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Clifford’s chain of theorems in strictly convex Minkowski planes

By HORST MARTINI (Chemnitz) and MARGARITA SPIROVA (Sofia)

Abstract. E. Asplund and B. Grünbaum emphasized in [2] that theorems on

circles in the Euclidean plane often remain valid in normed (i.e., Minkowski) planes

if they are restricted to Minkowskian circles of equal radii. We present various new

results in the spirit of this observation. Namely, for circles of equal radii Clifford’s chain

of theorems (see [6], p. 262) will be completely extended to strictly convex Minkowski

planes, and various new geometric properties of the related configurations are derived,

too.

1. Introduction

A well known chain of theorems on systems of straight lines goes back to

W. K. Clifford (see [5], pp. 38–54), and suitably using inversive geometry (cf.

[19], Chapter VI), H. S. M. Coxeter [6, p. 262] formulated it in equivalent form

as follows: Let C1, C2, C3 be coplanar circles passing through a common point p,

and let Ci, Cj meet again in pij. Then p12, p13, p23 lie on a circle C123; circles

C123, C124, C134, C234 meet in a point p1234; points p1234, . . . , p2345 lie on a circle

C12345; circles C12345, . . . , C23456 meet in a point p123456; and so on ad infinitum.

In Figure 1 the case “C123, . . . , C234 meet in a point p1234” (i.e., four starting

circles of equal radii) is shown. For arbitrary radii, this case was found already

by J.-V. Poncelet in 1817 and, independently, by J. Steiner in 1827, whereas

the next case (five given circles) was added by A. Miquel; see [10], pp. 463–464,
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and, for Steiner’s contributions, [23]. It is obvious that this chain of theorems

yields the so-called (inverse) Clifford configuration (2n−1, n) of 2n−1 points, with

n circles through each of those points. This circle configuration has far-reaching

relations to well known configurations (e.g., obtained by Cox’s chain of theorems

in real projective 3-space) and to certain polytopes; for related discussions and

results we refer to [27], [7], p. 141, [13], [11], and the review to the latter paper

given by H. S. M. Coxeter (MR 49#7904). Special cases with their relations

to famous topics of classical geometry (such as Miquel’s theorem or the Platonic

solids) were presented in [12], [18], [13], and [9]. Furthermore, in [27] and, inde-

pendently, in [3] it was proved that the subcase of n starting circles with equal

radii implies that all 2n−1 circles of the respective Clifford configuration have the

same radius, which is directly related to our considerations here, since we want to

investigate Clifford’s chain of theorems for circles of equal radii in strictly convex

normed planes.

Figure 1.

Let C denote a bounded, closed, convex curve in the real affine plane A2 which

is centered at the origin O. The curve C induces a norm ‖ · ‖, i.e., (A2, C) is a

normed or Minkowski plane with unit circle C, see, e.g., [17] and [16], Section 2.2.

A normed plane for which C is strictly convex (i.e., C does not contain a line

segment) is itself called strictly convex. For n-dimensional Minkowski spaces we

refer to Thompson’s book [24] and to the surveys [17] and [15].

Any curve C in (A2, C) of the type x + λ C =: C(x, λ), where x ∈ (A2, C)

and λ is a positive real number, is called a (Minkowski) circle with center x and

radius λ. As observed by E. Asplund and B. Grünbaum (see [2]), various
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theorems on circles in the Euclidean plane remain valid in Minkowski geometry

if all the circles are of the same radius.

In this sense, we will extend Clifford’s chain of theorems (see above and

Remark 3.1) for circles of the same radius from the Euclidean plane (see once

more [6], p. 262) to all strictly convex Minkowski planes. Also we will present

various interesting geometric properties of Clifford configurations. Most likely,

some of these properties are even new in the Euclidean plane.

2. Some preliminaries

For later use we present some remarks and lemmas.

Remark 2.1. Any three non-collinear points in a strictly convex Minkowski

plane determine at most one circle containing them, and if the plane is strictly

convex and smooth, then there exists exactly one such circle; see [2] and [17],

p. 107 and pp. 127–128. Any two circles in a strictly convex Minkowski plane

intersect in at most two points, see [17], Section 3.2.

Also we will use the following result of Asplund and sc Grünbaum which is

proved in [2].

Lemma 2.1. If x1, x2 are two different points in a strictly convex normed

plane, and y1, y2 ∈ C(x1, λ) ∩ C(x2, λ) with y1 6= y2, then x1 + x2 = y1 + y2.

