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Volatility estimation for different structures of random field

interest rate models in discrete time

By WILLEM PEETERS (Nijmegen)

Abstract. The general framework of the discrete time forward interest rate model

considered in this paper is introduced by Gáll, Pap and Zuijlen in [7]. This paper

studies the maximum likelihood estimator of the volatility of forward interest rates

driven by geometric spatial AR sheet and considers its asymptotic behaviour, as is done

in Gáll, Pap and Zuijlen in [6]. However, we consider the case of a non-constant

volatility to derive new asymptotic results for far more general structures.

1. The model and the no-arbitrage criterion

In the following we summarise the basics of the model. We will consider

discrete time forward interest rate models, that are driven by random fields, see

[7]. Note that they are based on an idea of Heath, Jarrow and Morton [11].

Let f(k, ℓ) denote the forward interest rate at time k with time to maturity ℓ,

where k, ℓ ∈ Z+ (where Z+ := {x ∈ Z | x ≥ 0}). This means that we follow the

Musiela parametrization (see [13]), where ℓ denotes the time to maturity. Based

on this, the price P (k, ℓ) of a zero coupon bond at time k with maturity date ℓ is

defined in a recursive way by P (k, k) := 1 and

P (k, ℓ + 1) = P (k, ℓ) exp(−f(k, ℓ − k)), k, ℓ ∈ Z+ with k ≤ ℓ. (1.1)

The forward rate dynamics in this paper are of the form

f(k + 1, ℓ) = f(k, ℓ) + α(k, ℓ) + β(k, ℓ)(S(k + 1, ℓ) − S(k, ℓ)), (1.2)
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where {S(k, ℓ)}k,ℓ∈Z+
is a random field and {S(k, ℓ)}k∈Z+

, {α(k, ℓ)}k∈Z+
,

{β(k, ℓ)}k∈Z+
are all adapted to a certain filtration {Fk}k∈Z+

for each ℓ ∈ Z+. In

another form

f(k+1, ℓ) = f(0, ℓ)+
k∑

i=0

α(i, ℓ)+
k∑

i=0

β(i, ℓ)(S(i+1, ℓ)−S(i, ℓ)), k, ℓ ∈ Z+, (1.3)

with initial values f(0, ℓ) ∈ R, ℓ ∈ Z+. In this paper we will study different

structures of the volatility β.

The key feature of the model is that the forward rates corresponding to dif-

ferent time to maturity values can be driven by different discrete time processes,

that is, the forward rates are driven by a random field. Hence, different market

‘shocks’ may impact at different forward rate processes. Such a generalisation of

the classical HJM type models has been proposed by Kennedy [12] in the contin-

uous case, and studied by e.g. Goldstein [9] and Santa-Clara and Sornette

[15]. For a further discussion of the model one can consult Gáll, Pap and Zui-

jlen [7] and we refer to [5] for results on the limiting connection of such discrete

and continuous models.

In this specific paper the forward rates corresponding to different times to

maturity are driven by a Gaussian type of random field, which is built up by a

system {η(i, j) | i, j ∈ Z+} of i.i.d. Gaussian random variables with mean zero

and variance one on a probability space (Ω,F , P). Suppose that the filtration Fk

is defined by Fk := σ
(
η(i, j) | 0 ≤ i ≤ k, j ∈ Z+

)
, k ∈ Z+. Consider the doubly

geometric spatial autoregressive process {S(k, ℓ) | k, ℓ ∈ Z+} generated by






S(k, ℓ) = S(k − 1, ℓ) + ̺S(k, ℓ − 1)

−̺S(k − 1, ℓ − 1) + η(k, ℓ),

S(k,−1) = S(−1, ℓ) = 0,

k, ℓ ∈ Z+, (1.4)

where ̺ ∈ R. Gáll, Pap and Zuijlen [5] have shown limit cases where Ornstein–

Uhlenbeck sheets occurred in the continuous time counterpart of discrete time

autoregressive type of forward rate models.

Clearly

S(k, ℓ) =

k∑

i=0

ℓ∑

j=0

̺ℓ−jη(i, j), (1.5)

and hence

∆1S(k, ℓ) =

ℓ∑

j=0

̺ℓ−jη(k + 1, j), (1.6)
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where

∆1S(i, ℓ) := S(i + 1, ℓ)− S(i, ℓ), i, ℓ ∈ Z+. (1.7)

We suppose the existence of a stochastic discount factor process {M(k) | k ∈
Z+} in the market that is given by M(0) := 1 and

M(k + 1) = M(k)
exp{−f(k, 0) +

∑∞
j=0 φj∆1S(k, j)}

E(exp{∑∞
j=0 φj∆1S(k, j)} | Fk)

, k ∈ Z+, (1.8)

where the factors φj ∈ R, j ∈ Z+, will be called market prices of risk. These

market prices of risk play an important role in the market for the determination

of the market prices of assets. Furthermore, we suppose that
∑∞

j=0 φj∆1S(k, j) is

stochastically convergent. The discount factor M(k + 1) given by equation (1.8)

does not only discount by the current interest rate f(k, 0), but with the inclusion

of
∑∞

j=0 φj∆1S(k, j) it also takes into account the reaction of the market to the

shocks corresponding to time k. It can be seen easily that E(M(k + 1) | Fk) =

exp(−f(k, 0))M(k) for all k ∈ Z+. We refer to [7] for more details on the choice

of the special form of the stochastic discount factors and to [7], [15] and [1] for

more on the role of the market price of risk.

