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Normal H̃-abundant cryptographs

By XIANGZHI KONG (Wuxi) and K. P. SHUM (Hong Kong)

Abstract. Properties of the Green ∼-relations in eH-abundant cryptographs are

investigated and the semilattice decomposition of an eH-abundant cryptograph is consid-

ered. By using the semilattice decomposition, we will show that a normal eH-abundant

cryptograph can be expressed by a strong semilattice of eJ -simple cryptogroups. This

result not only generalizes the well known theorem of normal cryptogroups given by Pet-

rich in 1974 and also the theorem of super abundant semigroups given by Fountain in

1982. In addition,our theorem extends some of the recent results obtained by Ren–Shum

on superabundant semigroups which are orthodox.

1. Introduction

It is well known that Green’s relations play an important role in the theory of

regular semigroups [1]–[2]. The celebrated theorem of Clifford [2] states that a

semigroup is a union of groups if and only if it is a semilattice of completely simple

semigroups, where a union of groups is in fact a semigroup in which every H-class

contains an idempotent. By using the strong semilattice decomposition, Petrich

[11] showed that a completely regular semigroup is a normal cryptogroup if and

only if it is a strong semilattice of completely simple semigroups. By a normal

cryptogroup, we mean a completely regular semigroup whose Green relation H is
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a normal band congruence. The theorem of Petrich was generalized by Fountain

[4] in 1982 and in fact,he proved that an abundant semigroup S is a superabundant

semigroup (that is, an abundant semigroup in which every H∗-class of S contains

an idempotent) if and only if S can be expressed by a semilattice of completely

J ∗-simple semigroups. Thus, the theorem of Fountain [4] has been further

modified by Ren–Shum to superabundant semigroups in [13] and [14].

The following Green∗-relations were first introduced by Pastijn [9] and used

by Fountain [4] to study the structure of abundant semigroups:

L∗ = {(a, b) ∈ S × S : (∀x, y ∈ S1)ax = ay ⇔ bx = by},

R∗ = {(a, b) ∈ S × S : (∀x, y ∈ S1)xa = ya ⇔ xb = yb},

H∗ = L∗ ∩R∗, D∗ = L∗ ∨R∗.

Later on, in studying the adequate semigroups, El-Qallali [3] generalized

the Green∗-relations to the Green∼-relations on a semigroup S as following:

L̃ = {(a, b) ∈ S × S : (∀e ∈ E(S))ae = a ⇔ be = b},

R̃ = {(a, b) ∈ S × S : (∀f ∈ E(S))a = fa ⇔ b = fb},

H̃ = L̃ ∩ R̃, D̃ = L̃ ∨ R̃.

It can be easily seen that L̃ and R̃ are equivalences on a semigroup S , but L̃

need not to be right compatible with the semigroup multiplication and R̃ need not

to be left compatible with the semigroup multiplication , same as the L, L∗, R and

R∗-relations respectively. The L̃-class containing the element a of the semigroup

S will be denoted by L̃a or by L̃a(S) if no ambiguity arises. We can easily see

that L ⊆ L∗ ⊆ L̃. Among the usual Green relations or the above generalized

Green relations, the relation L or the generalized L-relations, say L∗ or L̃, are

the dual of the corresponding R-relations. Hence, in what follows, we only discuss

the properties related to the L relation or to the generalized L-relations. One can

easily see that there is at most one idempotent contained in each H̃-class [4]. If

e ∈ H̃a ∩ E(S), for some a ∈ S, then we write e as x0, for any x ∈ H̃a. Clearly,

for any x ∈ H̃a with a ∈ S, we have x = xx0 = x0x.

