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Combinatorial Diophantine equations – the genus 1 case

By TÜNDE KOVÁCS

Abstract. In this paper some Diophantine equations concerning binomial coeffi-

cients, power sums and product of consecutive integers are solved. The equations are

reduced to genus 1 equations or Mordell-type equations and solved with the so-called

Ellog method of Stroeker and Tzanakis and with the Magma computational algebra

system.

1. Introduction

Many Diophantine equations possess combinatorial background. A lot of

deep finiteness (both effective and ineffective) results are known about the so-

lutions of such equations. We refer to the papers [4], [5], [7], [8], [23], [24] and

the references given there. One of the first results giving all integer solutions

of a combinatorial Diophantine equation is a theorem of Mordell [19], which

provides all integer solutions of the equation y(y + 1) = x(x + 1)(x + 2). Other

scattered equations have been investigated by several authors, see for example

[1], [2], [6], [17], [22], [27], [35], [36], [40]. Hajdu and Pintér [15] systemati-

cally collected and solved those combinatorial equations that can be reduced to

Mordell-type equations. The purpose of this note is to extend this result to more

general combinatorial equations that can be reduced to general elliptic equations.

Namely, we collect those equations that can be reduced to equations of genus 1.

We mention that beside a lot of sparse results (see e.g. [20], [21], [22], [30] and
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[39]), Stroeker and de Weger [31] solved all such equations involving binomial

coefficients.

Our equations can be reduced to elliptic Diophantine equations. By a clas-

sical result of Baker [3] it is known that such an equation can have only finitely

many integer solutions and for the size of the solutions an effective upper bound

can be given. The method applied in the paper is based on a different approach,

which uses the algebraic and geometric features of elliptic curves. The theory of

elliptic curves is a very intensively investigated field of number theory. As the

literature of this topic is extremely rich, we only refer to the book of Silver-

man and Tate [26] and the references given there. The concrete algorithm we

use is based upon a theorem obtained by Gebel, Pethő and Zimmer [12] and

Stroeker and Tzanakis [27], later extended by Stroeker and Tzanakis [29].

We outline the algorithm in the third section and illustrate it with an example.

2. New results

As we mentioned in the introduction, we systematically collect and solve

those unsolved combinatorial Diophantine equations which can be reduced to

equations of genus 1 or to Mordell-type equations (see the details later). We need

some notation to formulate our results. For all n, x ∈ N let

Sn(x) = 1n + 2n + . . . + xn,

Pn(x) = x · (x + 1) · . . . · (x + n − 1).

The formerly solved Diophantine equations which can be reduced to elliptic equa-

tions concerning Pn(x), Sn(x) and
(

x
n

)

, are the followings:

P2(k) = P3(l) (Mordell [19]),
(

k
2

)

=
(

l
3

)

(Avanesov [1]),

P2(k) = P6(l) (MacLeod and Barrodale [17]),

S2(k) =
(

l
2

)

(Avanesov [2] and Uchiyama[36]),

P3(k) = P4(l), S2(k) =
(

l
4

)

(Boyd and Kisilevsky [6]),
(

k
2

)

= P3(l) (Tzanakis and de Weger [35]),
(

k
2

)

= P4(l) (Pintér [20], see also [14], p. 225.),
(

k
4

)

=
(

l
2

)

(Pintér [21] and de Weger [39]),
(

k
3

)

=
(

l
4

)

(de Weger [40]),
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(

k
4

)

= P2(l), P3(l) (Pintér and de Weger [22]),
(

k
m

)

= Pn(l), where (m, n) = (3, 6; 3, 6) (Stroeker and de Weger [30]),
(

k
m

)

=
(

l
n

)

, where (m, n) = (2; 3, 4, 6, 8), (3; 4, 6), (4; 6, 8) (Stroeker and

de Weger [31]),

S5(k) =
(

l
2

)

, S5(k) =
(

l
4

)

, Sm(k) = Pn(l), where (m, n) = (2, 5; 2, 4),
(

k
m

)

= Pn(l), where (m, n) = (2, 4; 6), (3, 6; 2, 4), P4(k) = P6(l) (Hajdu and

Pintér [15]).