As is natural in financial mathematics, we are interested only in models

where arbitrage opportunities are excluded in the market. We assume that the

M(k)-discounted bond price processes {M(k)P (k, ℓ)}06k6ℓ are P-martingales for

all ℓ ∈ Z+. Gáll, Pap and Zuijlen [7] showed that arbitrage is excluded for this

case. They also found that under the assumption that the common distribution of

η(i, j), i, j ∈ Z+, is the standard normal distribution, the no-ar criterion implies

f(k, ℓ + 1) = f(k, ℓ) + α(k, ℓ) − 1

2
β(k, ℓ)2c(ℓ, ℓ) − β(k, ℓ)

ℓ−1∑

j=0

β(k, j)c(ℓ, j)

+ β(k, ℓ)

∞∑

j=0

φjc(ℓ, j), k, ℓ ∈ Z+, (1.9)

where the covariances are

c(ℓ1, ℓ2) := cov(∆1S(k, ℓ1), ∆1S(k, ℓ2)) =

ℓ1∧ℓ2∑

j=0

̺ℓ1+ℓ2−2j , ℓ1, ℓ2 ∈ Z+. (1.10)

Notice that they do not depend on k. Together with (1.2), we can obtain for all

k, ℓ ∈ Z+

f(k + 1, ℓ) − f(k, ℓ + 1) =
1

2
β(k, ℓ)2c(ℓ, ℓ) + β(k, ℓ)

ℓ−1∑

j=0

β(k, j)c(ℓ, j)

+ β(k, ℓ)∆1S(k, ℓ) − β(k, ℓ)

∞∑

j=0

φjc(ℓ, j). (1.11)
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Note that α(k, ℓ) does not appear in equation (1.11) like in the well known drift

conditions in interest rate models.

First, we will study volatility estimation in the ‘martingale’ case. For this

‘martingale’ case, we assume that the market prices of risk φj , j ∈ Z+, are equal

to zero, which means that the real measure of the market is a martingale measure.

Here the terminology, for e.g. ‘martingale’ case, is the same as in Föllmer and

Sondermann [3], Föllmer and Schweizer [2]. Under the no-arbitrage crite-

rion, we will find the maximum likelihood estimator of the volatility parameter

defined below (Section 2) and consider its asymptotic behaviour (Section 3), both

for the ‘martingale’ case. In Section 4 we will see that the results obtained for

the ‘martingale’ case can be easily generalised to the general model as described

above.

In [6] the authors considered a constant volatility, which we do not find very

realistic. The choice of the structure of the non-constant volatility as introduced in

Section 2, makes it possible to consider more complex and more dynamic models

for forward interest rates. In Section 3 we will first create a general framework for

the consideration of the asymptotic behaviour and then derive results for special

structures on the volatility, given different sampling and different autoregressive

features. In [14] more asymptotic results for the volatility are stated for different

structures on the different parameters and the sample size. Not all cases may be

realistic but our objective was to develop the tools for the asymptotic behaviour

and to study the differences e.g. in convergence. Recently we have been doing

emperical tests and we studied goodness of fit and model selection problems to-

gether with the testing of selection criterion (Akaike and modifications). For the

latter part we study certain cases of the general model as proposed by Gáll, Pap

and Zuijlen in [7]. However, we do not study the classical HJM model (see e.g.

[10]) because in Remark 2.3 it is stated as well as in Gáll, Pap and Zuijlen

[6], that the classical HJM model is not the most realistic model. For a similar

model to the one discussed in Section 4, Gáll, Pap and Zuijlen [8] considered

the joint estimation of all parameters for a constant volatility. In later work we

plan to consider the estimation of all parameters for a non-constant volatility.

2. ML estimation in the ‘martingale’ case

In Sections 2 and 3 we assume that the market prices of risk φj , j ∈ Z+, are

equal to zero, the stochastic discount factor process is given by M(0) := 1 and

M(k + 1) = e
−f(k,0)M(k), k ∈ Z+. (2.1)
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Then, assuming that the common distribution of η(i, j), i, j ∈ Z+, is standard

normal, (1.9) simplifies to

f(k, ℓ + 1) = f(k, ℓ) + α(k, ℓ) − 1

2
β(k, ℓ)2c(ℓ, ℓ) − β(k, ℓ)

ℓ−1∑

j=0

β(k, j)c(ℓ, j). (2.2)

Recalling (1.11), we obtain for all k, ℓ ∈ Z+

f(k + 1, ℓ) − f(k, ℓ + 1) =
1

2
β(k, ℓ)2c(ℓ, ℓ) + β(k, ℓ)

ℓ−1∑

j=0

β(k, j)c(ℓ, j)

+ β(k, ℓ)∆1S(k, ℓ). (2.3)

Assume that there exists a sequence {ai}∞i=1 ∈ R where ai 6= 0 ∀i ∈ N
∗ (the

set of positive integers) and a volatility parameter β ∈ R\{0} such that

β(k, 0) = β k ∈ Z+;

β(k, ℓ + 1) = aℓ+1β(k, ℓ) k, ℓ ∈ Z+.
(2.4)

This structure on the volatility is chosen in a way that volatilities corresponding to

different times to maturity might have different values and thus different impacts

on the forward rates. In the lemma below, we will obtain an explicit expression

for the maximum likelihood estimator of β2, that is based on a sample of forward

rates.

Lemma 2.1. Consider a forward interest rate curve model {f(k, ℓ) | k, ℓ ∈
Z+} as given in (1.3). Let K and L be positive integers. Assume that the

parameters ̺ and {ai}∞i=1 are known, ai 6= 0 and aL = aL+j for all j ∈ N
∗.