If a semigroup S is regular, then every L-class of S contains at least one idem-

potent, and so does every R-class of S. If S is a completely regular semigroup,

then every H-class of S contains an idempotent. A semigroup S is called abundant

[4] if every L∗- and R∗-class of S contains an idempotent. One can also see that

L∗ = L on the regular elements of the semigroup S. Thus, abundant semigroups
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are generalized regular semigroups. We call a semigroup S superabundant if each

of its H∗-classes contains an idempotent. Clearly, superabundant semigroups are

generalization of completely regular semigroup in the class of abundant semi-

groups. Accordingly, we call a semigroup S semiabundant if both its L̃-class and

R̃-class of S contains at least one idempotent. In particular, we call a semi-

group S H̃-abundant if each of its H̃-classes contains an idempotent. Thus, an

H̃-abundant semigroup is just a special semiabundant semigroups. The structure

of semiabundant semigroup has been recently investigated by Guo–Shum [5] and

some analogous cryptogroups and H̃ cryptogroups and cryptographs have been

studied by Kong, Yuen and Shum (see [7] and [8]).One can easily see that L̃ = L

always holds on the regular elements in any H̃-abundant semigroup.

Recall that a normal band is a band satisfying the identity axya = ayxa

(see 5]) and a semigroup S is called cryptic if its Green ∼-relation H̃ is a congru-

ence on S [10]. For completely regular semigroups, Petrich–Reilly [10] called

these kind of semigroups the cryptogroups if their Green ∼-relation H̃ is a regular

band congruence. In other words, a completely regular semigroup S is a regular

cryptogroup if the set of all idempotents of S forms a regular band. Since abun-

dant semigroups are generalization of completely regular semigroups, we naturally

call a H̃-abundant semigroup a normal H̃-abundant cryptograph if the Green∼-

relation H̃ is a normal band congruence. Consequently, we call a H̃-abundant

semigroup whose set of idempotents forms a normal band a normal H̃-abundant

cryptograph. It is noteworthy that if S is an H̃-abundant semigroup,then the re-

lation H̃ is always a congruence of S.Thus, we remark here that the H̃-classes in a

H̃-abundant cryptograph S are submonoids of S. For notations and terminologies

not mentioned in this paper, the reader is referred to [6] and [12].

In this paper, we concentrate to study the structure of normal H̃-abundant

cryptographs. Our result not only generalizes the result of Petrich [11] on

normal cryptogroups in 1974 and also the results of Fountain [4] in 1982. Also,

we extend some recent results of Ren–Shum on superabundant semigroups which

are orthodox to H̃-abundant cryptographs ( see [13] and [14]).

For the sake of convenience, we first restate the definition of strong semilattice

of semigroups. (see [7], for example).

Definition 1.1. Let the semigroup S = (Y ; Sα) be the semilattice Y of semi-

groups Sα(α ∈ Y ). Suppose that for any α > β on Y , there is a homomorphism

φα,β from Sα into Sβ such that

(i) (∀α ∈ Y ) φα,α = 1Sα
is the identity automorphism of Sα;

(ii) (∀α, β, γ ∈ Y, α > β > γ) φα,βφβ,γ = φα,γ ;
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(iii) (∀a ∈ Sα, b ∈ Sβ) ab = (aφα,αβ)(bφβ,αβ).

Then we call S the strong semilattice of semigroups Sα and denote it by

S = [Y ; Sα, φα,β ]. The homomorphism φα,β is called the structural homomor-

phism.

2. Preliminaries

We have already defined the Green∼-relations L̃, R̃ and H̃ D̃. In order

to define J̃ , we first introduce the left (right) ĩdeal of a semigroup S to be a

left(right) ideal I of S such that L̃a ⊆ I (R̃a ⊆ I,) for all a ∈ I. A subset I of S

is now called a ĩdeal of S if it is both a left ĩdeal and a right ĩdeal of S. By the

fact that S is a ĩdeal of S, we denote the smallest ĩdeal containing the element

a of S by J̃(a) and define J̃ = {(a, b) ∈ S × S : J̃(a) = J̃(b)}. We note that if

S is regular, then every left(right, two-sided) ideal of S is a left(right, two-sided)

ĩdeal of S. We also observe that for an idempotent e in any semigroup S the left

(right) ideal Se(eS) is a left (right) ĩdeal. For if a ∈ Se, then a = ae, and hence

for any element b in L̃a we have b = be ∈ Se. If an H̃-abundant cryptograph S

does not contain any proper ĩdeal of S, then we call S a completely regular J̃ -

simple semigroup. We note here that a completely regular J̃ -simple semigroup S

is already a cryptogroup under the terminology of Petrich–Reilly [10] because

H̃ is a group congruence on S.

We have the following lemmas for H̃-abundant semigroups and H̃-abundant

cryptographs.