Here and later on (k, l) = (a1, . . . , an; b1, . . . , bm) means that (k, l) can be any of

the pairs (ai, bj), i ∈ {1, . . . , n}, j ∈ {1, . . . , m}.
We mention that Sn(x) is a polynomial of degree n + 1, and Pn(x) is a

polynomial of degree n. For the sake of completeness we give all integer solutions

of the investigated polynomial equations (although the negative solutions do not

have combinatorial meanings). Our results are summarized in the next theorem.

We distribute the equations considered into three tables, according to the methods

used in their solutions.

Theorem 1. All integral solutions of the equations in the first columns of

Tables 1–3 are exactly the ones appearing in the second columns of the tables,

respectively.

Equation Solutions

S3(k) = P2(l) (k, l) = (−1, 0;−1, 0)

S3(k) = P4(l) (k, l) = (−1, 0;−3,−2,−1, 0)

S3(k) = P8(l) (k, l) = (−1, 0;−7,−6,−5,−4,−3,−2,−1, 0)

S5(k) =
(

l
3

)

(k, l) = (−1, 0; 0, 1, 2), (−2, 1; 3)

S7(k) =
(

l
2

)

(k, l) = (−1, 0; 0, 1), (−2, 1;−1, 2)

P2(k) = P4(l) (k, l) = (−1, 0;−3,−2,−1, 0)

P2(k) = P8(l) (k, l) = (−1, 0;−7,−6,−5,−4,−3,−2,−1, 0)

P3(k) = P6(l) (k, l) = (−2,−1, 0;−5,−4,−3,−2,−1, 0), (8;−6, 1)

P4(k) = P8(l) (k, l) = (−3,−2,−1, 0;−7,−6,−5,−4,−3,−2,−1, 0)

Table 1. Equations which can be solved by Runge’s method
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Equation Solutions

S3(k) =
(

l
3

)

(k, l) = (−1, 0; 0, 1, 2), (−2, 1; 3)

S3(k) =
(

l
6

)

(k, l) = (−1, 0; 0, 1, 2, 3, 4, 5), (−2, 1;−1, 6)

S3(k) = P3(l) (k, l) = (−1, 0;−2,−1, 0)

S3(k) = P6(l) (k, l) = (−1, 0;−5,−4,−3,−2,−2,−1, 0)

S5(k) =
(

l
2

)

(k, l) = (−1, 0; 0, 1), (−2, 1;−1, 2), (−4, 3;−23, 24),

(−9, 8;−351, 352)

S5(k) =
(

l
4

)

(k, l) = (−1, 0; 0, 1, 2, 3), (−2, 1;−1, 4)

S5(k) = P2(l) (k, l) = (−1, 0;−1, 0)

S5(k) = P4(l) (k, l) = (−1, 0;−3,−2,−1, 0)

Table 2. Equations which can be reduced to Mordell-type equations

3. Proof of Theorem 1

The considered Diophantine equations can be divided into three groups.

Equations which can be solved by Runge’s method. Consider the Diophantine

equation F (u) = G(v), where F and G are monic polynomials with integer coeffi-

cients, F (u)−G(v) is irreducible in Q[u, v] and gcd(deg F, deg G) > 1. We can use

the method of Runge [25] for computing the integer solutions of such equations.

Among the combinatorial Diophantine equations considered in the present paper,

there are several ones which can be treated by this method. These equations are

collected in Table 1. For example, using that S5(k) = 1
12 (2k6 + 6k5 + 5k4− k2) =

1
12 (2(k2 + k)3 − (k2 + k)2), the equation S5(k) =

(

l
3

)

can be transformated to the

equation u3 − u2 = v3 − 6v2 + 8v with the substitution u = 2k2 + 2k, v = 2l, and

the method of Runge can be applied. There are several results and efficient algo-

rithms for finding the integer solutions of Runge-type equations, see for example

Masser [18], Schinzel and Grytczuk [13], Szalay [32], Tengely [33] and

Walsh [37] and the references given there. Tengely implemented his algorithm

from [33] in the Magma computational algebra system [9] and made it accessible

on the internet site www.math.klte.hu/∼tengely. We computed all integer solu-

tions of the equations in Table 1 with Tengely’s program. The total running time

of the program was only a few minutes.