Then, under the assumption that equation (2.2) holds, the maximum likelihood

estimator β̂2
K,L of β2 based on the sample of forward rates

{f(k, ℓ) | 1 ≤ k ≤ K, 0 ≤ ℓ ≤ L} (2.5)

is given by

β̂2
K,L :=

−BK,L +
√

B2
K,L + 4AK,LCK,L

2AK,L

, (2.6)

where

AK,L :=
K

4
+ K

L−1∑

ℓ=1

θ2(ℓ)

τ(ℓ)
+

K∑

k=1

θ̄2(k, L)

τ̄ (k, L)
,

BK,L := K(L + 1),

CK,L :=

K∑

k=1

[
y2

k,0 +

L−1∑

ℓ=1

y2
k,ℓ

τ(ℓ)
+

ỹ2
k,L

τ̄ (k, L)

]
, (2.7)
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with

yk,ℓ :=





f(k, ℓ) − f(k − 1, ℓ + 1) − ̺aℓ(f(k, ℓ − 1) − f(k − 1, ℓ)) k, ℓ ≥ 1

f(k, 0) − f(k − 1, 1) k ≥ 1, ℓ = 0,

ỹk,L := f(k, L) − f(0, L + k) − ̺aL(f(k, L − 1)

− f(0, L + k − 1)) k ≥ 1, (2.8)

and for all k, ℓ

θ(ℓ) :=
1

2

(
ℓ−1∏

i=1

ai

)2

al(al + ̺)
ℓ−1∑

j=0

̺2j +
1

2

(
ℓ∏

i=1

ai

)2

̺2ℓ, τ(ℓ) :=
ℓ∏

i=1

a2
i ,

θ̄(k, L) :=
k−1∑

j=0

θ(L + j) and τ̄ (k, L) :=
k−1∑

j=0

τ(L + j). (2.9)

For L = 1 we define the empty sum to be zero and hence AK,L = K
4 +

∑K
k=1

θ̄2(k,L)
τ̄(k,L) . A similar covention takes place for CK,L and θ(1).

Proof. The aim of the following discussion is to find the joint density of

{f(k, ℓ) | 1 ≤ k ≤ K, 0 ≤ ℓ ≤ L}. We will find the conditional expectations of

the forward rates in three steps for the case where L > 1 (if L = 1 then the proof

is about the same). With these conditional expectations we can find the joint

density. The discussion is similar to the one for Lemma 3.1 in [6]. With the help

of (2.3), we obtain

(i) f(k + 1, 0)− f(k, 1) = 1
2β2 + βη(k +1, 0) and hence (∀k ≥ 0) the conditional

distribution of f(k + 1, 0), given f(k, 1), is a normal distribution with mean

f(k, 1) + 1
2β2 and variance β2.

(ii) through simple calculus

f(k + 1, ℓ) − f(k, ℓ + 1)

β(k, ℓ)
− ̺

(
f(k + 1, ℓ − 1) − f(k, ℓ)

β(k, ℓ − 1)

)

=
1

2
β

(
ℓ−1∏

i=1

ai

)
(al + ̺)

ℓ−1∑

j=0

̺2j +
1

2
β

(
ℓ∏

i=1

ai

)
̺2ℓ + η(k + 1, ℓ).

From this it can be seen easily that the conditional distribution of f(k+1, ℓ),

given f(k, ℓ + 1), f(k + 1, ℓ − 1) and f(k, ℓ), is a normal distribution with

mean

f(k, ℓ + 1) + ̺al(f(k + 1, ℓ − 1) − f(k, ℓ)) + β2θ(ℓ) (2.10)

and variance β2τ(ℓ) for all k ≥ 0 and ℓ ≥ 1, with θ, τ as defined in (2.9).
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(iii) Because (using (ii) for k replaced by k − 1 and taking ℓ = L) f(k, L) =

f(k − 1, L + 1) + ̺aL(f(k, L − 1) − f(k − 1, L)) + β2θ(L) + β
√

τ(L)η(k, L)

and using the fact that aL = aL+j for all j ∈ N
∗ k times, we see that

f(k, L) = f(0, L + k) + ̺aL(f(k, L − 1) − f(0, L + k − 1))

+ β2
k−1∑

j=0

θ(L + j) + β

k−1∑

j=0

√
τ(L + j)η(k − j, L + j). (2.11)

From this one can easily see that the conditional distribution of f(k + 1, L),

given f(0, L+ k+1), f(k +1, L− 1) and f(0, L+ k), is a normal distribution

with mean

f(0, L + k + 1) + ̺aL(f(k + 1, L − 1) − f(0, L + k)) + β2θ̄(k + 1, L) (2.12)

and variance β2τ̄(k + 1, L) for all k ≥ 0 and L ≥ 1, with θ̄, τ̄ as defined

in (2.9).

