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On mininjective and min-flat modules

By LIXIN MAO (Nanjing)

Abstract. A left R-module M is said to be mininjective if Ext1(R/I, M) = 0 for

any simple left ideal I of R. A ring R is called left min-coherent in case each simple

left ideal of R is finitely presented. It is shown that every left R-module over a left

min-coherent ring R has a mininjective cover. We also give some new characterizations

of left FS rings, left PS rings and left universally mininjective rings.

1. Introduction

Let C be a class of R-modules and M an R-module. Following [5], we say
that a homomorphism φ : C → M is a C-precover of M if C ∈ C and the abelian
group homomorphism Hom(C ′, φ) : Hom(C ′, C) → Hom(C ′, M) is surjective for
each C ′ ∈ C. A C-precover φ : C → M of M is said to be a C-cover if every
endomorphism g : C → C such that φg = φ is an isomorphism. Dually we have
the definitions of a C-preenvelope and a C-envelope. C-covers (C-envelopes) may
not exist in general, but if they exist, they are unique up to isomorphism.

The problem of the existence of covers and envelopes by different classes of
modules has become an active branch of algebra (see, for example, [1], [2], [4], [5],
[6], [8], [12], [16], [20]). For example, every left R-module over a left Noetherian
ring R has an injective cover (see [5]). Recently, Pinzon has proven that every
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left R-module over a left coherent ring R has an FP -injective cover (see [16]),
where a left R-module M is called FP -injective [18] if Ext1(N,M) = 0 for any
finitely presented left R-module N ; R is called a left coherent ring if every finitely
generated left ideal of R is finitely presented.

As a generalization of injectivity, Harada introduced the concept of min-
injective modules (see [9]). A left R-module M is said to be mininjective if
Ext1(R/I, M) = 0 for any simple left ideal I of R. Mininjective modules have been
studied by many authors (see, for example, [9], [11], [12], [14], [15]). Recall that a
right R-module M is called min-flat [11] in case Tor1(M,R/I) = 0 for any simple
left ideal I of R. By the standard isomorphism Tor1(M, R/I)+ ∼= Ext1(R/I,M+)
for any simple left ideal I of R, we get that a right R-module M is min-flat if and
only if M+ is mininjective.

In this paper, we first introduce the concept of min-pure exact sequences,
which is used to characterize min-flat and mininjective modules. Then we in-
vestigate the existence of mininjective covers. Recall that R is called a left
min-coherent ring [11] if every simple left ideal of R is finitely presented. We
show that every left R-module over a left min-coherent ring R has a mininjective
cover. It is also proven that every left R-module has a mininjective cover with
the unique mapping property if and only if for any left R-module exact sequence
A → B → C → 0 with A and B mininjective, C is mininjective. As applica-
tions, we give some new characterizations of left FS rings, left PS rings and left
universally mininjective rings.

Throughout this paper, R is an associative ring with identity and all modules
are unitary. MR (RM) denotes a right (left) R-module. The character module
M+ is defined by M+ = HomZ(M,Q/Z). E(M) stands for the injective envelope
of M . Let M and N be R-modules. Hom(M, N) (resp. Extn(M,N)) means
HomR(M,N) (resp. Extn

R(M,N)), and similarly M ⊗ N (resp. Torn(M, N))
denotes M ⊗R N (resp. TorR

n (M, N)) for an integer n ≥ 1. General background
materials can be found in [6], [8], [17], [20].

2. Min-pure exact sequences and min-pure-injective modules

We begin with the following

Lemma 2.1. The following are equivalent for a right R-module exact se-

quence 0 → A
i→ B

α→ C → 0, where i is regarded as an inclusion:

(1) For any a ∈ R such that Ra is simple, the sequence 0 → A ⊗ (R/Ra) i⊗1→
B ⊗ (R/Ra) is exact.
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(2) For any a ∈ R such that Ra is simple, the sequence Hom(R/aR,B) α∗→
Hom(R/aR, C) → 0 is exact.

(3) For every a ∈ R such that Ra is simple, Aa = A ∩Ba.