Equations which can be reduced to Mordell-type equations. Under a Mordell-

type equation we mean a Diophantine equation F (u) = G(v) with deg F = 3,

deg G = 2 or conversely. These equations can be simply solved with Magma

by the procedure IntegralPoints. The algorithm is based upon a theorem ob-

tained independently by Gebel, Pethő and Zimmer [12] and Stroeker and
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Equation Solutions

S1(k) =
(

l
4

)

(k, l) = (−21, 20;−7, 10), (−6, 5;−3, 6),

(−2, 1;−1, 4), (−1, 0; 0, 1, 2, 3)

S1(k) =
(

l
8

)

(k, l) = (−1, 0; 0, 1, 2, 3, 4, 5, 6, 7), (−2, 1;−1, 8),

(−10, 9;−3, 10; ), (−78, 77;−7, 14), (−221, 220;−10, 17)

S1(k) = P4(l) (k, l) = (−16, 15;−5, 2), (−1, 0;−3,−2,−1, 0))

S1(k) = P8(l) (k, l) = (−1, 0;−7,−6,−5,−4,−3,−2,−1, 0)

S2(k) =
(

l
3

)

(k, l) = (−1, 0; 0, 1, 2), (−2,−1), (1, 3)

S2(k) =
(

l
6

)

(k, l) = (−1, 0; 0, 1, 2, 3, 4, 5), (1;−1, 6)

S2(k) = P3(l) (k, l) = (−1, 0;−2,−1, 0)

S2(k) = P6(l) (k, l) = (−1, 0;−5,−4,−3,−2,−1, 0)

S3(k) =
(

l
2

)

(k, l) = (−4, 3;−8, 9), (−2, 1;−1, 2), (−1, 0; 0, 1)

S3(k) =
(

l
4

)

(k, l) = (−2, 1;−1, 4), (−1, 0; 0, 1, 2, 3)

S3(k) =
(

l
8

)

(k, l) = (−1, 0; 0, 1, 2, 3, 4, 5, 6, 7), (−3, 2;−2, 9),

(−2, 1;−1, 8)

S5(k) =
(

l
6

)

(k, l) = (−1, 0; 0, 1, 2, 3, 4, 5), (−2, 1;−1, 6)

S5(k) = P3(l) (k, l) = (−1, 0;−2,−1, 0)

S5(k) = P6(l) (k, l) = (−1, 0;−5,−4,−3,−2,−1, 0)

S7(k) =
(

l
4

)

(k, l) = (−2, 1;−1, 4), (−1, 0; 0, 1, 2, 3)

S7(k) = P2(l) (k, l) = (−1, 0;−1, 0)

S7(k) = P4(l) (k, l) = (−1, 0;−3,−2,−1, 0)
(

k
2

)

= P8(l) (k, l) = (0, 1;−7,−6,−5,−4,−3,−2,−1, 0)
(

k
4

)

= P4(l) (k, l) = (0, 1, 2, 3;−3,−2,−1, 0)
(

k
4

)

= P8(l) (k, l) = (0, 1, 2, 3;−7,−6,−5,−4,−3,−2,−1, 0)
(

k
8

)

= P2(l) (k, l) = (0, 1, 2, 3, 4, 5, 6, 7;−1, 0)
(

k
8

)

= P4(l) (k, l) = (0, 1, 2, 3, 4, 5, 6, 7;−3,−2,−1, 0)

Table 3. Equations which can be reduced to genus 1 equations

Tzanakis [27]. As the algorithm for equations of genus 1 is the extension of

this method, we give some details only later. We collected the equations which

can be reduced to Mordell-type equations in Table 2. For example, the equation

S3(k) =
(

l
3

)

can be written as 3(k(k+1))2 = 2l(l−1)(l−2), which reduces to the

Mordell-type equation 3u2 = 2v3 − 6v2 + 4v by the substitution u = k(k + 1) and

v = l. We determined all the integer solutions of these equations with Magma,

and listed them in Table 2.

Equations which can be reduced to genus 1 equations. Table 3 contains equa-

tions that can be transformated into genus 1 equations with simple integral trans-

formations. As finding the integer solutions of an equation of genus 1 is not at all
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automatic, we give some details at this point. The algorithm is based upon a theo-

rem obtained independently by Gebel, Pethő and Zimmer [12] and Stroeker

and Tzanakis [27], later extended by Tzanakis [34], Stroeker and de Weger

[30] and Stroeker and Tzanakis [29]. The method we use is the so-called Ellog

method, developed by Stroeker and Tzanakis [29]. In the remaining part of

this section, we use the terminology of [29] without any further reference.