Now we can find the joint density of the sample by using the distribution derived

at the first step for {f(k, 0) | 1 ≤ k ≤ K}, the second step for {f(k, ℓ) | 1 ≤ k ≤ K,

1 ≤ ℓ ≤ L−1} and the third step for {f(k, L) | 1 ≤ k ≤ K}. By the independence

of {η(i, j) | i, j ∈ Z+} and the chain rule for conditional distributions, we obtain

that the joint density of {f(k, ℓ) | 1 ≤ k ≤ K, 0 ≤ ℓ ≤ L} has the form

g(β2) :=

(
L−1∏

ℓ=1

(2πβ2τ(ℓ))−
K

2

)
(2πβ2)−

K

2

(
K∏

k=1

(2πβ2τ̄ (k, L))−
1
2

)

exp

[
−

K∑

k=1

L−1∑

ℓ=1

(yk,ℓ − β2θ(ℓ))2

2β2τ(ℓ)
−

K∑

k=1

(yk,0 − 1
2β2)2

2β2
−

K∑

k=1

(ỹk,L − β2θ̄(k, L))2

2β2τ̄ (k, L)

]
,

where yk,ℓ and ỹk,L are defined in (2.8). The above implies that the maximum

likelihood estimator β̂2
K,L of β2 can be obtained by minimizing

h(β2) := K(L + 1) log(β2) +

K∑

k=1

L−1∑

ℓ=1

(yk,ℓ − β2θ(ℓ))2

β2τ(ℓ)

+

K∑

k=1

(yk,0 − 1
2β2)2

β2
+

K∑

k=1

(ỹk,L − β2θ̄(k, L))2

β2τ̄ (k, L)
. (2.13)

Because β4 δh(β2)
δβ2 = AK,Lβ4+BK,Lβ2−CK,L, where AK,L, BK,L and CK,L defined

as in (2.7), we see that (the positive root) β̂2
K,L is defined as in equation (2.6). �
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Remark 2.2. If ai = a for all i ∈ N
∗, then β(k, ℓ) = aℓβ (for all k, ℓ) and

(2.9) can be simplified to

θ(ℓ) :=
1

2
a2ℓ−1(a + ̺)

ℓ−1∑

j=0

̺2j +
1

2
a2ℓ̺2ℓ and τ(ℓ) := a2ℓ. (2.14)

If we also have ai = 1 for all i ∈ N
∗, then β(k, ℓ) = β(k, 0) = β is a constant (for

all k, ℓ) and (2.9) can be simplified even more to θ(ℓ) := 1
2

∑2ℓ
i=0 ̺i and τ(ℓ) := 1.

Remark 2.3. A discrete time version of a classical HJM model can be obtained

replacing in (1.2) the autoregressive process {S(k, ℓ) | k, ℓ ∈ Z+} defined by

equation (1.4) by
{

S(k) = S(k − 1) + η(k) =
∑k

i=0 η(i),

S(−1) = 0,
k ∈ Z+, (2.15)

where {η(i) | i ∈ Z+} is a system of independent standard normally distributed

random variables on a probability space (Ω,F , P). For our martingale case Gáll,

Pap and Zuijlen [7] have proved that the no-arbitrage criterion implies

f(k, ℓ + 1) = f(k, 0) +

ℓ∑

j=0

α(k, j) − 1

2

(
ℓ∑

j=0

β(k, j)

)2

, k, ℓ ∈ Z+. (2.16)

Defining

θ(ℓ) :=

(
ℓ∏

i=1

ai

)
ℓ−1∑

j=0

(
j∏

i=1

ai

)
+

1

2

(
ℓ∏

i=1

ai

)2

, ℓ ≥ 0, (2.17)

(θ̄(k, ℓ), τ(ℓ) and τ̄ (k, ℓ) are the same as in (2.9) for all k, ℓ ∈ Z+), it can be seen

that for all k, ℓ ∈ Z+

(i) f(k, 0) = f(k − 1, 1) + β2

2 + βη(k) for all k, and hence

η(k) =
f(k,0)−f(k−1,1)−

β2

2
β

.

(ii) f(k, ℓ) = f(k − 1, ℓ + 1) + β2θ(ℓ) + β
√

τ(ℓ)η(k)

= f(k − 1, ℓ + 1) + β2θ(ℓ) +
√

τ(ℓ)
(
f(k, 0) − f(k − 1, 1) − β2

2

)
.

Hence, if the sample {f(k, ℓ) | 1 ≤ k ≤ K, 0 ≤ ℓ ≤ 1} is known, then we can

determine f(k, ℓ) for all k, ℓ ∈ Z+. This means that if we obtain more data, we

do not necessarily obtain more information. Looking back we see that all this

is possible because for fixed k the same ‘shocks’ have effect to all forward rates

f(k, ℓ), where ℓ ∈ Z+. As is discussed in the introduction of [6], applying the

same ‘shocks’ to all forward rates seems not to be very realistic.
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3. Asymptotic behaviour of the volatility estimator

Consider a sequence of discrete-time forward interest rate curve models

{fn(k, ℓ) | k, ℓ ∈ Z+}, n ∈ Z+, with initial values {fn(0, ℓ) | ℓ ∈ Z+}, with

coefficients {αn(k, ℓ), βn(k, ℓ) | k, ℓ ∈ Z+}, and with driving process {Sn(k, ℓ) |
k, ℓ ∈ Z+} with autoregression parameter ̺n. Suppose that the common distrib-

ution of {ηn(i, j) | i, j ∈ Z+} is the standard normal distribution for each model

{fn(k, ℓ) | k, ℓ ∈ Z+}, n ∈ N
∗, and the no-arbitrage criterion (2.2) is satisfied in

the models.

Assume that, for every n ∈ N
∗, there exists an, βn ∈ R, an, βn 6= 0, such that

βn(k, ℓ) = aℓ
nβn k, ℓ ∈ Z+. (3.1)

Note that for fixed n, (3.1) is a special case of (2.4). In this special case we

will consider the asymptotic behaviour of the maximum likelihood estimator of β2
n

and after this we will briefly comment on the case where βn(k, ℓ) is dependent on

the time to maturity as in (2.4).

