 7−→
k∑

i,j=1

cijξiξj ≥ 0

on Rk such that for every f ∈ C∞
(
Rk

)

〈L, f〉 = −af (0) +
k∑

i=1

bi
∂f

∂xi
(0) +

k∑

i,j=1

cij
∂2f

∂xi∂xj
(0) .

7.3. Theorem (Lévy–Khintchine). For any linear functional L on C∞
(
Rk

)
the

following statements are equivalent.

(i) L ∈ L (
Rk

)
.

(ii) There exist L0 ∈ L
(
Rk

)
supported by {0}, η ∈ M+

((
Rk

)×)
with

η
({

x ∈ Rk : |x| > 1
})

< ∞

satisfying ∫

|x|<1

|x|2η (dx) < ∞

and u ∈ C∞
(
Rk

)
with 0 ≤ u ≤ 1 and u (V ) = 1 for some neighbourhood V

of 0 such that for all f ∈ C∞
(
Rk

)

〈L, f〉 = 〈L0, f〉+
∫

(Rk)×

(
f (x)− f (0) +

k∑

i=1

xi
∂f

∂xi
(0)u (x)

)
η (dx) .

7.4. Special case. Consider the disk D with e := (1, 0), which was treated by
Annabi and Trimèche [1]. Analogous to Special Case 7.2 we have

7.4.1.

〈M〉 =
{

f ∈ C∞ (D) :
∂f

∂y
(1, 0) = 0

}
.

7.4.2. For any linear functional L on C∞ (D) the following statements are equiv-
alent.

(i) L ∈ L (D) is supported by {(1, 0)}.
(ii) There exist constants a, b, c, d ∈ R, a, c, d ≥ 0 such that for all f ∈ C∞ (D)

〈L, f〉 = −af (1, 0) + b
∂f

∂y
(1, 0) + c

∂2f

∂y2
(1, 0) + d

∂f

∂x
(1, 0) .
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7.5. Theorem (Lévy–Khintchine). For any linear functional L on C∞ (D) the
following statements are equivalent.

(i) L ∈ L (D).

(ii) There exist constants a, b, c, d ∈ R, a, c, d ≥ 0 and η ∈ M+ (D×) with

∫

D×
(1− x) η (d (x, y)) < ∞

such that for all f ∈ C∞ (D)

〈L, f〉 = −af (1, 0) + b
∂f

∂y
(1, 0) + c

(
∂2f

∂y2
(1, 0)− ∂f

∂x
(1, 0)

)
− d

∂f

∂x
(1, 0)

+
∫

D×

(
f (x, y)− f (1, 0)− y

∂f

∂y
(1, 0)

)
η (d (x, y)) .

7.6. Special case. Consider a cone-embedded space K ⊂ Rk with
e := (1, . . . , 1) ∈ Rk. This special case has been discussed by Mokni and Tri-

mèche [13].

It is easily seen that

7.6.1. for each ` = 1, 2, . . . , k the linear functional

L` := −
(

γ′` (0)
∣∣∣∣

∂

∂x

)
εe

on C∞ (K) where ∂
∂x =

(
∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xk

)
is a generalized Laplacian on K.

The next step is to show

7.6.2. For any linear functional L on C∞ (K) the following statements are equiv-
alent.

(i) L ∈ L (K) is supported by {e}.
(ii) There exist constants a, b1, b2, . . . , bk ∈ R such that for all f ∈ C∞ (K)

〈L, f〉 = af (e) +
k∑

`=1

b`

〈
∂

∂x`
εe, f

〉
.

And finally we have



218 Walter R. Bloom and Herbert Heyer

7.7. Theorem (Lévy–Khintchine). For any linear functional L on C∞ (K) the
following statements are equivalent.

(i) L ∈ L (K).

(ii) There exist constants a, b1, b2, . . . , bk ∈ R and η ∈ M+ (K×) such that for all
f ∈ C∞ (K)

〈L, f〉 = −af (e) +
k∑

`=1

b` 〈L`, f〉+
∫

K×
(f − f (e)) dη

with L` as in 7.6.1 for ` = 1, 2, . . . , k.