3.1. The Ellog method. Let f ∈ Z[u, v] be irreducible over Z, and consider

the Diophantine equation

f(u, v) = 0 (1)

and the corresponding curve

C = {(u, v) ∈ Q2 | f(u, v) = 0}.

If C is of genus 1 and non-empty, then (1) can be transformed into a short

Weierstrass equation

y2 = x3 + Ax + B =: q(x) (2)

with a birational transformation. Here A, B ∈ Z, and the discriminant of q(x),

i.e. 4A3 + 27B2 is non-zero. Put

E = {(x, y) ∈ Q2 | y2 = x3 + Ax + B}.

Let P ∈ E be a point which is the image of an integral point of C. Then P has a

unique representation of the form

P = m1P1 + . . . + mrPr + Pr+1, (3)

where r is the rank of the E, P1, . . . , Pr denote a Mordell–Weil basis of E, Pr+1

is a torsion point and mi ∈ Z (i = 1, . . . , r). Let

L(P ) := L = m1u1 + . . . + mrur + ur+1 − u0 + m0ω, (4)

where ui denote the elliptic logarithm of the points Pi (i = 1, . . . , r + 1), u0 is

the elliptic logarithm of a certain point Q0 having algebraic coordinates and m0

is a rational integer. Note that knowing C and the birational transformation, Q0

can be easily computed. Put M = max1≤i≤r{|mi|}, and note that m0 ≤ rM + 1.

Combining certain estimates involving e.g. heights of points of E, we get

|L| < c1 · exp(c2 − c3M
2) (5)
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with some constants c1, c2, c3 depending only on certain parameters of the curves

C and E. To get a lower estimation for |L|, one needs a deep result of David [11]

providing lower bounds for linear forms in elliptic logarithms. In the following

lemma we formulate Tzanakis’ variant of this result from [34]. First note that

it is always possible to choose a pair of fundamental periods ω1, ω2 of the curve

E in a way that τ := ω2/ω1 satisfies

|τ | ≥ 1, ℑτ > 0, −1

2
< ℜτ ≤ 1

2
with 0 ≤ ℜτ if |τ | = 1.

Let ω be the fundamental real period of E, let D denote the degree of the number

field generated by the coordinates of Q0, and let k = r + 1 if u0 is linearly inde-

pendent of u1, . . . , ur over Q, else set k = r. Finally, choose real numbers Ai (i =

0, . . . , r+1) such that A0 ≥ max
(

hE , 3π|ω|2

D|ω1|2ℑτ

)

, Ai ≥ max
(

hE ,
3πu2

i

D|ω1|2ℑτ , ĥ(Pi)
)

(i = 1, . . . , r), Ar+1 ≥ max
(

hE ,
3πu2

0

D|ω1|2ℑτ , ĥ(Q0)
)

. Here hE is the height of E

and ĥ is the Néron–Tate height function.

Lemma 1 (Tzanakis [34]). By the above notation we have

|L| > exp
(

− c4(log N + c5)(log log N + c6)
k+2
)

, (6)

where

c4 = 2.9 · 106k+12D2k+442(k+1)2(k + 2)2k2+13k+23.3
k
∏

i=0

Ai,

c5 = log De, c6 = log De + hE ,

and N = max{|m0|, M}.

Combining the upper bound (5) and the lower bound (6) for the linear form,

using N ≤ rM +1 we obtain an upper estimate for M . This initial bound accord-

ing to a heuristic argument of Stroeker and Tzanakis [28] is approximately

around 10(5r2+15r+28)/2, so it is too large to determine all integer solutions of

the original equation. We use de Weger’s method [38] based upon the LLL-

algorithm to reduce this bound. Using the inverse of the birational transforma-

tion, after the reduction we can compute all integer solutions of equation (1). Put

ρi = ui/ω (i = 1, . . . , r) and ρ0 = u0/ω. In general, ρ0 is linearly independent

of ρ1, . . . , ρr over Q. In the opposite case, a simpler version of the reduction can

be used. Consider the (r + 1)-dimensional lattice Γ generated by the coloumns of
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the matrix

A =

















1 . . . 0 0

0 . . . 0 0
...

. . .
...

