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On algebras that are sums of two subalgebras satisfying certain
polynomial identities

By MAREK KEPCZYK (Bialystok)

Abstract. We study an associative algebra A over an arbitrary field that is a
sum of two subalgebras B and C (i.e. A = B + C). We prove that if B and C have
commutative ideals of finite codimension then A/I, for some nilpotent ideal I of A, has
a commutative ideal of finite codimension. Similar statements are shown for nilpotent
and nil of bounded index ideals.

1. Introduction

Let R be an associative ring and R;, Ry its subrings such that R = Ry + Ra,
i.e. for every r € R there are 1 € Ry and r9 € Ry such that » = r; 4+ ro.
In [4] K. I. BEIDAR and A. V. MIKHALEV stated the following problem: if
both R; satisfy polynomial identities (shortly, are PI rings),whether then also R
is a PI ring. The problem for particular identities was studied in many papers
(cf. [2], [5], [6], [7], [8], [9], [11]). Before the problem was raised, three results
(important for this work) related to this problem were obtained. KEGEL [5]
proved that if R; are nilpotent, then so is R. In [6] it was shown that if R;
are nil of bounded index (i.e. they satisfy identity z™ = 0), then so is R. In
[2] BAHTURIN and GIAMBRUNO proved that if both R; are commutative, then
R satisfies the identity [x1,y1][z2,y2] = 0, where as usual [z,y] = 2y — yz. In
[11] PETRAVCHUK considered certain generalization of the two cited results for
algebras over an arbitrary field that have commutative ideals of finite codimension
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(such algebras are called almost commutative) and algebras that have a nilpotent
ideals of finite codimension (such algebras are called almost nilpotent). He proves
that if both R; are almost commutative subalgebras, then R contains a nilpotent
ideal I such that R/I is almost commutative. Moreover he shows that if both R;
are almost nilpotent then so is R.

However, his proof contains a mistake. Namely Corollary 2, which plays a
key role in the proof, is false.

It states: Let H be an algebra and I be a right (left) almost nilpotent ideal
of H. Then I is contained in some almost nilpotent ideal of the algebra H.

We shall give a counterexample. Let H be the algebra of all infinite matrices
over K that have only finitely many non-zero rows. Let us consider the subset I
of H consisting of all the matrices having nonzero entries only in the first column
and let J be the subset of all matrices in I whose first row is zero. It is clear that I
is a left ideal of H, J is a ideal of I and J? = 0. Since in addition dimg I/J = 1,
I is not almost nilpotent. Obviously H is simple infinite dimensional algebra
over K. Hence, the only ideal of H containing I is H, but H is not almost
nilpotent. Subset of all matrices in H that have nonzero entries only in the top
row is a right almost nilpotent ideal of H, which shows that above lemma is not
true.

In this paper we give correct proofs of Petravchuk’s results. Our proofs are
partially based on some of Petravchuk’s ideas, but contain also some substantial
new reasoning.

We also show in this paper that a sum of two almost nil of bounded index
algebras is almost nil of bounded index.

2. The main results

We consider associative algebras over a fixed field K, which are not assumed
to have an identity. If I is an ideal (left ideal, right ideal) of a ring (of an algebra)
A, wewrite I <A (I < A, I<,A).

By F, N, B and C we denote the class of all finite dimensional algebras,
nilpotent algebras, nil of bounded index algebras and commutative algebras, re-
spectively.

Let us consider two arbitrary classes of algebras S and T, for which 0 € S
and 0 € T. Let ST = {A | 3T <A T e€S:A/I € T}. Obviously S C ST and
T C ST. Thus CF denotes the class of almost commutative algebras; N'F the
class of almost nilpotent algebras; BF the class of almost nil of bounded index
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algebras. It is well known that if J <1 < A and J is nilpotent then J lies in
some nilpotent ideal J4 of the algebra A and J4 C I. Thus (NR)S = N(RS)
for arbitrary classes of algebras R and S. Clearly NA =N and NB = B.

Throughout the paper A is an algebra over K, B and C are subalgebras of A
such that A = B+ C. Moreover, let By < B and Cy <t C, where dimy B/By < 0o
and dimg C/Cy < o0.