Lemma 2.1. A semigroup S is a H̃-abundant semigroup if and only if

(ab)0 = (a0b0)0, for all a and b in S.

Proof. Necessity. For any a, b ∈ S, we have aH̃a0 and bH̃b0. Since H̃ is a

congruence, abH̃a0b0. But abH̃(ab)0, and so (ab)0 = (a0b0)0 since every H̃-class

contains a unique idempotent.

Sufficiency. Since H̃ is an equivalence, we only need to show that H̃ is

compatible with semigroup multiplication. Let (a, b) ∈ H̃ and c ∈ S. Then

(ca)0 = (c0a0)0 = (c0b0)0 = (cb)0 and so H̃ is left compatible with semigroup

multiplication. Dually, H̃ is right compatible with semigroup multiplication and

thus H̃ is indeed a congruence. �

Lemma 2.2. If e, f are D̃-related idempotents of an H̃-abundant semigroup

S, then eDf .
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Proof. Since eD̃f , there are elements a1, . . . , ak of S such that eL̃a1R̃a2

. . . akL̃f . Since S is H̃-abundant, we have eL̃a0

1
R̃a0

2
· · · a0

kL̃f . Thus eDf . �

Corollary 2.3. If S is an H̃-abundant semigroup, then

D̃ = L̃ ◦ R̃ = R̃ ◦ L̃.

Proof. If a, b ∈ S and aD̃b, then by Lemma 2.2, a0Db0. Thus there are

elements c, d in S with a0LcRb0 and a0RdLb0. These lead to aL̃cR̃b and aR̃dL̃b

and hence the result follows. �

Lemma 2.4. Let e, f be idempotents in an H̃-abundant semigroup S. If

eJ f then eDf .

Proof. Since SeS = SfS, there exist elements x, y, s, t in S such that

f = set, e = xfy. Let h = (fy)0 and k = (se)0. Then fy = ffy so that h2 =

h = fh and se = see. Thus, k2 = k = ke and hence it follows that hf, ek are

idempotents such that hfRh and ekLk. These imply that ehfReh and ekfLkf .

Now eh = xfyh = xfy = e and kf = kset = set = f so that eRefLf , that is,

eDf . �

Proposition 2.5. If a is an element of an H̃-abundant cryptograph S, then

J̃(a) = Sa0S.

Proof. Certainly a0 ∈ J̃(a) so that Sa0S ⊆ J̃(a). We now see that the

ideal Sa0S of the semigroup S is an ĩdeal of S and since a = aa0 ∈ Sa0S,

the result follows. Let b = xa0y ∈ Sa0S(x, y ∈ S) and k = (a0y)0. Then

a0a0y = a0y so that a0k = k = k2. Also since H̃ is a congruence, xa0yH̃xk. Now

let h = (xk)0 = (xa0y)0. Then xk = xkk so that h2 = h = hk = ha0k ∈ Sa0S.

Hence if c ∈ L̃b, d ∈ R̃b, then c = ch and d = hd ∈ Sa0S so that Sa0S is an ĩdeal

of S, as required. �

We now call a completely J̃ -simple semigroup S a J̃ -simple cryptogroup

because the Green ∼-relation H̃ on S is a congruence on S and S itself is com-

pletely regular.Thus, as an analogous concept of cryptogroup introduced in the

monograph of Petrich–Reilly [10], we naturally call the above semigroup the

J̃ -simple cryptogroup. For J̃ -simple cryptogroups, we have the following prop-

erties:

Proposition 2.6. If S is a J̃ -simple cryptogroup, then J̃ = D̃.

Proof. Let a, b ∈ S such that aJ̃ b. Then,by Proposition 2.5, Sa0S =

Sb0S. By Lemma 2.4, a0Db0 and hence aH̃a0Db0H̃b. This implies that aD̃b and
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therefore J̃ ⊆ D̃. Conversely, let a, b ∈ S with aD̃b. Then, by Corollary 2.3, there

exists c ∈ S such that aL̃cR̃b. Thus a0Lc0Rb0 and so Sa0S = Sc0S = Sb0S. By

Proposition 2.5, (a, b) ∈ J̃ and hence D̃ ⊆ J̃ . Now we have J̃ = D̃. �

Proposition 2.7. A J̃ -simple cryptogroup S is primitive for idempotents.