For circles of the same size in a strictly convex Minkowski plane (A2, C) the

following statement holds: if p1, p2, p3 are distinct points from a Minkowskian

circle C(x, λ), and C(xi, λ), i = 1, 2, 3, are three Minkowskian circles different

from C(x, λ) each of which contains two of the three points pi, then
⋂3

i=1
C(xi, λ)

is not empty and consists of precisely one point p, where

p = p1 + p2 + p3 − 2x.

Remark 2.2. The point p is called the C-orthocenter of the triangle p1p2p3;

various properties of C-orthocenters of triangles are discussed in [2] and [14]. In

particular, in [14] the relation between C-orthocentricity and James orthogonality

of normed linear spaces is clarified. (James orthogonality is defined below, after

the proof of Theorem 4.2. For further orthogonality concepts we refer to [1], §3,

§4, §7, and §8, [4], and [24], §3.5.)

With the additional assumption of C being smooth, this result is due to

Asplund and Grünbaum [2], for all strictly convex normed planes we refer to
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[1], p. 32, and [24], pp. 104–106. The following lemma is a consequence of this

observation.

Lemma 2.2. Let C(xi, λ) be three circles in a strictly convex Minkowski

plane all passing through a point p. Let pi, in each case, be the second intersection

point of the circles C(xj , λ) and C(xk, λ), where {i, j, k} = {1, 2, 3}. Then

C

(

1

2
(p1 + p2 + p3 − p), λ

)

is the circumcircle of the triangle p1p2p3.

Remark 2.3. The Euclidean case of this lemma is known as Ţiţeica’s theorem

or Johnson’s theorem; see [18], [25], and [13].

3. Clifford’s chain of theorems

Theorem 3.1 below gives an extension to strictly convex Minkowski planes of

what is shown in Figure 1: if four circles with equal radii pass through one point,

then the circumcircles of the four triangles formed by the triples of the “second

intersection points” of these four circles again have a point in common.

Theorem 3.1. Let Ci = C(xi, λ), i = 1, 2, 3, 4, be four circles passing

through a point p in a strictly convex Minkowski plane (A2, C). Let pij be the

second intersection of the circles Ci and Cj , and Cijk be the circumcircle of the

triangle pijpjkpki, where i, j, k ∈ {1, 2, 3, 4} with i 6= j, j 6= k, k 6= i. Then the

four circles C123, C234, C341, C241 all pass through the point p1234, see Figure 2.

Proof. According to Lemma 2.2, the circle Cijk is

C

(

1

2
(pij + pjk + pki − p), λ

)

. (1)

We will prove that the point

p1234 = x1 + x2 + x3 + x4 − 3p (2)

lies on all the circles Cijk . By (1) and Lemma 2.1 we have

yijk =
1

2
(pij + pjk + pki − p)

=
1

2

[

(xi + xj − p) + (xj + xk − p) + (xk + xi − p) − p
]
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= xi + xj + xk − 2p (3)

for the center yijk of the circle Cijk . Therefore

‖yijk−p1234‖ = ‖(xi+xj +xk−2 p)−(x1+x2+x3+x4−3p)‖ = ‖p−xl‖ = λ, (4)

where l = 1, 2, 3, 4 with l 6= i, l 6= j, l 6= k. Equation (4) means that the point

p1234 lies on the circle Cijk . �

Figure 2.

Remark 3.1. The Euclidean version of Theorem 3.1 (see Figure 1) for circles

of arbitrary size is known as Clifford’s first theorem, see, e.g., [6, p. 262].

The next theorem is the extension of the so-called second Clifford theorem

(see again [6, p. 262]) for circles of equal radii to all strictly convex Minkowski

planes.

Theorem 3.2. Under the assumption of Theorem 3.1, let C5 = C(x5, λ) be

a fifth circle through p. Then the five points p1234, p1235, p1245, p1345, p2345 lie on

a circle C12345.

Proof. The proof of Theorem 3.1 (see, in particular, (2)) implies that

pijkl = xi + xj + xk + xl − 3p = x1 + x2 + x3 + x4 + x5 − xm − 3p, (5)

where {i, j, k, l, m} = {1, 2, 3, 4, 5}. Let

y12345 = x1 + x2 + x3 + x4 + x5 − 4p. (6)

We will prove that all the points pijkl lie on the circle C(y12345, λ). Indeed,

‖y12345 − pijkl‖ = ‖(x1 + x2 + x3 + x4 + x5 − 4p)

− (x1 + x2 + x3 + x4 + x5 − xm − 3p)‖ = ‖xm − p‖ = λ. �
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Theorem 3.1 and Theorem 3.2 can be generalized for an arbitrary number of

circles.