We will often consider variables that do not only depend on K and L, but also

depend on n. In this case we will simply use the subscript n, for which it will be

clear which value of K and L we have taken. E.g. the sample size Bn for a sample

{fn(k, ℓ) | 1 ≤ k ≤ Kn, 0 ≤ ℓ ≤ Ln} is defined as Bn := BKn,Ln
= Kn(Ln + 1)

(see (2.7)). Furthermore, due to (3.1), θn(ℓ) and τn(ℓ) are defined similar as

in (2.14).

In Theorem 3.1 we will provide the general framework for the consideration

of the asymptotic behaviour of the maximum likelihood estimator of β2
n. The

theorem tells us that if Kn goes to infinity (as n → ∞) and at least one out of

two technical assumptions is satisfied, then we have that the maximum likelihood

estimator β̂2
n of β2

n converges to β2
n. For the second technical assumption we

define for all n ∈ N
∗ (compare this definition with the definition of AK,L as

stated in (2.7))

Ãn :=
Kn

4
+ Kn

Ln−1∑

ℓ=1

θ4
n(ℓ)

τ2
n(ℓ)

+

Kn∑

k=1

θ̄4
n(k, Ln)

τ̄2
n(k, Ln)

. (3.2)

Theorem 3.1. If

Kn → ∞ (3.3)

as n → ∞ and

sup
n∈N

Bn

|βn|
√

An

< ∞ (3.4)
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or

lim
n→∞

β4
nÃn

(Bn + 2Anβ2
n)2

= 0, (3.5)

then √
Bn

2β4
n

+
An

β2
n

(β̂2
n − β2

n)
D−→ N(0, 1) (3.6)

as n → ∞.

Proof. Theorem 3.1 is a consequence of the following two statements:

Statement 1: If (3.3) and (3.4) are satisfied, then statement (3.6) is valid as

n → ∞.

Proof of statement 1: We have (see (2.6))

β̂2
K,L − β2 =

2(CK,L − β4AK,L − β2BK,L)

BK,L + 2β2AK,L +
√

B2
K,L + 4AK,LCK,L

. (3.7)

Defining ν(k, ℓ) := aℓη(k, ℓ) and ν̄(k, L) :=
∑k−1

j=0 ν(k− j, L+ j) for all 1 ≤ k ≤ K

and 1 ≤ ℓ ≤ L − 1, we see that (see the proof of Lemma 2.1)

CK,L − β4AK,L − β2BK,L =

[
K−1∑

k=0

((
β2θ̄(k + 1, L) + βν̄(k + 1, L)

)2
τ̄−1(k + 1, L)

+

L−1∑

ℓ=1

(β2θ(ℓ) + βν(k + 1, ℓ))2τ−1(ℓ)
)

+

(
1

2
β2 + βη(k + 1, 0)

)2
]

− β4

[
K

4
+ K

L−1∑

ℓ=1

θ2(ℓ)

τ(ℓ)
+

K−1∑

k=0

θ̄2(k + 1, L)

τ̄(k + 1, L)

]
− β2K(L + 1)

= β2
K−1∑

k=0

([
(η2(k + 1, 0) − 1)+

L−1∑

ℓ=1

(
ν2(k + 1, ℓ)

τ(ℓ)
−1

)]
+

(
ν̄2(k + 1, L)

τ̄ (k + 1, L)
−1

))

+ β3
K−1∑

k=0

([
η(k + 1, 0) +

L−1∑

ℓ=1

2θ(ℓ)ν(k + 1, ℓ)

τ(ℓ)

]
+

2θ̄(k + 1, L)ν̄(k + 1, L)

τ̄ (k + 1, L)

)
.

(Notice that E(ν2(k, ℓ)) = τ(ℓ) and that E(ν̄2(k, L)) = τ̄(k, L) for all 1 ≤ ℓ ≤
L − 1, 1 ≤ k ≤ K.) For K = Kn and L = Ln, we will consider the asymptotic

behaviour of CK,L − β4AK,L − β2BK,L. Applying the standard normality of

ηn(i, j), i, j ∈ Z+, the fact that they are independent and the Law of Large

Numbers, we see that if n → ∞, then

1

KnLn

Kn−1∑

k=0

[
(η2

n(k + 1, 0) − 1) +

Ln−1∑

ℓ=1

(
ν2

n(k + 1, ℓ)

τn(ℓ)
− 1

)]
→ 0, P-a.s.
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1

Kn

Kn−1∑

k=0

(
ν̄2

n(k + 1, Ln)

τ̄n(k + 1, Ln)
− 1

)
→ 0, P-a.s.

Kn−1∑

k=0

[
ηn(k + 1, 0) +

Ln−1∑

ℓ=1

2θn(ℓ)νn(ℓ)

τn(ℓ)

]
D
= N

(
0, Kn + 4Kn

Ln−1∑

ℓ=1

θ2
n(ℓ)

τn(ℓ)

)
,

and

Kn−1∑

k=0

2θ̄n(k + 1, Ln)ν̄n(k + 1, Ln)

τ̄n(k + 1, Ln)

D
= N

(
0, 4

Kn−1∑

k=0

θ̄2
n(k + 1, Ln)

τ̄n(k + 1, Ln)

)
.

Consequently (as n → ∞)

Cn − β4
nAn − β2

nBn

2β3
n

√
An

D−→ N(0, 1).

Moreover, due to B2
n +4AnCn = (Bn +2β2

nAn)2 +4An(Cn−β4
nAn−β2

nBn) it can

be proved that under assumption (3.3) we have that limn→∞

√
B2

n
+4AnCn

Bn+2β2
n

An
= 1

P-a.s.