Proof. (1) ⇒ (2). Let a ∈ R with Ra simple and f ∈ Hom(R/aR,C). Then
there exist g and h such that the following diagram with exact rows commutes:

0 // aR
λ //

h

²²

R

g

²²

π // R/aR

f

²²

// 0

0 // A
i // B

α // C // 0.

So g(a) = gλ(a) = ih(a) = h(a) ∈ A. Note that g(a) ⊗ 1 = g(1)a ⊗ 1 =
g(1)⊗ a = 0 in B ⊗ (R/Ra), thus g(a)⊗ 1 = 0 in A⊗ (R/aR) since the sequence
0 → A ⊗ (R/Ra) → B ⊗ (R/Ra) is exact. Hence there exists k ∈ A such that
g(a) = ka by [17, Lemma 3.64]. Define β : R → A by β(r) = kr for any r ∈ R,
then β is well-defined and βλ = h. Therefore there exists γ : R/aR → B such
that αγ = f by [7, Lemma 8.4].

(2) ⇒ (3). Suppose a ∈ R with Ra simple. Let b ∈ B such that ba ∈ A.
Define f : R/aR → C by f(r) = α(br) for any r ∈ R. Then f is well-defined. By
(2), there exists β : R/aR → B such that f = α∗(β) = αβ. So α(b) = f(1) =
αβ(1). Thus b − β(1) ∈ ker(α) = A and hence ba = (b − β(1))(a) ∈ Aa. So
A ∩Ba ⊆ Aa. In addition, Aa ⊆ A ∩Ba is clear. Therefore Aa = A ∩Ba.

(3) ⇒ (1). Assume that a ∈ R with Ra simple. Let k ⊗ 1 ∈ A ⊗ (R/Ra)
such that k ⊗ 1 = 0 in B ⊗ (R/Ra). Then there exists p ∈ B such that k = pa

by [17, Lemma 3.64]. Define g : R → B by g(r) = pr and define f : R/aR → C

by f(r) = α(p)r for any r ∈ R. Then f and g are well-defined, and fπ = αg.
Therefore there exists h : aR → A such that the following diagram with exact
rows commutes:

0 // aR
λ //

h

²²

R

g

²²

π // R/aR

f

²²

// 0

0 // A
i // B

α // C // 0.

So g(1)a = g(a) = h(a) ∈ A. By (3), there exists x ∈ A such that g(a) = xa.
Thus k = pa = g(a) = xa. Consequently, k⊗1 = xa⊗1 = x⊗a = 0 in A⊗(R/Ra).
It follows that 0 → A⊗ (R/Ra) → B ⊗ (R/Ra) is exact. ¤
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Definition 2.1. A right R-module exact sequence 0 → A → B → C → 0
is said to min-pure exact if it satisfies one of the equivalent conditions of the
lemma above. A right R-module M is called min-pure-injective if for every
right R-module min-pure exact sequence 0 → A → B → C → 0, the sequence
Hom(B, M) → Hom(A, M) → 0 is exact.

Obviously, the concept of min-pure exact sequences is a generalization of
pure exact sequences, and so any min-pure-injective module is pure-injective.

The following results are easy to show by Lemma 2.1 and we omit the proof.

Proposition 2.2. The following are equivalent for a right R-module M :

(1) M is min-flat.

(2) Every exact sequence 0 → A → B → M → 0 is min-pure exact.

(3) There exists a min-pure exact sequence 0 → K → F → M → 0 with F

min-flat.

Proposition 2.3. Let R be a commutative ring. Then the following are

equivalent for an R-module M :

(1) M is mininjective.

(2) Every exact sequence 0 → M → B → C → 0 is min-pure exact.

(3) The exact sequence 0 → M → E(M) → E(M)/M → 0 is min-pure exact.

Proposition 2.4. The following are equivalent for a commutative ring R:

(1) 0 → A → B → C → 0 is a min-pure exact sequence.

(2) 0 → C+ → B+ → A+ → 0 is a min-pure exact sequence.

Proof. It is easy by Lemma 2.1 and the Adjoint Isomorphism Theorem. ¤

3. The existence of mininjective covers of modules

For any ring R, it was proven that every R-module has a min-flat cover and
has a mininjective preenvelope (see [11, Theorem 3.4]). In this section, we will
continue to study the existence of mininjective covers. The following lemmas are
needed.