...

0 · · · 1 0

[K0ρ1] · · · [K0ρr] K0

















,

where K0 is a conveniently chosen integer, to be specified later. Compute the

LLL-reduced basis of the lattice, and denote by b1 the shortest vector of this

basis. Write







x1

...

xr+1






= B−1 · x with x =













0
...

0

−[K0ρ0]













∈ Rr+1,

where B denotes the matrix whose columns are the vectors of the reduced basis.

By a lemma of de Weger [38]

d(x, Γ) ≥ 2r/2‖xi0‖|b1|

holds, where ‖ · ‖ denotes the distance from the nearest integer, and i0 ∈ {1, . . . ,

r + 1} is chosen so that ‖xi0‖ is minimal among ‖x1‖, . . . , ‖xr+1‖. Then we have

the following result.

Lemma 2 (de Weger [38]). Let K1 = c1

ω exp c2, K2 = c3. Then by the

above notation,

‖xi0‖|b1| > 2r/2
√

(r2 + r)K2
3 + 2rK3 + 1

implies that

M2 ≤ K−1
2

(

log K0K1 − log
√

2−r‖xi0‖2|b1|2 − rK2
3 − rK3 − 1

)

.

To use this result, we choose K0 somewhat larger than
(

2r/2K3

√
r2 + r

)r+1
.

Then by Lemma 2 (if the condition is satisfied) we get a new bound for M of the

size (K−1
2 log K3)

1/2. We iterate this process (always with the new values of K0

and K3), until the new bound cannot be improved. Using this reduced bound we

can determine the integer points of the curve C by the help of the inverse of the

birational transformation, and hence all integer solutions of equation (1). In the

next subsection we illustrate the Ellog method by an example.
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3.2. Application of the Ellog method. The algorithm discussed in the pre-

vious subsection can always be used in cases when equation (1) has the form

F (u) = G(v), where F, G ∈ Z[x] with deg F = 4, deg G = 2 (quartic case) or

deg F = deg G = 3 (cubic case). Among the equations in Table 3 the followings

reduce to quartic ones:

S1(k) =

(

l

4

)

, S1(k) =

(

l

8

)

, S1(k) = P4(l), S1(k) = P8(l),

S3(k) =

(

l

2

)

, S3(k) =

(

l

4

)

, S3(k) =

(

l

8

)

, S7(k) =

(

l

4

)

,

S7(k) = P2(l), S7(k) = P4(l),

(

k

2

)

= P8(l),

(

k

4

)

= P4(l)

(

k

4

)

= P8(l),

(

k

8

)

= P2(l),

(

k

8

)

= P4(l).

To transform these equations to the desired shape, we make use of the fact that all

of S2i−1(x),
(

x
2i

)

and P2i(x) can be written in the form F (G(x)) where F, G ∈ Q[x]

with deg G = 2, deg F = i. For example, we have S7(k) = 1
24 (3k8 +12k7 +14k6−

7k4+2k2) = 1
24 (3(k2+k)4−4(k2+k)3+2(k2+k)2) and P4(l) = l(l+1)(l+2)(l+3) =

(l2 + 3l)(l2 + 3l + 2). Hence the equation S7(k) = P4(l) can be transformated

to the equation 3u4 − 4u3 + 2u2 = 6v2 + 24v with the substitution u = k2 + k,

v = 2(l2 + 3l).

Note that the program package Magma contains a procedure (namely

IntegralQuarticPoints) which is able to locate all integral points on quartic

equations in some cases. (For details see the Magma manual [9].) However, in the

previous versions of Magma this procedure apparently contains some error, and we

solved all these equations following the Ellog method step-by-step. In case of each

equation, we obtained exactly the solutions listed in Table 3. Note that in the new

version of Magma (V.2.13–9) distributed by the beginning of 2007 the procedure

IntegralQuarticPoints seems to be correct, and by its help we have also solved

the above quartic equations except for
(

k
8

)

= P2(l),
(

k
8

)

= P4(l) and S1(k) =
(

l
8

)

.

In these cases Magma is only able to guarantee that IntegralQuarticPoints

gives all integral points in a subgroup of the curve of finite index. In the other

cases we have obtained the same solutions as in Table 3.