By (3.3), (3.4), (3.7) and the fact that limn→∞
Bn+2β2

n
An

2β3
n

√
An

· βn√
An

= 1, we

obtain √
An

βn

(β̂2
n − β2

n)
D−→ N(0, 1) (3.8)

as n → ∞. Under assumption (3.4), (3.8) is the same as (3.6), so statement 1 has

been shown.

Statement 2: If (3.3) and (3.5) are satisfied, then statement (3.6) is valid as

n → ∞.

Proof of statement 2: The proof is similar to the proof of the first statement. For

1 ≤ k ≤ Kn, 0 ≤ ℓ ≤ Ln, n ∈ N
∗, we define

ξn(k, ℓ) :=






β2
n(η2

n(k, 0) − 1) + β3
nηn(k, 0) if ℓ = 0;

β2
n

(
ν2

n(k, ℓ)

τn(ℓ)
− 1

)
+ β3

n

(
2νn(k, ℓ)θn(ℓ)

τn(ℓ)

)
if 0 < ℓ < Ln;

β2
n

(
ν̄2

n(k, ℓ)

τ̄n(k, ℓ)
− 1

)
+ β3

n

(
2ν̄n(k, ℓ)θ̄n(k, ℓ)

τ̄n(k, ℓ)

)
for ℓ = Ln.

(3.9)

This definition allows us to write (see the proof of statement 1)

Cn − β4
nAn − β2

nBn =

Kn∑

k=1

Ln∑

ℓ=0

ξn(k, ℓ). (3.10)
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It is easy to see that (where V(X) := E[(X − E[X ])2])

(i) E(Cn − β4
nAn − β2

nBn) = 0 for all n,

(ii) V(Cn −β4
nAn −β2

nBn)=
∑Kn

k=1

∑Ln

ℓ=0 E(ξ2
n(k, ℓ))=2β4

nKn(Ln + 1)+4β6
nAn

= 2β4
n(Bn + 2β2

nAn).

(iii) 0 ≤
P

Kn

k=1

P
Ln

ℓ=0
E(ξ4

n
(k,ℓ))

β8
n
(Bn+2β2

n
An)2 =

60β8
n

Bn+240β10
n

An+48β12
n

Ãn

β8
n
(Bn+2β2

n
An)2

≤ 120
Bn+2β2

n
An

+
48β4

n
Ãn

(Bn+2β2
n

An)2 → 0

as n → ∞, because of equations (3.3) and (3.5).

Hence, by Lyapounov’s Limit Theorem we obtain:

Cn − β4
nAn − β2

nBn

β2
n

√
Bn + 2β2

nAn

D−→ N(0, 2). (3.11)

Thus:
√

B2
n + 4AnCn

Bn + 2β2
nAn

=

√
[(Bn + 2β2

nAn)2 + 4An(Cn − β4
nAn − β2

nBn)]

Bn + 2β2
nAn

→ 1

as n → ∞. So (see equation (3.7)):

√
Bn + 2β2

nAn(β̂2
n − β2

n)√
2β2

n

=
2(Cn − β4

nAn − β2
nBn)

√
Bn + 2β2

nAn√
2β2

n

(
Bn + 2β2

nAn +
√

B2
n + 4AnCn

) D−→ N(0, 1)

as n → ∞. �

Remark 3.2. Consider the case where limn→∞
Bn

Anβ2
n

= 0, limn→∞
Anβ2

n

B2
n

= 0

and Ãn = O(A2
n). It can be seen easily that (3.4) and (3.5) are not satisfied and

that (under the assumption that Kn → ∞) this is the only case where statements

(3.4) and (3.5) are both not valid. Hence, concerning this case we will not be

able to use Theorem 3.1. This can only happen if β2
n tends to zero with a certain

speed, which is dependent on the values of the different parameters.

With the help of the Lindeberg Theorem, condition (3.5) can be replaced by

the following weaker condition: for all k ∈ {1, 2, . . . , Kn}

lim
n→∞

β2
nθ̄2

n(k, Ln)

τ̄n(k, Ln)(Bn + 2Anβ2
n)

= 0. (3.12)

Unfortunately, this condition does rarely help us for the cases where equations

(3.4) and (3.5) are both not satisfied. For more on this subject we refer to [14].
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Remark 3.3. As said before, in later work we plan to do some computer tests.

In [4] some empirical results are shown. They show that when the volatility is

a constant, the ML estimator of β2 is already very close to the true value of β2

for small values of K and L. If we include known parameters aℓ, ℓ ∈ N
∗, the

estimations have again fairly nice performances. In our discussion we will always

assume that the parameters aℓ are known. If we do not assume this, then finding

the ML estimator for all unknown variables becomes very complicated, but we

can still do this numerically for some cases. For the sake of the reader we show the

results for the estimation of a, which is defined below, and β based on generated

data (according to no-arbitrage conditions, of course), where the following setting

has been used: f(0, ℓ) = 0.03, 0 ≤ ℓ ≤ L, β = 0.002, ̺ = −0.1, a := a1 = 0.9 and

aℓ = aℓ+1 for all ℓ ∈ N
∗. In later work, the choice of the values of the parameters

and the working of the program used for the calculations will be discussed in

detail. Table 1 shows the fairly good results for the speed of convergence. For

every case 400 runs of the program have been done. If we do not assume that

aℓ = aℓ+1 for all ℓ ∈ N
∗, but for instance that aL = aL+i for all i ∈ Z+ and

a certain L ∈ N
∗, then the estimation of the unknown variables becomes more

difficult, but can be achieved by well known numerical optimisation procedures. In

later work we plan to consider the estimation of all parameters for a non-constant

volatility.