Lemma 3.1 ([11, Proposition 3.5]). For any ring R, the class of mininjective

R-modules and the class of min-flat R-modules are closed under pure submodules.

Lemma 3.2 ([11, Theorems 4.5 and 4.6]). The following are equivalent for

a ring R:
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(1) R is a left min-coherent ring.

(2) Any direct product of min-flat right R-modules is min-flat.

(3) Any direct limit of mininjective left R-modules is mininjective.

(4) A left R-module M is mininjective if and only if M+ is min-flat.

(5) Every right R-module has a min-flat preenvelope.

Lemma 3.3 ([6, Proposition 5.2.2]). If F is a class of R-modules closed

under direct sums, then an R-module M has an F-precover if and only if there

is a cardinal number ℵα such that any homomorphism D → M with D ∈ F has

a factorization D → C → M with C ∈ F and Card(C) ≤ ℵα.

Lemma 3.4 ([2, Theorem 5]). Let R be an arbitrary ring. Then for each

cardinal λ, there is a cardinal κ such that for any R-module M and any L ≤ M

satisfying Card(M) ≥ κ and Card(M/L) ≤ λ, the submodule L contains a non-

zero submodule that is pure in M .

We are now in a position to prove the main result.

Theorem 3.5. Let R be a left min-coherent ring. Then every left R-module

has a mininjective cover.

Proof. Suppose that N is a left R-module with Card(N) = λ. Let κ be
a cardinal as in Lemma 3.4. By Lemma 3.3, we only need to show that any
homomorphism f : D → N with D mininjective has a factorization D → C → N

with C mininjective and Card(C) ≤ κ.
If Card(D) ≤ κ, then we are done. Next we may assume that Card(D) > κ.
Let K = ker(f). Note that Card(D/K) ≤ λ since D/K embeds in N . Thus

K contains a non-zero submodule D0 which is pure in D by Lemma 3.4. The
pure exact sequence 0 → D0 → D → D/D0 → 0 induces the split exact sequence
0 → (D/D0)+ → D+ → D+

0 → 0. Thus (D/D0)+ is min-flat since D+ is min-flat
by Lemma 3.2. So D/D0 is mininjective by Lemma 3.2 again.

If Card(D/D0) ≤ κ, then we are done by Lemma 3.3 since f factors through
D/D0. Suppose that Card(D/D0) > κ. Put

S = {X : D0 ≤ X ≤ K and D/X is mininjective}.

Then S is a nonempty set since D0 ∈ S. Let {Xi ∈ S : i ∈ I} be an ascending
chain. Note that D0 ≤ ∪Xi ≤ K and D/ ∪ Xi = D/ lim

→
Xi = lim

→
(D/Xi) is

mininjective by Lemma 3.2 since each D/Xi is mininjective. Thus ∪Xi ∈ S, and
so S has a maximal element C by Zorn’s Lemma.
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We claim that Card(D/C) ≤ κ. Otherwise, let Card(D/C) > κ. Since
C ⊆ K, there exists g : D/C → N such that ker(g) = K/C. Note that
Card((D/C)/(K/C)) = Card(D/K) ≤ λ, and so K/C contains a non-zero sub-
module C1/C which is pure in D/C by Lemma 3.4. Thus D/C1

∼= (D/C)/(C1/C)
is mininjective by the proof above, and hence C1 ∈ S, which contradicts the max-
imality of C. It is clear that D/C is mininjective and f factors through D/C. So
N has a mininjective precover by Lemma 3.3, and hence has a mininjective cover
by [6, Corollary 5.2.7]. ¤

As applications of the result above, we list some corollaries as follows.

Corollary 3.6. If R is a left coherent ring or a domain, then every left

R-module has a mininjective cover.

Recall that R is called a left mininjective ring [14] if RR is mininjective.

Corollary 3.7. The following are equivalent for a left min-coherent ring R:

(1) Every left R-module has an epic mininjective cover.

(2) R is a left mininjective ring.

(3) Every injective right R-module is min-flat.

Proof. (1) ⇒ (2). Let f : N → RR be an epic mininjective cover. Then
RR is isomorphic to a direct summand of N , and so R is left mininjective.