Theorem 3.3. In a strictly convex Minkowski plane (A2, C) let there be

given 2n (n ≥ 2) circles C1 = C(x1, λ), C2 = C(x2, λ), . . ., C2n = C(x2n, λ)

passing through a point p. For k = 1, . . . , 2n let

p
12...bk...bi...2n

= x1 + . . . + x2n − xk − xi − (2n − 3) p,

where i 6= k and i = 1, . . . , 2n.

(i) For any k = 1, . . . , 2n all the points p
12...bk...bi...2n

lie on the circle

C
12...bk...2n

= C
(

x1 + . . . + x2n − xk − (2n − 2) p, λ
)

.

(ii) For any k = 1, . . . , 2n all the circles C
12...bk...2n

pass through the point

x1 + . . . + x2n − (2n − 1) p.

(iii) If C2n+1 = C(x2n+1, λ) is also a circle through p and

p
12...bj...2n = x1 + . . . + x2n − xj − (2n − 1) p,

where j = 1, . . . , 2n + 1, then all the points p
12...bj...2n

lie on the circle

C
(

x1 + . . . + x2n+1 − 2n p, λ
)

.

Proof. (i) Since for any k = 1, . . . , 2n we have

∥

∥

∥

[

x1+. . .+x2n−xk−(2n−2) p
]

−
[

x1+. . .+x2n−xk−xi−(2n−3) p
]

∥

∥

∥
= ‖xi−p‖ = λ,

it follows that the points x1 + . . . + x2n − xk − xi − (2n − 3) p lie on the circles

C
12...bk...2n

.

(ii) To prove (ii) it is sufficient to see that for any k = 1, . . . , 2n

∥

∥

∥

[

x1 + . . .+x2n − (2n−1) p
]

−
[

x1 + . . .+x2n −xk − (2n−2) p
]

∥

∥

∥
= ‖xk −p‖ = λ.

(iii) This statement follows from the fact that

∥

∥

∥

(

x1 + . . . + x2n+1 − 2n p
)

−
[

x1 + . . . + x2n − xj − (2n−1) p
]

∥

∥

∥
=‖xj − p‖=λ. �
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Remark 3.2. An interesting property of Clifford configurations in strictly

convex normed planes is depicted in Figure 3 for the case of three starting circles.

Suitably connecting all occurring circle midpoints and all interesting intersection

points of the configuration, one gets a cubical dissection (see [22]) of a zonogon,

i.e., of a centrally symmetric polygon. (A second cubical dissection of the depicted

hexagon can be obtained with the help of the midpoint of the fourth circle spanned

by the three pairwise intersection points in the figure.) This allows interesting

spatial interpretations of this geometric figure. In particular, for three starting

circles one gets the opportunity to use spatial interpretations for generalizing

theorems from planar elementary geometry which are related to the Euler line,

the Feuerbach circle, the concurrence of the altitudes in the triangles, e.g. formed

by the three circle midpoints, etc.; for the Euclidean situation we refer to [20],

Ch. 10, and for strictly convex normed planes to [13] and [14].

Figure 3.

4. Properties of Clifford configurations

in strictly convex normed planes

4.1. An even Clifford configuration. Let Ci = C(xi, λ), p, pij , Cijk , and

p1234 be as in Theorem 3.1. Due to certain symmetry properties it makes sense to

use the following notations throughout this section: C∗

l := Cijk, where {i, j, k, l} =

{1, 2, 3, 4}, and p∗ := p1234. So by (2) we get

p∗ = x1 + x2 + x3 + x4 − 3p. (7)

The center of C∗

l is denoted by x∗

l . It is clear (see Lemma 2.2) that the radius of

C∗

l is also λ, and that

x∗

l =
1

2
(pij + pjk + pki − p). (8)
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In view of (3), equation (8) can be rewritten as

x∗

l = x1 + x2 + x3 + x4 − xl − 2p. (9)

We call the configuration C = {C1, C2, C3, C4, C∗

1 , C∗

2 , C∗

3 , C∗

4 , pij , p, p∗}

of circles and points an even1 Clifford configuration, the set {C1, C2, C3, C4} the

first bunch of C, and the centers x1, x2, x3, x4 of C1, C2, C3, C4 the first skeleton

of C. Analogously, {C∗

1 , C∗

2 , C∗

3 , C∗

4} and x∗

1, x∗

2, x∗

3, x∗

4 will be called the second

bunch of C and the second skeleton of C, respectively.