β̂2 â

(K, L) AMD SE AMD SE

∗10−5 ∗10−1 ∗10−3

(10,3) 13.253 33.838 52.016 58.080

(20,6) 7.9721 20.280 17.607 19.901

(30,9) 5.8817 14.712 10.041 11.190

(40,12) 4.4713 11.277 5.7182 6.4187

(50,15) 3.6894 9.2628 3.9774 4.4646

(60,18) 3.0235 7.4781 2.8071 3.1650

Table 1. Average mean difference (=AMD), defined by 100 ∗ |β̂2
K,L − β2|/β2,

and its standard error (=SE) for β2 and a as calculated by R. Note that for the

sake of simplicity of the table the values of the AMD and the SE are multiplied

by some factors which are shown in line 3.
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Remark 3.4. If statement (3.6) is valid for n → ∞ and limn→∞
Bn

Anβ2
n

= 0,

then (as n → ∞) √
An

β2
n

(β̂2
n − β2

n)
D−→ N(0, 1). (3.13)

Similarly, if limn→∞
Anβ2

n

Bn
= 0, then (as n → ∞)

√
Bn

2β4
n

(β̂2
n − β2

n)
D−→ N(0, 1). (3.14)

With the help of Theorem 3.1, the asymptotic behaviour of the maximum

likelihood estimator of β2 is considered in [14] for all cases where an converges to

a ∈ R, ̺n converges to ̺ ∈ R and Ln is of order n or Ln is a constant for all n. In

practice the shortage of available (traded) assets in the market does not always

make it possible for us to work with large values of Ln, whereas, the value of Kn

can well increase as time goes on.

Here we will state only one case, namely the unstable case, where an and ̺n

converge to 1 and Ln is a constant for all n. For the other cases we refer to [14].

Theorem 3.5. Consider the maximum likelihood estimator β̂2
n of β2

n based

on a sample {fn(k, ℓ) | 1 ≤ k ≤ Kn, 0 ≤ ℓ ≤ Ln}, where Kn = nK + o(n)

as n → ∞ and Ln = L for all n ∈ N
∗ with some K, L > 0. Assume that

̺n = 1 + γ
n

+ o(n−1) and an = 1 + δ
n

+ o(n−1) as n → ∞, where δ, γ ∈ R. Then

(3.6) is valid and (as n → ∞)

1. if n3β2
n → ∞ then

n2β−1
n (β̂2

n − β2
n)

D−→ N(0, σ2), (3.15)

2. if n3β2
n → 0 then

√
nβ−2

n (β̂2
n − β2

n)
D−→ N

(
0,

2

K(L + 1)

)
, (3.16)

3. if β2
n = O(n−3) then

√
n

√
K(L + 1)σ2 + 2n3β2

n

2σ2β4
n

(β̂2
n − β2

n)
D−→ N(0, 1), (3.17)

where

1

σ2
:=

∫ K

0

(∫ t

0

exp(2δy)dy

)−1[∫ t

0

exp(2δu)

(∫ u

0

exp(2γz)dz

)
du

]2

dt. (3.18)
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The proof consists of the calculation of (the limits for) An and Bn, and

showing that (3.3) and (3.4) or (3.5) holds. The definition of σ2 can be simplified

for the cases where γ = 0 or δ = 0.

If (3.1) is replaced by (for fixed n, (3.19) is similar to (2.4))

βn(k, 0) = βn k ∈ Z+;

βn(k, ℓ + 1) = an,ℓ+1βn(k, ℓ) k, ℓ ∈ Z+, (3.19)

then explicit theorems for the asymptotic behaviour of the maximum likelihood

estimator of β2 are given in [14] for all cases where an converges to a ∈ R, ̺n

converges to ̺ and Ln is a constant for all n. Here we will only state the theorem

that is analogous to Theorem 3.5.

Theorem 3.6. Consider the maximum likelihood estimator β̂2
n of β2

n based

on a sample {fn(k, ℓ) | 1 ≤ k ≤ Kn, 0 ≤ ℓ ≤ Ln}, where Kn = nK + o(n)

as n → ∞ and Ln = L for all n ∈ N
∗ with some K, L > 0. Assume that

an,L = 1 + δ
n

+ o(n−1) and ̺n = 1 + γ
n

+ o(n−1) as n → ∞, where δ, γ ∈ R. If

an,i → ãi ∈ R\{0} as n → ∞ for all 1 ≤ i ≤ L − 1 and an,L = an,L+j for all

n, j ∈ Z+, then (as n → ∞) the statements of Theorem 3.5 are valid, with

1

σ2
:=

(
L−1∏

i=1

ã2
i

)∫ K

0

(∫ t

0

exp(2δy)dy

)−1

×
[∫ t

0

exp(2δu)

(∫ u

0

exp(2γz)dz

)
du

]2

dt. (3.20)

The proof is about the same as the one of Theorem 3.5. Notice that the

definition of σ2 is only slightly different from the one given in Theorem 3.5.

For the calculation of An, we have for all the cases where Ln is a constant,

that Kn

∑Ln−1
ℓ=1

θ2
n
(ℓ)

τn(ℓ) (where θn(ℓ) and τn(ℓ) are defined similar to (2.9)) is rela-

tively small compared to
∑Kn

k=1
θ̄2

n
(k,Ln)

τ̄n(k,Ln) . However, if Ln is of order n we do not

always know the order of An. Of course, there are some special cases for which

we can state explicit formula’s for An, e.g. when
∏ℓ

p=1 an,p is finite for all n ∈ N
∗

and 1 ≤ ℓ ≤ Ln, but general theorems have not been found yet.