(2) ⇒ (3). Let M be an injective right R-module. Then M embeds in
Π(RR)+. So M is isomorphic to a direct summand of Π(RR)+ ∼= (⊕RR)+. Since
⊕RR is mininjective by (2), we have (⊕RR)+ is min-flat by Lemma 3.2. Thus M

is also min-flat.
(3) ⇒ (1). Since the injective right R-module (RR)+ is min-flat by (3), RR

is mininjective by Lemma 3.2. Let M be a left R-module, then there is an exact
sequence F → M → 0, where F is free and so is mininjective. Since M has a
mininjective cover g by Theorem 3.5, we have g is an epimorphism. ¤

Corollary 3.8. Let R be a commutative min-coherent ring. Then every

min-pure-injective R-module M has a mininjective cover f : F → M such that F

is injective.

Proof. By Theorem 3.5, M has a mininjective cover f : F → M . There is
an exact sequence 0 → F

i→ E → L → 0 with E injective. By Proposition 2.3,
the exact sequence is min-pure exact. Since M is min-pure-injective, there exists
g : E → M such that gi = f . So there exists ϕ : E → F such that fϕ = g since
f is a cover. Therefore fϕi = f and hence ϕi is an isomorphism. It follows that
F is isomorphic to a direct summand of E, and so F is injective. ¤
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Recall that a C-cover φ : C → M is said to have the unique mapping prop-
erty [4] if for any homomorphism f :C

′ → M with C
′ ∈ C, there is a unique

homomorphism g : C
′ → C such that φg = f .

Theorem 3.9. The following are equivalent for a ring R:

(1) Every left R-module has a mininjective cover with the unique mapping prop-

erty.

(2) For any left R-module exact sequence A → B → C → 0 with A and B

mininjective, C is mininjective.

Proof. (1) ⇒ (2). Suppose that A
f→ B

g→ C → 0 is an exact sequence
of left R-modules with A and B mininjective. Let θ : H → C be a mininjective
cover with the unique mapping property. Then there exists δ : B → H such
that g = θδ. Thus θδf = gf = 0 = θ0, and hence δf = 0, which implies that
ker(g) = im(f) ⊆ ker(δ). Therefore there exists γ : C → H such that γg = δ, and
so θγg = θδ = g. Thus θγ = 1C since g is epic. It follows that C is isomorphic to
a direct summand of H, and hence C is mininjective.

(2) ⇒ (1). Note that R is a left min-coherent ring by [11, Theorem 4.6].
Let M be a left R-module. Then M has a mininjective cover f : F → M by
Theorem 3.5. It is enough to show that, for any mininjective left R-module G

and any homomorphism g : G → F such that fg = 0, we have g = 0. In fact,
there exists β : F/ im(g) → M such that βπ = f since im(g) ⊆ ker(f), where
π : F → F/ im(g) is the natural map. Note that F/ im(g) is mininjective by (2).
Thus there exists α : F/ im(g) → F such that β = fα, and so fαπ = βπ = f .
Hence απ is an isomorphism since f is a cover. Therefore π is monic, and so
g = 0. ¤

To study the kernels of mininjective precovers and the cokernels of min-flat
preenvelopes, we introduce the following definitions.

Definition 3.1. A left R-module M is called MI-injective if Ext1(G,M) = 0
for any mininjective left R-module G.

A right R-module N is said to be MI-flat if Tor1(N, G) = 0 for any minin-
jective left R-module G.

Remark 3.1. (1) By Wakamutsu’s Lemma (see [20, Lemma 2.1.1]), any kernel
of a mininjective cover is MI-injective.

(2) A right R-module N is MI-flat if and only if N+ is MI-injective by
the standard isomorphism Ext1(M, N+) ∼= Tor1(N, M)+ for any mininjective left
R-module M .
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Proposition 3.10. The following are equivalent for a left R-module M :

(1) M is MI-injective.

(2) For every exact sequence 0 → M → E → L → 0 with E mininjective, E → L

is a mininjective precover of L.

(3) M is a kernel of a mininjective precover f : A → B with A injective.

(4) M is injective with respect to every exact sequence 0 → A → B → C → 0,

where C is mininjective.