Now we turn to the cubic case. From Table 3 the following equations belong

to this group:

S2(k) =

(

l

3

)

, S2(k) =

(

l

6

)

, S2(k) = P3(l), S2(k) = P6(l),
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S5(k) =

(

l

6

)

, S5(k) = P3(l), S5(k) = P6(l).

In this case no implemented version of the procedure is available, and we follow

the Ellog method step-by-step for each equation. As an example, we illustrate

the algorithm for finding the integer solutions of the equation S2(k) = P6(l).

Using S2(k) = 1
6 (2k3 + 3k2 + k) and P6(l) = l(l + 1)(l + 2)(l + 3)(l + 4)(l + 5) =

(l2 + 5l)(l2 + 5l + 4)(l2 + 5l + 6), substituting u = k, v = l2 + 5l, we get

f(u, v) = 2u3 + 3u2 + u − 6v3 − 60v2 − 144v = 0. (7)

Put

C = {(u, v) ∈ Q2 | f(u, v) = 0}.

We use Magma to perform the following computations. By a birational transfor-

mation, equation (7) can be transformated into the short Weierstrass equation

y2 = x3 − 1008x + 2985993.

Set

E = {(x, y) ∈ Q2 | y2 = x3 − 1008x + 2985993}.

It turns out that the rank of E is r = 6, and the only torsion point of E is O.

Further, a basis of the Mordell-Weil group of E is

P1 = (24, 1725), P2 = (−36, 1725), P3 = (234, 3945),

P4 = (354,−6855), P5 = (36,−1731), P6 = (−144, 381).

Let

P = m1P1 + . . . + m6P6 (mi ∈ Z, i = 1, . . . , 6)

be a point of E, which is the image of an integer point of C. In this case the

linear form (4) is of the shape

L = m0ω + m1u1 + m2u2 + m3u3 + m4u4 + m5u5 + m6u6 − u0,

where ω is the fundamental real period of E, and u0 and ui are the elliptic

logarithms of the points Q0 and Pi (i = 1, . . . , 6), respectively. We have

Q0 =

(

6
1439 + 6902 · 3

√
3

144 − 3
√

3
, 361

3
√

3

3
+ 864

3
√

9 + 8649

)

and

ω = 0.704584 . . . , u0 = 0.091196 . . . , u1 = 0.220969 . . . , u2 = 0.255688 . . . ,



Combinatorial Diophantine equations – the genus 1 case 253

u3 = 0.128958 . . . , u4 = 0.598701 . . . , u5 = 0.490562 . . . , u6 = 0.340110 . . . .

In this particular case, after some calculations (5) reads as

|L| < 1.106568 · 107 · exp(−0.598086M2).

On the other hand, by Lemma 1 we obtain the lower bound

|L| > exp(−1.22724 · 10354(log(N) + 2.09862)(log(log(N)) + 28.62165)9).

Using that N ≤ 6M + 1 and combining the upper and lower estimates for the

linear form L, we get the initial bound

M < K3 = 2.753 · 10185.

We reduce this bound by the LLL-algorithm, using Lemma 2. The constants K1

and K2 are given by

K1 = 1.570524 · 107, K2 = 0.598086.

The reduction steps are summarized in the following table:

bound for M K0 new bound for M

2.753 · 10185 5.3 · 101322 67

67 6.4 · 1047 15

15 5.5 · 1016 9

After the third iteration we obtain M ≤ 9, which cannot be improved further.

Using the inverse of the birational transformation, we can compute all the integer

points of C. These are given by

(u, v) = (−1, 0;−6,−4, 0), (−33,−26), (−14,−13), (−11,−11), (2,−5).

In view of the original substitution, all integer solutions of the equation S2(k) =

P6(l) are

(k, l) = (−1, 0;−5,−4,−3,−2,−1, 0).

The integer solutions of all other cubic and quartic equations can be determined

with a similar process and the solutions are exactly those which are summarized

in Table 3. Hence the theorem is proved. �
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equations and Bernoulli polynomials, Composotio Math. 131 (2002), 173–188.

[6] D. W. Boyd and H. H. Kisilevsky, The diophantine equation u(u + 1)(u + 2)(u + 3) =
v(v + 1)(v + 2), Pacific J. Math. 40 (1972), 23–32.

[7] B. Brindza and Á. Pintér, On equal values of power sums, Acta Arith. 77 (1996),
97–101.
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