Proof. Let e, f be idempotents in S with e 6 f . Since S is in fact a

completely regular J̃ -simple semigroup, it follows from Proposition 2.5 that f ∈

SeS. Now by the first part of Exercise 3 of [1, §8.4], there exists an idempotent

g of S such that fDg and g 6 e. Let a ∈ S be such that fLaRg. Then fLa0Rg

and since g 6 f , we have

a0 = ga0(gf)a0 = g(fa0) = gf = g.

Now g 6 f and gLf so that f = fg = g. But g 6 e so that e = f and all

idempotent of S are hence primitive. �

Lemma 2.8. In a J̃ -simple cryptogroup S, the regular elements of S gen-

erate a regular subsemigroup.

Proof. Let a, b be regular elements of S. Since S consists of a single D̃-class

(by Proposition 2.6), it follows from Corollary 2.3 that there is an element c ∈ S

with aL̃cR̃b. Hence, aL̃c0R̃b. Thus c0b = b and aLc0 since a is regular. Now we

have abLb and the regularity of ab follows from the regularity of b. �

Theorem 2.9. Let S be a H̃-abundant cryptograph. Then S can be ex-

pressed by a semilattice Y of J̃ -simple cryptogroups Sα(α ∈ Y ) such that for

α ∈ Y and a ∈ Sα, L̃a(S) = L̃a(Sα), R̃a(S) = L̃a(Sα).

Proof. If a ∈ S, then aH̃a2 so that by Proposition 2.5 J̃(a) = J̃(a2). Now

for a, b ∈ S, (ab)2 ∈ SbaS, and so

J̃(ab) = J̃((ab)2) ⊆ J̃(ba)

and by symmetry, we have J̃(ab) = J̃(ba). By invoking Proposition 2.5, we have

J̃(a) = Sa0S and J̃(b) = Sb0S so that if c ∈ J̃(a)∩ J̃(b), then c = xa0y = zb0t for

some x, y, z, t ∈ S. Now c2 = zb0txa0y ∈ Sb0txa0S ⊆ J̃(b0txa0) and J̃(b0txa0) =

J̃(a0b0tx) by the preceding paragraph. Hence c2 ∈ J̃(a0b0) and since cH̃c2, we

have c ∈ J̃(a0b0). Since aH̃a0, bH̃b0 and H̃ is a congruence so that abH̃a0b0.

Hence c ∈ J̃(ab). Thus J̃(a) ∩ J̃(b) ⊆ J̃(ab) and since the converse inclusion is

clear, J̃(a) ∩ J̃(b) = J̃(ab).

It can be easily seen that the set Y of all ĩdeals J̃(a)(a ∈ S) forms a semi-

lattice under set intersection and that the map a 7→ J̃(a) is a homomorphism
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from S onto Y . The inverse image of J̃(a) is just the J̃ -class J̃a which forms a

subsemigroup of S. Hence S is a semilattice Y of the semigroups J̃a.

Now let a, b be elements of the J̃ -class J̃ and suppose that (a, b) ∈ L̃(J̃).

Certainly a0, b0 ∈ J̃ so that (a0, b0) ∈ L̃(J̃), that is, a0b0 = a0, b0a0 = b0 and

(a0, b0) ∈ L̃(S). It follows that (a, b) ∈ L̃(S) and since L̃a(S) ⊆ J̃ , L̃a(S) = L̃a(J̃).

By using a similar argument as above, we can show that R̃a(S) = R̃a(J̃a).

From the above paragraph, we have H̃a(J̃) = H̃a(S) so that J̃ is H̃-abundant.

Furthermore, if a, b ∈ J̃ , then by Proposition 2.6, (a, b) ∈ D̃(S) so that, by

Corollary 2.3, there is an element c in L̃a(S)∩ R̃b(S) = L̃a(J̃)∩ R̃b(J̃). Thus a, b

are D̃-related in J̃ so that each J̃a is a J̃ -simple semigroup. This completes the

proof. �

Lemma 2.10. Let S = (Y ; Sα) be an H̃-abundant cryptograph. Then the

following statements hold:

(i) Let a ∈ Sα and α > β. Then there exists b ∈ Sβ with a > b;

(ii) Let a, b, c ∈ S, bH̃c, and a > b, c. Then b = c;

(iii) Let a ∈ E(S) and b ∈ S be such that a > b. Then b ∈ E(S).