The crucial step in the proof of Theorem 7.7 modified from the proofs of
Theorems 7.3 and 7.5 is that given L ∈ L (K) and f ∈M there exist A (f) ∈ R+

and η ∈ M+ (K×) coinciding with ResK× L such that

(f (e)− f)L = A (f) εe + (f (e)− f) η.

Once f 7→ A (f) has been extended from a positively homogeneous mapping on
M to a linear functional A on C∞ (K) = M−M it is easy to see that

−A =
k∑

`=1

b`L`

and the equality introducing A implies that

〈L, f〉 = f (e) 〈L, 1〉 −A (f) +
∫

K×
(f − f (e)) dη

whenever f ∈ C∞ (K). In order to establish the inclusion C∞ (K) ⊂M−M we
use the fact that for every f ∈ C∞ (K) there exists α > 0 such that |f | ≤ αh

with h as defined in Definition 4.1.
For the remainder of this section we are working with a cone-embedded hy-

pergroup (K, ∗P) with defining family P of k-variable polynomials on K.

7.8. Definition. The family (λP )P∈P is said to be negative definite (with respect
to P) if

(a) λ11 ≥ 0.

(b) For each (cP )P∈P ∈ CP such that cP = 0 for all but finitely many P ∈ P
the two conditions∑

P∈P
cP P (x) ≥ 0 for all x ∈ K and

∑

P∈P
cP = 0

imply that
∑

P∈P cP λP ≤ 0.

Obviously the totality N (P) of negative definite families forms a closed cone
in CP containing all positive constant families.
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7.9. Theorem. For any family (λP )P∈P ∈ CP the following statements are
equivalent.

(i) (λP )P∈P ∈ N (P).

(ii) There exists L ∈ L (K) such that λP = −〈T, P 〉 for all P ∈ P.

While the implication (ii) ⇒ (i) is straightforward, the other implication
requires the fact that a linear functional L defined on R [X1, X2, . . . , Xk] by

〈L, f〉 = −
∑

P∈P
cP λP

for all f of the form
f :=

∑

P∈P
cP P

can be extended to a generalized Laplacian on K, the extension relying on the
equality

M∩ R [X1, X2, . . . , Xk] = C∞ (K)

where the closure is taken in the topology of C∞ (K).

7.10. Example. For (D, ∗α) (which is not a cone-embedded hypergroup) the
above equivalence reads as follows. The double sequence (λm,n)(m,n)∈Z2

+
be-

longs to N ({
Qα

m,n : (m,n) ∈ Z2
+

})
if and only if there are constants a, b, c, d ∈

R, a, c, d ≥ 0 and η ∈ M+ (D×) with
∫

D×
(1− x) η (d (x, y)) < ∞

such that for all (m,n) ∈ Z2
+

λm,n = a− ib (m− n) + c (m− n)2 + d

(
m + n +

2mn

α + 1

)

+
∫

D×

(
1−Qα

m,n (x, y) + iy (m− n)
)

η (d (x, y)) .

7.11. Definition. A family (µt)t≥0 ⊂ M+(K) is called a (continuous) convolution
semigroup on K if

(a) ‖µt‖ ≤ 1 for all t ≥ 0,

(b) µt ∗ µs = µt+s for all t, s ≥ 0,

(c) µ0 = εe,

(d) The mapping t 7→ µt from R+ into M+ (K) is τw-continuous.
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7.12. Remark. There is a one-to-one correspondence between convolution semi-
groups (µt)t≥0 on K and stationary independent increment processes (Xt)t≥0 (on
a probability space (Ω,A,P)) with values in K such that

P (Xt ∈ B |Xs = x ) = (µt−s ∗ εx) (B)

for all 0 ≤ s ≤ t, Borel subsets B of K, and x ∈ K.

7.13. Theorem (Schoenberg correspondence). For any family (λP )P∈P ∈ CP
the following statements are equivalent.

(i) (λP )P∈P ∈ N (P).

(ii) There exists a convolution semigroup (µt)t≥0 on K satisfying

∧
µt (P ) = exp (−tλP )

for all P ∈ P.