Using the above notation, one can state the main results of this paper as
follows:

Theorem 1. If Be NF and C € NF, then A € NF.
Theorem 2. If B € BF and C € BF, then A € BF.
Theorem 3. If B e CF and C € CF, then A € NCF.

3. Preliminary material

The centre of an algebra H is denoted by Z(H). For a given subset S of an
algebra H, by I (S) and rg(S) we will denote the left and right annihilators of S
in H, respectively.

We shall need the following

Lemma 4 ([10]). Let H be an algebra over an arbitrary field and P a
subalgebra of H such that dim H/P < oo. Then P contains an ideal I of H such
that dim H/I < oco.

We will use the following modification of PETRAVCHUK’s Lemma 7 from [11]
(cf. also [13]). We include its short proof for completeness.

Lemma 5. Let P; and P> be subalgebras of an algebra H and let I be an
ideal of H such that I C P, + P,. Then there exist subalgebras Q1 C P; and
Q2 C P, of H such that Q1 + Q2 is subalgebra of H and I C Q1 + Q5.

PROOF. It is enough to take Q1 = {p1 € P; | p1 + p2 € I for some py € Pa}
and Q2 = {p2 € Po | p1 +p2 € I for some p; € P;}. Let a,b € Py, ¢,d € Py
anda+cel,b+del Thenab—cd= (a+c)(b+d)— (a+c)d—c(b+d).
Hence it is easy to notice that ()1 and )2 are subalgebras of H, which also imply
Q1 +1CQ+Q2and Q2 +1 C Q1+ Q2 Take any ¢1 € @1 and ¢2 € Q2.
From the definition of () there exists ps € Py such that (g1 + p2)g2 € I. Clearly
P2 € Q2, S0 p2qa € Q2. Hence, q1q2 € Q2 + I C Q1 + Q2. Similarly one can show
that gaq1 € Q1 + Q2. Hence, we get that Q1Q2 C Q1+ Q2 and Q2Q1 C Q1 + Q2.
Then Q1 + Q2 is a subalgebra of H. Obviously I C Q1 + Q-. O
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We shall need some information about the classes B. Obviously every algebra
from B is a nil PI algebra. Let as denote by W (H) the sum of all nilpotent ideals
of an algebra H. Clearly a € W(H) if and only if the right (left) ideal aH
(Ha) of H is nilpotent. It implies that if I < H then W (I) C W(H). Indeed,
if i € W(I) then there exists a natural number n such that (i/)” = 0. Hence
(iH)?>" C (iHiH)" C (i)" =0, s0i € W(H).

Proposition 6 ([1]). For every nil PI algebra H there exists a natural num-
ber n such that H® C W (H).

Let us consider the class N'RF, where R is one of the class C, N or B. Now
we are ready to make some generalization of [11, Proposition 1].

Proposition 7. For the class NRF, where R = C,N or B the following
statements hold:

(i) every subalgebra and every quotient algebra of an algebra from N'RF belongs
to NRF.

(i) if P,Q € N'RF then the direct product P x Q € NRF.
(iii) if I < H, H/T € NRF then H € NRF.

PROOF. The statements (i) and (ii) are obvious. We show that (iii) holds.

For R = C see [11, Proposition 1].

For R = N see [11, Corolary 3.

Let R =8B, I < H, H/I € BF and I € BF. Hence in particular there exists an
ideal J of I such that J € Band I/J € F. Since J € B and J <1 < H, then there
exists a natural number n such that J* C W (J) and W(J) C W(I) C W(H).
Let W (I)g be the ideal of H generated by W(I). It is not hard to check than
W (I )g CW(I). Thus (W(I)g + J)/J is nil. Additionally (W(I)g +J)/J € F.
Hence (W (I)g + J)/J is nilpotent, so W(I)y € B. Clearly we can assume that
W (I)g = 0, which implies J” = 0. Now we show that H € BF. Since J is
nilpotent and J <11 <t H then J is contained in some nilpotent ideal of the algebra
H, so we can assume that I € F. Let S/I € B and S/I be an ideal of H/I such
that H/S € F and let G = rg(I). Obviously G < H and S/G € F, which implies
H/G € F. Since (GNI)2 =0and G/(GNI)~ (G+1I)/I € B, then G € B.
Hence H € BF and the proof is complete. ([l

Definition 8. An algebra A = B + C over an arbitrary field K is called
‘R-counter-example, where R = C, N or B, if A satisfies the following conditions:

(1) A¢ NRF;
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(2) the subalgebras B and C have ideals By <1 B and Cy <tC such that By,Cp € R
and the number dim A/(By + Cp) is the smallest one;

(3) the algebra A does not have not nonzero ideals that lie in K-subspace By+Cjy
from condition (2).