4. A general case

In this section we turn back to the model introduced in Section 1. Since

the driving fields follow an autoregressive structure, which implies a ‘geometric’
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feature (see e.g. (1.6)), we shall suppose that the market price of risk parameters

behave in a similar way. Therefore, in what follows we assume that

φj = βbqj , j ∈ Z+, (4.1)

where b ∈ R and |q| < 1 such that |q̺| < 1. Note that the latter condition

is sufficient for the convergence of
∑∞

j=0 φj∆1S(k, j) with probability one. The

parameter b is included for the sake of generality, although the assumption b = 1

would already lead to a quite general model. The reason why φj is defined relative

to β will be discussed later on.

Now we turn to the maximum likelihood estimator of the volatility. The next

lemma is a generalisation of Lemma 2.1 and provides us with a method to find

this maximum likelihood estimator.

Lemma 4.1. Consider a forward interest rate curve model {f(k, ℓ) | k, ℓ∈Z}
as given in (1.3) and suppose that equations (1.9) and (4.1) are valid, with b ∈ R

and |q| < 1 such that |q̺| < 1. Let K and L be positive integers. Assume that

the parameters ̺, b, q and {ai}∞i=1 are known, ai 6= 0 and that aL = aL+j for all

j ∈ N
∗. Then the maximum likelihood estimator β̂2

K,L of β2 based on the sample

(2.5) is given by statement (2.6) where AK,L, BK,L, CK,L, τ, τ̄ , θ̄ are the same as

in Lemma 2.1 and θ is given by

θ(ℓ) :=
1

2

(
ℓ−1∏

i=1

ai

)2

al(al + ̺)

ℓ−1∑

j=0

̺2j +
1

2

(
ℓ∏

i=1

ai

)2

̺2ℓ − b

(
ℓ∏

i=1

ai

)
qℓ

1− q̺
. (4.2)

Proof. One can derive the statement of this lemma by following the steps

of the proof of Lemma 2.1, where one should use the no-arbitrage criterion stated

above (see [14]. �

If a := a1 and ai = ai+1 for all i ∈ N
∗, then β(k, ℓ) = aℓβ (for all k, ℓ) and

(4.2) becomes

θ(ℓ) =
1

2
a2ℓ−1(a + ̺)

ℓ−1∑

j=0

̺2j +
1

2
a2ℓ̺2ℓ +

baℓqℓ

q̺ − 1
. (4.3)

If we also have that ai = 1 for all i ∈ N
∗, then β(k, ℓ) = β(k, 0) = β is a constant

(for all k, ℓ) and (4.2) can be simplified even more: θ(ℓ) = bqℓ

q̺−1 + 1
2

∑2l
i=0 ̺i.

The market price of risk is defined relative to the volatility in our setup. One

could of course parametrise the market price of risk without the inclusion of the

volatility. However, we remark that without the inclusion of the volatility, the
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maximum likelihood estimator will not be a solution of a second-order equation

and can not be expressed explicitly. On the other hand, it is important to em-

phasise that this approach does not cause any loss of generality. It is, in fact, just

a matter of parametrization.

Consider a sequence of discrete-time forward interest rate curve models like

the one defined in Section 3 and suppose that the no-arbitrage criterion (1.9) is

satisfied in the models. Assume that, for every n ∈ N
∗, there exists an, βn ∈ R,

an, βn 6= 0, such that βn(k, ℓ) is defined as in equation (3.1) and that φn,j is

defined by

φn,j = βnbnqj
n, n, j ∈ Z+,

where bn ∈ R and |qn| < 1 such that |qn̺n| < 1.

The next theorem generalises the results of Theorem 3.5, concerning two

different cases:

(i) q := limn→∞ qn with |qn|, |q| < 1, and

(ii) q := limn→∞ qn with |qn| < 1 and q = 1.

Theorem 4.2. Suppose that b := limn→∞ bn with b ∈ R, and that the

driving process Sn and the parameters Kn, Ln, an, ̺n are as in Theorem 3.5.

Furthermore, suppose that q := limn→∞ qn and |qn̺n| < 1 for all n ∈ N
∗.

(i) If |qn| < 1 and |q| < 1, then statement (3.6) and the statements of Theo-

rem 3.5 are valid with σ2 given by (3.18).

(ii) If qn := 1 − κ
n

+ o(n−1), with κ ∈ R>0 and κ > γ, then statement (3.6) and

the statements of Theorem 3.5 are valid with

1

σ2
:=

∫ K

0

(∫ t

0

exp(2δy)dy

)−1

×
[ ∫ t

0

exp(δu)

(
exp(δu)

∫ u

0

exp(2γz)dz − b
exp(−κu)

κ − γ

)
du

]2

dt. (4.4)

The proof is about the same as the proof of Theorem 3.5. Note that the

condition κ > γ in the second part of the theorem is included to ensure that

|qn̺n| < 1 for all n ∈ N
∗. If κ ≤ γ, then we can not use Lemma 4.1 to prove a

theorem similar to Theorem 3.5. Theorem 3.6 and others can be generalised in a

similar way. For the results and the proofs we refer to [14].

We note that one could, of course, take some other forms for the market

price of risk. E.g., finitely many factors φ0, . . . , φN 6= 0 could be considered (with

φj = 0 for j > N). This case is studied e.g. in [8]. For a general discussion on

the role of the market price of risk one can consult e.g. [1].
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