The proof of this theorem given in [13] is based on Theorem 7.9. While again
the implication (ii)⇒(i) is obvious, (i)⇒(ii) requires an additional argument that
follows from Theorem 7.7. In fact for any generalized Laplacian L on a cone-
embedded space K there exist (νs)s≥0 ⊂ M+(K) with ‖νs‖ ≤ 1 for all s ≥ 0 and
(αs)s≥0 ⊂ R+ such that

〈L, f〉 = lim
s↓0

αs

(∫

D
f dνs − f (e)

)

whenever f ∈ C∞ (K).

7.14. Remark. It should be noted that Theorem 7.13 can be proved in a much
wider framework for arbitrary commutative hypergroups K employing the no-
tion of strongly negative definite functions on the dual K∧ of K; see [2], Theo-
rem 5.2.15. Since for the compact k-variable polynomial hypergroup (K, ∗P) the
family P constitutes the countable dual K∧, the set N (P) corresponds to the set
SN(K∧) of all strongly negative definite functions on K∧.

What we do not have in general is the correspondence

(λP )P∈P ↔ L

between N (P) and L(K) given in Theorem 7.9. For Lévy–Khintchine represen-
tations of negative definite functions with additional properties on an arbitrary
commutative hypergroup K or its dual K∧; see [2], Section 4.5.
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8. Central Limit results for random walks

We first discuss the central limiting behaviour of random walks on (D, ∗α)
within the setting of Example 2.7 and then progress to the analogous behaviour
for the 2-variable polynomial hypergroups (B, ∗α,β) and (T, ∗α,β,γ). In all cases
under consideration the limit parameter will be α.

8.1. Let (K, ∗) be an arbitrary hypergroup. Given µ ∈ M1(K) we consider
random walks (X`(µ))`∈Z+ on a probability space (Ω, A,P) with values in K as
Markov chains in K having a transition kernel N of the form

N (x,B) := (µ ∗ εx) (B)

for all x ∈ K and all Borel subsets B of K. More precisely, random walks
(X`(µ))`∈Z+ in K with transition measure µ are characterized by the properties

(a) X0(µ) = 1 P-almost surely.

(b) For all ` ∈ Z+, x ∈ K and all Borel subsets B of K

P (X` (µ) ∈ B |X`−1 (µ) = x ) = (µ ∗ εx) (B) .

Clearly for distributions of the random variable X`(µ) we have

PX`(µ) = µ∗`

whenever ` ∈ Z+.

8.2. Special case. Disk hypergroup

We assume given a sequence (α(p))p∈N (of dimensions) in R×+, a sequence of
points (r(p), ψ(p))p∈N in D (given in polar coordinates), and a sequence (j(p))p∈N
(of jumps) in N. For each p ∈ N let

(Xj (α (p) , (r (p) , ψ (p))))j∈Z+

denote the random walk on (D, ∗α(p)) starting at time j = 0 at (1, 0) ∈ D and
having transition measure ε(r(p),ψ(p)).

In [15] Voit studied the limiting behaviour for p → ∞ of the sequence
(Yp)p∈N of standard R2-valued random variables

Yp := Xj(p) (α (p) , (r (p) , ψ (p)))

(on (Ω, A,P)). The desired limiting result due to Voit requires the following
assumptions.
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(a) limp→∞ α(p) = ∞.

(b) There exists a constant ρ > 0 such that

lim
p→∞

α (p)ρ (1− r (p)) = 0.

(c) limp→∞ j(p)ψ(p) = 0.

(d) There exists a constant c ∈ R := R∪{∞} such that

lim
p→∞

(
j (p)

(
1− r (p)2

)
− ln α (p)

)
= c.

8.3. Theorem. Under the assumptions (a) to (d) we have

τw − lim
p→∞

PYp = ν (c)

where ν(c) := n(c)λ2 ∈ M1(R2) denotes the bivariate normal distribution with
λ2-density n(c) given by

n (c) (x, y) :=
1
π

e−y2−(x−ec/2)2

whenever (x, y) ∈ R2.