Suppose that A = B + C'is an algebra satisfying (1) and (2) from the above
definition. Let T be the sum of all ideals of A that are contained in By 4+ Cy. By
Lemma 5, T C Q1 + Q2, where Q1 + Q)2 is a subalgebra of A and @1, @2 € R. So
(Q1+Q2) e NR and T € N'R. Additionally Proposition 7 gives A/T ¢ N'RF.
Clearly A/T = (B+T)/T + (C+T)/T. Now it is easy to see that A/T is an
R-counter-example.

Lemma 9. Let A be an R-counter-example, where R = C, N or B. Then
(i) forevery 0 £I <A, A/I € NRF;
(ii) the algebra A has no nonzero ideals from N'RF;

(iii) A is a prime algebra.

PROOF. Let A be an R-counter-example and 0 # I <1 A. Denote A= A/I,
B=(B+1)/I, C=(C+1)/I. Moreover By=(By+1)/I and Co=(Co+1I)/I.
Clearly A = B + C and B,C € NR. By Definition 8, I ¢ By + Cjp, so
dim A/(By + Cp) < dim A/(Boy + Cp). So A € NRF, which gives (i).

By (i) and Proposition 7, (ii) becomes obvious.

Let us prove the statement (iii). Suppose that A is not a prime algebra.
Hence there exist nonzero ideals I and J of A such that I.J =0. Since (I N.J)%2=0,
then in view of a part (ii), 7N J = 0. Hence A can be embedded into the
product A/I x A/J. Therefore applying statements (i) and (ii) of Lemma 5 we
obtain that A € NRF. However A is an R-counter-example, so A ¢ N'RF, a
contradiction. (]

Lemma 10. Assume that A is a prime algebra, lp,(By) # 0 and r¢,(Co) # 0.
If Uy = Byg+BpA and Uy = Cy+CyA are PI algebras, then A is finite dimensional.

PROOF. It is clear that Uy + Us is a subalgebra of A, U; <, A and Us <,. A.
By Corollary 4 in [8], Uy + Us is a PI algebra. But dim A/(U; + Us) < o0, so
according to Lemma 4, there exists J<1A such that J C Uy+Us and dim A/J < oc.
Consequently A ia a PI algebra.

We show now that Z(A) is finite dimensional over K. This will be proved
by shoving that Z(A) N (By + Cp) = 0. Suppose, contrary to our claim, that
Z(A)N(By+ Cp) # 0, so there exists 0 # z = by + cg, where by € By, ¢y € Cp and
z € Z(A). Of course lp,(Bo)zrc,(Co) = 0. Since A is a prime algebra and z €
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Z(A), it follows that Ip,(Bo)rc,(Co) = 0. But ip,(By) < B and r¢, (Co) < C, so
lBo (BO)ATCO (CO) < lBo (BO)BTCO (CO) + lBo (BO)CTCO (CO) < lBo (BO)TCO (CO) =0,
contrary to primeness of A. Hence Z(A)N(By+Cp) = 0. Therefore dimg Z(A) <
oo. Since A is a prime algebra, Z(A) is a commutative finite dimensional domain,
so Z(A) is a field. Hence the central localization Z(A)~'A of A is equal to A.
We showed that A is a PI algebra, so by POSNER’s Theorem [12], A is finite
dimensional over Z(A). Consequently dimyx A < co. O

4. Proofs of Theorems 1 and 2

PROOF OF THEOREM 1. Suppose the assertion of the theorem is false. It
follows easily that there exists A/-counter-example. So we can assume that A is a
N-counter-example. Let By and Cy be nilpotent. We proceed by induction with
respect to n = ny + ng, where ny and ny are natural numbers such that By* =0,
Cy? = 0. For n =2, dimg A < oo and we have a contradiction. If ny = 1 then
dim A/By < oo, so by Lemma 4, A € NF. Similarly if no = 1 then A € N'F.
Assume that n > 2 and the result holds for smaller integers.