Proof. (i) Let b ∈ Sβ. Then by Lemma 2.1, a(aba)0, (aba)0a and (aba)0 are

in the same H̃-class and so a(aba)0 = (aba)0a(aba)0 = (aba)0a. If b = a(aba)0,

then b ∈ Sβ and a > b.

(ii) By the definition of “>”, there exist e, f, g, h ∈ E(S) such that b = ea =

af , c = ga = ah. From eb = b and bH̃b0, we have eb0 = b0. Similarly, c0h = c0.

Thus ec = ec0c = eb0c = b0c = c. Similarly,we also have bh = b and hence

b = bh = eah = ec = c, as required.

(iii) We have b = ea = af for some e, f ∈ E(S) and whence,

b2 = (ea)(af) = ea2f = b. �

Following Proposition 2.7 and Lemma 2.10 (ii), we can easily deduce the

following corollary

Corollary 2.11. A J̃ -simple cryptogroup S is primitive, that is, all idem-

potents of S are primitive.

3. Normal H̃-cryptographs

Following Proposition 2.7, we can easily prove the following lemma
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Lemma 3.1. Let φ be a homomorphism from a J̃ -simple cryptogroup S

into another J̃ -simple cryptogroup T . Then (aφ)0 = a0φ.

Remark. If φ be a homomorphism between two J̃ -simple cryptogroups, then

the G̃reen-relations L̃ and R̃ are preserved so that the relation D̃ is also preserved.

Lemma 3.2. Let S = (Y ; Sα) be a normal H̃-cryptograph.Then the follow-

ing statements hold:

(i) For any α > β on Y and a ∈ Sβ , there exists a unique element aβ ∈ Sβ such

that a > aβ.

(ii) For any α > β on Y and a ∈ Sα, x ∈ Sβ , if a0 > e for some idempotent

e ∈ Sβ then eax = ax, xae = xa, ea = ae and (ea)0 = e.

Proof. (i) By Lemma 2.10 (i), there exists aβ = a(aca)0 = (aca)0a ∈ Sβ

for any c ∈ Sβ such that a > aβ. If there is another b ∈ Sβ such that a > b,

then there are idempotents g, h ∈ E(S) such that b = ga = ah. Hence aβH̃ =

(aca)0H̃aH̃ = aH̃(aca)0H̃ and bH̃ = gH̃aH̃ = aH̃hH̃, that is, aβH̃ 6 aH̃ and

bH̃ 6 aH̃. It can be easily seen that S/H̃ = (Y ; Sα/H̃), and so aβH̃ = bH̃ since

S/H̃ is still a normal band. By Lemma 2.10 (ii), aβ = b.

(ii) Since (a0(ax)0a0)a0 = a0(ax)0a0 = a0(a0(ax)0a0) and

a0(ax)0a0H̃(a0(ax)0a0)0, we have (a0(ax)0a0)0a0=(a0(ax)0a0)0= a0(a0(ax)0a0)0,

that is, a0 > (a0(ax)0a0)0. Also, since a ∈ Sα and x ∈ Sβ, ax ∈ Sβ and so

e = (a0(ax)0a0)0 by (i). Thereby, we have eax = (a0(ax)0a0)0ax =

(a0(ax)0a0)0a0(ax)0a0ax = ax. Similarly, we have xae = xa. Since x is an

arbitrarily chosen element in Sβ, we can particularly choose x = e. In this way,

we obtain ea = ae and consequently, by Lemma 2.1, (ea)0 = (ea0)0 = e, as

required. �

Theorem 3.3. An H̃-abundant semigroup S is a normal H̃-abundant cryp-

tograph if and only if it is a strong semilattice of J̃ -simple cryptogroups.