If c := ∞ then the resulting λ2-density is the function

(x, y) 7→ 1
π

e−y2−x2

on R2.

8.4. Special case. α := d− 2 (d ≥ 2) Here we have the double class hypergroup
U (d) //U(d − 1) (of Example 2.2). We reach the limiting statement of Theorem
8.3 for the random walk (

Xj(d) (d, r (d))
)
d≥2

with transition measures εr(d) supported by r (d) ∈ ]0, 1[ ⊂ D, where the random
variables can be viewed as

(
Xj(d) (d, r (d))

)
= pr ◦ Y d

j(d)

where (Y d
j )j≥0 denotes the isotropic random walk on the homogeneous space

U(d)/U(d−1) ∼= S2d−1 and pr denotes the canonical projection from U(d)/U(d−1)
onto U(d)//U(d− 1). Obviously the random walk (Xj(d)(d, r(d)))d≥2 arises from
the isotropic random variables (Y d

j )j≥0 obtained by stopping the dth walk after
j(d) steps.
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8.5. Special cases. Parabolic bi-angle B and triangle T. These were treated by
Mili in [12]. We keep the notation of the random walks

(Xj (α (p) , (r (p) , ψ (p))))j∈Z+

and (Yp)p∈N and also the formulation of the assumptions (a) to (d) above with
the following modifications.

8.5.1. For (B, ∗α,β) we assume that β > − 1
2 and α (p) ≥ β + 1

2 ≥ 0 whenever
p ∈ N.

8.5.2. For (T, ∗α,β,γ) we assume that β, γ > −1, β ≥ γ > − 1
2 and α(p) ≥ β+γ+1

whenever p ∈ N.

8.6. Theorem. Given the 2-variable polynomial hypergroup K = B or T we have

τw − lim
p→∞

= ν = nλ2 ∈ M1
(
R2

)

where either

8.6.1. n has the form nβ given as

nβ (x, y) :=
1√

π Γ (β + 1)
x−

1
2 (β+1)

(
x− y2

)β
e−(x+2ye−c/2+ec)

or

8.6.2. n has the form nβ,γ given as

nβ,γ(x, y) :=
1

Γ(β + 1)Γ(γ + 1)
x−

c
2 (β−γ+1)e−(x+e−c)xyγ/2(x− y)βIγ(2

√
ye−c)

for all (x, y) ∈ R2. Here Iγ denotes the modified Bessel function of index γ.

The proof of the theorem is based on the classical fact that sequences (µp)p≥1

of distributions on Rk converge weakly to a distribution ν on Rk once their (mul-
tidimensional) moments converge. In the present context the hypergroups K = B
or T are described in polar coordinates in the form

{(
r2, r cos ψ

)
: r ∈ [0, 1] , ψ ∈ [0, π]

}

and {(
r, r cos2 ψ

)
: r ∈ [0, 1] , ψ ∈

[
0,

π

2

]}
,
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the measures µp are living on R+ × [0, π] and R+ ×
[
0, π

2

]
, and their (modified)

moments Mp
n,k are given by

∫

R+×[0,π]

L
β+k+ 1

2
n−k

(
r2

)
rkQ

(β,β)
k (cos ψ)µp (d (r, ψ))

and ∫

R+×[0, π
2 ]

Lβ+γ+2k+1
n−k (r) rkQ

(β,γ)
k

(
2 cos2 ψ − 1

)
µp (d (r, ψ))

respectively. Here Lα
n denotes the Laguerre polynomial of degree n and index α.

Since the moments Mn,k of the bivariate normal distributions ν of 8.6.1 and 8.6.2
can be calculated explicitly, the remaining part of the proof consists in showing
that for the moments Mp

n,k of the distributions µp of Yp the limit relationship

lim
p→∞

Mp
n,k = Mn,k

holds for all n, k ∈ N, n ≥ k.
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Paris Sér. A 278 (1974), 21–24 (in French).

[2] Walter R. Bloom and Herbert Heyer, Harmonic Analysis of Probability Measures on
Hypergroups, de Gruyter, Berlin – New York, 1995.
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