By Lemma 9, A is a prime algebra. Consider Ay = B+ ByA. It is clear that
A is a subalgebra of A and since B C A1, A1 = A4, N(B+C)=B+ A nC.
Since Bj* = 0, then B{)“_l <; A;. From this, there exists a nilpotent ideal I of
A; such that B~ C I. Of course Ay/I = (B+1)/I1+ ((A; NC)+1)/I, where
(B+1D)/I e NF, (AinC)+1)/I € NF and (By+I1)/I, (A1 NCy) +1)/1
are nilpotent ideals of (B + I)/I and ((A; N C) + I)/I, respectively, of finite
codimension. Moreover ((Bg + I)/I)™ =1 =0 and (((4; N Cy) + I)/1)™ =0, so
the induction assumption gives A;/I € N'F and, since I is nilpotent, we have
A € NF. Let Uy = By + BgA. Since U; C Ay, Uy € NF. Similarly we can
show that Uy = Cy 4+ CpA € NF. Tt is obvious that U; <, A, Uy <, A and in
particular they are PI algebras. Our assumption that A ¢ NF gives that the
indices of nilpotency of By and Cy are bigger than one. Hence Ip,(By) # 0 and
rc, (Co) # 0. Now we can use Lemma 10, getting that dimg A < co. Thus A is
not an N-counter-example, a contradiction. O

We shall need the following lemma, the proof of which is based on a well
known idea used by Amitsur in his proof of Levitzki-Amitsur Theorem (for ex-
ample [14, Theorem 1.6.36]). We sketch its proof for completeness.



On algebras that are sums of two subalgebras. .. 263

Lemma 11. Let R be semiprime ring and T be PI subring of R of degree d.
Moreover let I be a nilpotent ideal of R and n be a natural number such that
I"=0and I"'#£0. Ifforall1<i<n-—1, Aj=I""RI' CT, then n < d.

PROOF. Suppose that n > d. The subring T is PI of degree d, so it satisfies
the identity
T1T2...Tq = Z OnTr(1)Lr(2) -+ Lr(d)>s
id#TESy
where S is the set of permutations of the set {1,2,...d} and a;, are some integers.
Therefore

(ImilR)dId =A1As.. . Ay = Z OéﬂAﬂ.(l)Aﬂ.(Q) e Aﬂ'(d) =0,
id#TESy

so (I™~1R)¥*1 = 0. Since R is semiprime, it follows that I™~! = 0, a contradic-
tion. Thus n < d. O

PROOF OF THEOREM 2. Suppose that there exists A ¢ BF. Without loss
of generality, we can assume that A is a B-counter-example. Moreover By and Cj
are nil of bounded index and such that dim A/(By + Cp) is the smallest number
for which A ¢ BF. Applying Lemma 9 we have that A is a prime algebra.
By Proposition 6, there exist a natural number n > 0 such that Bj C W (By).
Observe that if L, K are ideals of By such that LK = 0, then By = By + KAL
is a subalgebra of A, KAL <1 By and (KAL)? = 0. It follows that By is nil
of bounded index. Since By/(KAL) is a homomorphic image of By, then By
is nil of bounded index and (Bg)" C W(By). Consider B = B + KAL. Tt
is clear that B ia a subalgebra of A, By < B and dimE/?o < 0. Moreover
A=B+C. If a € BynCy, then aA = aB + aC and aB, aC are nil subalgebras
of bounded index of aA. By Theorem 2 [6], aA € 3, where [ is the prime radical.
Since A is a prime algebra, a = 0. Hence By N Cy = 0. Thus if By & Bo,
dim A/(By + Cp) < dim A/(Bg + Cp), which is in contradiction with the choice of
By and Cy. Hence By = By. It follows that K AL C By. In particular if I <1 By
and I™ = 0, ™! #£ 0 for a natural number m, then for every 1 < i < m — 1,
A; = I™PAIY C By. Since By € B, By is a PI algebra of degree, say, d. By
Lemma 11, m < d and consequently for every nilpotent ideal J of By, J¢ = 0.
Hence (W (Byg))? = 0. But B} C W(By), so By is a nilpotent ideal of B. Therefore
B € NF. In a similar way we show that C € NF. By Theorem 1, A € N'.F.
It is clear that NF C BF. This contradicts our assumption that A ¢ BF, and
completes the proof. ([
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5. Proof of Theorem 3