Proof. Necessity. Following Theorem 2.9, we can let S = (Y ; Sα), where Y

is a semilattice and each component Sα(α ∈ Y ) is a J̃ -simple cryptogroup. For

α > β on Y and a ∈ Sα, by Lemma 3.2, we can define a map φα,β : a 7→ aβ

from Sα into Sβ, where aβ is the unique element in Sβ such that aβ 6 a and

aβ = (aca)0a = a(aca)0 for any c ∈ Sβ. Now we show that S = [Y ; Sα, φα,β ] is a

strong semilattice of J̃ -simple cryptogroups Sα. In order to show that φα,β is a

structure homomorphism, we let b ∈ Sβ . Then bφα,β = (bcb)0b = b(bcb)0. Thus

by Lemma 3.2,

aβbβ = (aca)0ab(bcb)0 = (aca)0ab = ab(bcb)0,
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and this implies that aβbβ 6 ab and so by Corollary 2.11,

aβbβ = (aφα,β)(bφα,β) = (ab)φα,β .

Hence φα,β is indeed a structure homomorphism.

(i) For every α ∈ Y , we easily see that φα,α = 1Sα
is the identity automo-

morphism of Sα.

(ii) For α > β > γ on Y , by the transitivity of 6, we have φα,βφβ,γ = φα,γ .

(iii) For α, β ∈ Y and a ∈ Sα, b ∈ Sβ . By using the proof of Lemma 2.10 (i),

we can let aφα,αβ = a1 = a(aca)0 = (aca)0a and bφβ,αβ = b1 = b(bcb)0 = (bcb)0b,

for any c ∈ Sαβ . Thus by Lemma 2.10 (ii), a1b1 = (aca)0ab(bcb)0 = (aca)0ab =

ab(bcb)0 so that a1b1 6 ab. Now we have ab = a1b1 = (aφα,αβ)(bφβ,αβ) since Sαβ

is primitive.

Sufficiency. Let S = [Y ; Sα, φα,β ] be a strong semilattice J̃ -simple cryp-

togroups S′

αs. We still need to show that H̃ is a congruence on the semigroup

S and S/H̃ is a normal band. For this purpose, we let a ∈ Sα, b ∈ Sβ . Then

ab = (aφα,αβ)(bφβ,αβ) and so (ab)0 = [(a0φα,αβ)(b0φβ,αβ)]0 = (a0b0)0. Thus by

Lemma 2.1, S is a completely regular semigroup.

For a ∈ Sα, x ∈ Sβ and y ∈ Sγ , we let δ = αβγ. Then by direct computation,

we have (axya)H̃ = aφα,δH̃ = (ayxa)H̃. This shows that S/H̃ is indeed a normal

band. In other words, S is a normal H̃-abundant cryptograph. The proof is

completed. �

Corollary 3.4. Let S = [Y ; Sα, φα,β ] be a normal H̃-abundant cryptograph.

Let a ∈ Sα and b ∈ Sβ . Then the followings conditions are equivalent:

(i) a > b.

(ii) α > β and aφα,β = b.

(iii) b = b0a = ab0.

Proof. (i) =⇒ (ii) By our hypothesis, b = ea = af for some idempotents

e ∈ Sγ and f ∈ Sδ. This implies that α > β and β = γα, β = δα. Now, by the de-

finition of strong semilattice of semigroups, b = (eφγ,β)(aφα,β) = (aφα,β)(fφδ,β).

Since eφγ,β and fφδ,β are idempotents, b 6 aφα,β in Sβ and so b = aφα,β since

Sβ is primitive.

(ii) =⇒ (iii) We have b0a = b0(aφα,β) = b0b = b and dually, b = ab0.

(iii) =⇒ (i) This part is obvious. �
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4. An example

In closing this paper, we provide here a non-trivial example which is an

H̃-abundant cryptograph but it is not a cryptogroup.

Example 4.1. We consider the following example: We first start with the

following elements:

a11 =




1 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 , a12 =




1 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0


 , a13 =




1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0




a21 =




0 0 0 0

1 1 0 0

0 0 0 0

0 0 0 0


 , a22 =




0 0 0 0

1 1 1 0

0 0 0 0

0 0 0 0


 , a23 =




0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0


 .

Then, we form the sets

Sij = {3naij | n > 0 and n ∈ N}, where i = 1, 2; j = 1, 2, 3.