Proof. (1) ⇒ (2) and (1) ⇒ (4) are clear by definitions.
(2) ⇒ (3) is obvious since there exists a short exact sequence 0 → M →

E(M) → E(M)/M → 0.
(3) ⇒ (1). Let M be a kernel of a mininjective precover f : A → B with A

injective. Then we have an exact sequence 0 → M → A → A/M → 0. So, for
any mininjective left R-module N , the sequence Hom(N, A) → Hom(N, A/M) →
Ext1(N, M) → 0 is exact. It is easy to verify that the sequence Hom(N, A) →
Hom(N, A/M)→ 0 is exact since f is a mininjective precover. So Ext1(N, M)= 0,
and (1) follows.

(4) ⇒ (1). For each mininjective left R-module N , there exists a short
exact sequence 0 → K → P → N → 0 with P projective, which induces an
exact sequence Hom(P, M) → Hom(K,M) → Ext1(N,M) → 0. Note that
Hom(P,M) → Hom(K, M) → 0 is exact by (4). Hence Ext1(N,M) = 0, as
desired. ¤

The following result may be regarded as a dual of the proposition above.

Proposition 3.11. Let R be a ring.

(1) If M is a finitely presented MI-flat right R-module, then M is a cokernel of

a min-flat preenvelope.

(2) If R is a left min-coherent ring and L is a cokernel of a min-flat preenvelope

f : K → F with F flat, then L is MI-flat.

Proof. (1) Let M be a finitely presented MI-flat right R-module. There
is an exact sequence 0 → K → P → M → 0 with P projective and both P

and K finitely generated. We claim that K → P is a min-flat preenvelope. In
fact, for any min-flat right R-module F , we have Tor1(M,F+) = 0 since F+ is
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mininjective. So we get the commutative diagram with the first row exact:

0 // K ⊗ F+

τ1

²²

α // P ⊗ F+

τ2

²²
Hom(K, F )+ θ // Hom(P, F )+.

By [3, Lemma 2], τ1 is an epimorphism and τ2 is an isomorphism. Thus θ is a
monomorphism, and hence Hom(P, F ) → Hom(K, F ) is epic, as required.

(2) It is clear that the inclusion i : im(f) → F is a min-flat preenvelope.
For any mininjective left R-module N , N+ is min-flat by Lemma 3.2. Thus we
obtain an exact sequence Hom(F, N+) → Hom(im(f), N+) → 0, which yields the
exactness of (F ⊗N)+ → (im(f)⊗N)+ → 0. So the sequence 0 → im(f)⊗N →
F ⊗ N is exact. Thus the exactness of 0 → im(f) i→ F → L → 0 induces the
exact sequence 0 → Tor1(L,N) → im(f)⊗N → F ⊗N . So Tor1(L,N) = 0. ¤

4. Applications

Recall that R is called a left FS ring [10], [19] if every simple left ideal of R

is flat, equivalently if the left socle of R is flat. We will call a right R-module C

min-cotorsion provided that Ext1(F,C) = 0 for any min-flat right R-module F .
Clearly, any min-pure-injective module is min-cotorsion by Proposition 2.2.

Theorem 4.1. The following are equivalent for a ring R:

(1) R is a left FS ring.

(2) Every submodule of any flat right R-module is min-flat.

(3) Every right ideal of R is min-flat.

In this case, any min-cotorsion right R-module has injective dimension ≤ 1.

Proof. (1)⇒ (2). Let A be a submodule of a flat right R-module B and I be
a simple left ideal of R. Then the exactness of 0 → A → B → B/A → 0 implies
the exact sequence 0 = Tor2(B,R/I) → Tor2(B/A,R/I) → Tor1(A,R/I) →
Tor1(B, R/I) = 0, and so Tor2(B/A,R/I) ∼= Tor1(A,R/I). On the other hand,
the exact sequence 0 → I → R → R/I → 0 gives rise to the exactness of 0 →
Tor2(B/A,R/I) → Tor1(B/A, I) = 0 since I is flat. Thus Tor2(B/A,R/I) = 0.
So Tor1(A,R/I) = 0 and (2) follows.