We now present several facts which will be used in the proof of Theorem 3.
Let R be a ring and I < R. Applying the identity [zy,t] = z[y,t] + [z, t]y, it is
easy to show that
(i) I[R,R] C [I, R]R*;
(ii) I[I,R) C [I,I|R*,

where R* denotes the ring R with an identity adjoined. Hence we obtain that if I
is a commutative ideal of the ring R, then [I, R] C rg(I) (similar arguments give,
[I,R] Cir(I)). Moreover if r;(I) =0 or I;(I)=0, then I C Z(R). If rgr(I) =0 or
Ir(I) =0, then R is a commutative ring.

Lemma 12. Let A be a prime algebra. Assume that By C Z(B) and
rc(Co) # 0. Then dim(ACy + Cp)/Co < 00.

PRrROOF. Let us denote r¢(Cy) = I. First we will prove that
(i) if 0 £ a € ACy and a = bg + ¢o, where by € By, ¢g € Cy, then by = 0.

Since 0 = al = bygl + col and col = 0, then bgl = 0. Let us see, that bgAI C
boBI + ¢oCI C Bbol + ¢l = 0, since By C Z(B) and I < C. Therefore by = 0,
as I # 0 and A is a prime algebra. This proves (i).

By (1) it is clear that ACy N (Bo + Co) = ACyNCy. Now (ACO + CQ)/CO ~
ACO/ACO NCy = AC()/AOO N (BO + Co) ~ (ACO + (BO + OO))/(BO + Co) Thus,
having dim A/(By + Cp) < oo, it follows that dim(ACy + Cy)/Co < oo. This
proves the lemma. O

Remark 1. If in the assumption of the above lemma we replace r¢(Cp) # 0
by lc(Cp) # 0, then the similar proof gives dim(CyA + Cp)/Co < 0.

Lemma 13. Let R be a K-algebra and let S, T be finite dimensional K-
subspaces of R. If M and P are K — subspaces of R such that dim(SMT+P)/P <
00, then dim M/N < oo, where N = {v € M | SvT C P}.

PROOF. Let ey,eq,...,6e, and fi, fo,... fn be K-bases of S and T, respec-
tively. Define for every 1 < ¢ <m, 1 < j < n, ¢;; : M — SMT, by apij(x) =
e;xf; and 1;; = 1 o v;;, where n is the canonical K-linear map of SMT onto
dim(SMT + P)/P. Clearly t;; are K — linear. Since dim(SMT + P)/P < oo,
dim M/ kerv;; < oo for i = 1,2,...,m and j = 1,2,...,n. Consequently
dim M/ ker(; ;¢i; < oo and ker (), ;¢i; = {x € M | e;xf; € Pii=1,2,...,m,
i=12,...,n}. O
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Proposition 14. Let A be a prime algebra. Assume that By C Z(B),
rc(Co) # 0 and lo(Cp) # 0. Then dim By < oo or dim Cy < oc.

PROOF. Suppose, contrary to our claim, that dim By = co and dim Cy = co.
Adjoining, if necessary, an identity element we can, without loss of generality,
assume that A is a K-algebra with unity.

Note that, by Remark 1, dim(CpA + Cy)/Cy < oo. Hence there exists sub-
space V C CyA such that V + Cyp = CyA + Cy and dim V' < co. Setting S = K,
T=V,P=Cyand M = Cy in Lemma 13, we obtain subspace N C Cj such that
NV C Cy and dim Cy/N < oo. Consequently NCpA C Cy and dim C/N < oc.
Let us note that since dimCy = oo, dim N = oco. Further NCyArc(Cy) = 0.
As A is prime and r¢(Cp) # 0, we have NCy = 0, so N C ¢, (Cp) < C. Since
dim C/N < oo we can assume that C3 = 0.