It can be easily verified that the set Sα = S11

⋃
S12

⋃
S13

⋃
S21

⋃
S22

⋃
S23

is indeed a semigroup under the usual matrix multiplication in which the elements

a11, a12, a13, a21, a22 and a23 are idempotents. Clearly, the sets S11, S12, S13,

S21, S22 and S23 are subsemigroups of the semigroup Sα, and each of which is

“generated” by the above idempotents a11, a12, a13, a21, a22 and a23, respectively.

Also, we can easily see that the set of all idempotents of Sα forms a rectangular

band.

Let
Sβ = {e11, e12, e13, e21, e22, e23, a, b, c, d, e, f, g, h, s, t, u, v}

with the following Cayley table. Then we can check that the semigroup Sβ is a

completely regular semigroup and the set of idempotents

E(Sβ) = {e11, e12, e13, e21, e22, e23} of the semigroup Sβ forms a rectangular band

in Sβ under the semigroup multiplication so that Sβ is a rectangular group.
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The Cayley table of the semigroup Sβ is shown below:

∗ e11 e12 e13 e21 e22 e23 a b c d e f g h s t u v

e11 e11 e12 e13 e11 e12 e13 a b c a b c g h s g h s

e12 e11 e12 e13 e11 e12 e13 a b c a b c g h s g h s

e13 e11 e12 e13 e11 e12 e13 a b c a b c g h s g h s

e21 e21 e22 e23 e21 e22 e23 d e f d e f t u v t u v

e22 e21 e22 e23 e21 e22 e23 d e f d e f t u v t u v

e23 e21 e22 e23 e21 e22 e23 d e f d e f t u v t u v

a a b c a b c g h s g h s e11 e12 e13 e11 e12 e13

b a b c a b c g h s g h s e11 e12 e13 e11 e12 e13

c a b c a b c g h s g h s e11 e12 e13 e11 e12 e13

d d e f d e f t u v t u v e21 e22 e23 e21 e22 e23

e d e f d e f t u v t u v e21 e22 e23 e21 e22 e23

f d e f d e f t u v t u v e21 e22 e23 e21 e22 e23

g g h s g h s e11 e12 e13 e11 e12 e13 a b c a b c

h g h s g h s e11 e12 e13 e11 e12 e13 a b c a b c

s g h s g h s e11 e12 e13 e11 e12 e13 a b c a b c

t t u v t u v e21 e22 e23 e21 e22 e23 d e f d e f

u t u v t u v e21 e22 e23 e21 e22 e23 d e f d e f

v t u v t u v e21 e22 e23 e21 e22 e23 d e f d e f

Now, we define a multiplication “∗” on S = Sα

⋃
Sβ by extending the matrix

multiplication on Sα and Sβ as follows: for any a ∈ Sα and any b ∈ Sβ , we define

a ∗ b = b ∗ a = b. Then, S equipped with the above multiplication “∗” becomes a

semigroup. We can also calculate that the L̃-classes of S are the sets

{3na11, 3
na21, }{3

na12, 3
na22},{3

na13, 3
na23}, (1)

{e11, e21, a, d, g, t}, {e12, e22, b, e, h, u}, {e13, e23, c, f, s, v}. (2)

Also the R̃-classes of S are the sets

{3na11, 3
na12, 3

na13}, {3
na21, 3

na22, 3
na23}, (3)

{e11, e12, e13, a, b, c, g, h, s}, {e21, e22, e23, d, e, f, t, u, v}, (4)

where n > 0 is an integer. Consequently, the H̃-classes of S are the sets

{3na11}, {3
na12}, {3

na13}, {3
na21}, {3

na22}, {3
na23}, (5)

{e11, a, g}, {e12, b, h}, {e13, c, s}, {e21, d, t}, {e22, e, u}, {e23, f, v}, (6)

where n > 0 is an integer.
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This shows that the semigroup S is semiabundant and every H̃-class of S

contains an idempotent and so in particular S is an H̃-abundant cryptograph.

Because every element of S \ {Sβ ∪ {a11, a12, a13, a21, a22, a23} is non-regular, S

itself is not a cryptogroup.

The above example illustrates that the class of cryptogroups is a proper

subclass of the class of H̃-cryptographs.
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