(2) ⇒ (3) is trivial.
(3) ⇒ (1). Let I be a simple left ideal and K a right ideal of R. Then
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the exactness of 0 → K → R → R/K → 0 implies the exact sequence 0 →
Tor2(R/K, R/I)→ Tor1(K, R/I) = 0 since K is min-flat. So Tor2(R/K, R/I) = 0.
On the other hand, the exact sequence 0 → I → R → R/I → 0 induces the ex-
actness of 0 → Tor2(R/K, R/I) → Tor1(R/K, I) → 0. Hence Tor1(R/K, I) ∼=
Tor2(R/K, R/I) = 0, and so I is flat.

Next we prove the last statement. Let M be a min-cotorsion right R-module
and K a right ideal of R. Since Ext1(K, M) = 0, we have Ext2(R/K,M) = 0. It
follows that M has injective dimension ≤ 1. ¤

Recall that a ring R is called left PS [13] if every simple left ideal of R is
projective, equivalently if the left socle of R is projective. Obviously, R is a left
PS ring if and only if R is left min-coherent and left FS.

Theorem 4.2. The following are equivalent for a ring R:

(1) R is a left PS ring.

(2) Every quotient of any mininjective left R-module is mininjective.

(3) R is left min-coherent and every MI-injective left R-module is injective.

(4) The class of all mininjective left R-modules is closed under cokernels of

monomorphisms, and every MI-injective left R-module is mininjective.

Proof. (1) ⇔ (2) follows from [12, Theorem 2.5].
(2) ⇒ (3). R is left min-coherent since (2) is equivalent to (1). Let M be

an MI-injective left R-module. Then there is an exact sequence 0 → M → E →
L → 0 with E injective. Note that L is mininjective by (2) and so Ext1(L,M) = 0.
Thus the exact sequence is split, and hence M is injective.

(3)⇒ (2). Let M be a quotient of a mininjective left R-module. Note that M

has a mininjective cover f : F → M by Theorem 3.5. Thus f is an epimorphism.
By Remark 3.1 (1), ker(f) is MI-injective, and hence it is injective by (3). So M

is mininjective.
(3) ⇒ (4) is clear since (3) is equivalent to (2).
(4) ⇒ (2). Suppose that M is a quotient of a mininjective left R-module. Let

f : F → M be a mininjective cover of M . Then f is an epimorphism and ker(f) is
MI-injective. By (4), we have ker(f) is mininjective and so M is mininjective. ¤

Following [14], a ring R is called left universally mininjective if every left
R-module is mininjective. It is clear that R is a left universally mininjective ring
if and only if R is a left mininjective and left PS ring.

Theorem 4.3. Let R be a ring. Then the following are equivalent:

(1) R is a left universally mininjective ring.
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(2) Every right R-module is min-flat.

(3) Every min-cotorsion right R-module is injective.

(4) R is a left mininjective ring and every min-cotorsion right R-module is min-

injective.

(5) Every right R-module exact sequence 0 → A → B → C → 0 is min-pure

exact.

Proof. (1) ⇔ (2) holds by [11, Theorem 5.10].
(2)⇔ (3) follows from the fact that a right R-module M is min-flat if and only

if Ext1(M,C) = 0 for any min-cotorsion right R-module C (see [11, Theorem 3.4]).
(1) ⇒ (4) is trivial.
(4) ⇒ (1). Let M be any min-cotorsion right R-module. For a simple left

ideal Ra, aR is simple by [14, Theorem 2.21(c)] since R is left mininjective.
The exact sequence 0 → aR → R → R/aR → 0 induces an exact sequence
Hom(R,M) → Hom(aR,M) → Ext1(R/aR,M) → 0. Note that the homomor-
phism Hom(R,M) → Hom(aR,M) is epic by (4), and so Ext1(R/aR,M) = 0.
Thus R/aR is min-flat by [11, Theorem 3.4]. So R/aR is projective by [11,
Corollary 3.3] since Ra is simple. It follows that aR is a direct summand of RR,
and so Ra is a direct summand of RR, which implies that R is a left universally
mininjective ring by [12, Theorem 2.6].

(2) ⇔ (5) comes from Proposition 2.2. ¤
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