Fix any 0 # ¢ € Cy and consider the left ideal L of C' generated by c. Since
Coc =0 and dim C/Cy < oo, dim L < 0co. As CZ =0, lc(Cp) # 0. By Lemma 12,
dim(ACy + Cy)/Cy < o0. Since BoL C AC\ we can apply Lemma 13 for S; = K,
T, =L, P, = Cy and M; = By. Hence there exists a K - subspace N1 C By such
that N1 L C Cp and dim By/N; < co. Therefore, since dim By = oo, dim N; = co.
It is clear that VN C CyA. Since CgA C V + Cp, dimL < oo and CyL = 0,
dimVN{L < oco. Now let So =V, T, = L, P, = 0 and My = N;. Again by
Lemma 13, there exists Ny C Nj such that VNoL = 0 and dim N;/Na < oc.
Since dim Ny = oo, dim Ny = co. Let us note that NoL € NiL C Cp, C3 = 0
and C()A Q V 4+ C(). Hence CoANQL Q VNQL + OoNQL = 0. But Co 7é 0 and
A is a prime algebra, so NoL = 0. As No C N; C By C Z(B) and L <; C,
we have No AL C NoBL + NoCL C BNyL 4+ NoL = 0. Moreover L # 0 and as
dim Ny = oo, Ny # 0. This contradicts the fact that A is a prime algebra, so
dim By < 0o or dim Cy < oo. O

Corollary 15. Let A be a prime algebra. Suppose that By C Z(B), Cy is
commutative and r¢(Cpy) # 0. Then A € CF.

PROOF. Since r¢(Cp) # 0 and Cy is commutative, Io(Co) # 0 (if 1o (Cp) = 0,
C' is commutative). By Proposition 14, dim By < oo or dimCy < co. Assume
first that dim By < oo. Hence dim B < oco. Since dim C/Cy < oo and A = B+ C,
then dim A/Cy < oco. From Lemma 4, there exists I <t A such that I C Cj
and dim A/I < oo, so A € CF. Similar arguments can be applied to the case
dim Cy < . O

Corollary 16. If an algebra A is a C-counter-example, where By and C
satisty conditions of Definition 8, then rp,(By) # 0 and r¢,(Co) # 0.
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PROOF. Let I = rp,(By) and J = r¢,(Cy). Suppose that I = 0. Then
By C Z(B). Now if rc(Cpy) # 0, then one can apply Corollary 15. Hence
A € CF which contradicts the choice of A. Thus let r¢(Cy) = 0. Hence C is
a commutative algebra. If rg(Bp) # 0 then again by Corollary 15, A € CF,
contradiction. Therefore it has to be rg(By) = 0. But then B is commutative.
So B € C and C € C. Hence, A € NC, contrary to the choice of A. Consequently
I # 0. One similarly obtains that J # 0. ]

Now we are ready to prove Theorem 3.

PROOF OF THEOREM 3. Suppose the assertion of the theorem is false. He-
nce, without loss of generality, we can assume that A = B + C' is a C-counter-
example. Let By and Cj are commutative. By Lemma 9, A is a prime algebra.
Consider Ay = B + ByA. It is clear that, since B C Ay, 41 = AN (B+C) =
B+ A; N C. We shall show that A; € NCF. Suppose that A; ¢ NCF. Let
us note that dim A4; /(4o + (A1 N Cp)) < dim A/(By + Cp), so since Ay ¢ NCF,
dim A1 /(Apg+(A1NCy)) = dim A/(Bo+Cp). Hence A, /T is a C-counter-example,
where T is a sum of all ideals of A; that lie in the K-subspace By + (A1 NCy). It
is obvious that A, /T = (B+T)/T+ ((A1NC)+T)/T. Moreover lp,(Bg) <, Aj.
Since [B, Bo] C lp,(Bo), (Ip,(Bo))? = 0 and A1 /T is a prime algebra, [B, Bg] C T
Hence (By +T)/T C Z((B+ T)/T). By Corollary 16 and 15, A;/T € CF, a
contradiction. So indeed A4, € NCF. Let Uy = By + BgA. Since U; C Ay,
U, € NCF. Similarly we can obtain that Uy = Cy + CoA € NCF. In particular
Ui and U, are PI algebras. Corollary 16 shows rp,(Bg) # 0 and r¢,(Cp) # 0. Of
course 1,(Bo) = lp,(Bo). Now we can apply Lemma 10. Hence dimg A < oo,
thus A is not a C-counter-example, a contradiction. O
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