It is clear that the first skeleton of any even Clifford configuration forms a

cyclic quadrangle. The next proposition guarantees that the second skeleton also

forms a cyclic quadrangle.

Proposition 4.1. Let C = {Ci, C∗

i , pij , p, p∗} be an even Clifford config-

uration, where i, j ∈ {1, 2, 3, 4}, i 6= j, and Ci = C(xi, λ), C∗

i = C(x∗

i , λ). Then

all the points x∗

i lie on the circle C(p∗, λ).

Proof. Using (7) and (9) we obtain

‖p∗ − x∗

i ‖ = ‖(x1 + x2 + x3 + x4 − 3p) − (x1 + x2 + x3 + x4 − xi − 2p)‖

= ‖xi − p‖ = λ. �

For strictly convex normed planes, in [14] the Feuerbach circle (also called

Euler circle) of an n-gon x1x2 . . . xn inscribed to the circle C(p, λ) is defined by

C

(

1

2

[ n
∑

i=1

xi − (n − 2) p

]

,
1

2
λ

)

. (10)

Thus for a triangle in the Euclidean plane the defined Feuerbach circle coincides

with the well known nine-point circle (or classical Feuerbach circle) of this tri-

angle, see, e.g., [8], § 1.8, p. 20, and [25], p. 159. For a cyclic quadrangle in the

Euclidean plane the circle (10) also coincides with the known Feuerbach circle

of a quadrangle, see pp. 22–23 and pp. 108–109 in [26], as well as [21]. Various

properties of Feuerbach circles in strictly convex Minkowski planes are collected

in [14].

Theorem 4.1. For any even Clifford configuration the Feuerbach circles of

the first and of the second skeleton coincide.

1Clifford’s chain of theorems can be “separated” into two subfamilies of theorems, depending

on whether the number of the “starting circles” is even or odd. We will follow this separation

into two types of theorems, but for the sake of convenient representation only when the number

of the given circles is four and five, cf. again [6], p. 262.
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Proof. For i, j ∈ {1, 2, 3, 4}, i 6= j, and Ci = C(xi, λ), C∗

i = C(x∗

i , λ) let

C = {Ci, C∗

i , pij , p, p∗} be an arbitrary even Clifford configuration. Hence

p is the circumcenter of x1x2x3x4, and p∗ is the circumcenter of x∗

1x
∗

2x
∗

3x
∗

4 (see

Proposition 4.1). For the Feuerbach circle of x1x2x3x4 and x∗

1x
∗

2x
∗

3x
∗

4 we get

by (10)

C

(

1

2
(x1 + x2 + x3 + x4) − p,

1

2
λ

)

(11)

and

C

(

1

2
(x∗

1 + x∗

2 + x∗

3 + x∗

4) − p∗,
1

2
λ

)

, (12)

respectively. Applying (7) and (9) to the center f∗ of the second circle (12), we

obtain

f∗ =
1

2

[

4(x1 + x2 + x3 + x4) − (x1 + x2 + x3 + x4) − 8p
]

− (x1 + x2 + x3 + x4 − 3p) =
1

2
(x1 + x2 + x3 + x4) − p.

This means that the circles (11) and (12) coincide. �

Remark 4.1. The point

1

2
(x1 + x2 + x3 + x4) − p (13)

is called the Feuerbach point of the configuration C.

Theorem 4.2. If C = {Ci, C∗

i , pij , p, p∗} is an even Clifford configuration,

where i, j ∈ {1, 2, 3, 4}, i 6= j, and Ci = C(xi, λ), C∗

i = C(x∗

i , λ), then

(i) the first and the second skeleton of C,

(ii) the first and the second bunch of C,

(iii) the points p and p∗,

(iv) the points pij and pkl, where {i, j, k, l} = {1, 2, 3, 4},

are symmetric with respect to the Feuerbach point of C.

Proof. Let f = 1

2
(x1 + x2 + x3 + x4) − p be the Feuerbach point of C.

(i) We have to prove that

1

2
(xi + x∗

i ) = f.

Indeed, by (9) and (13) we get

1

2

[

xi + (x1 + x2 + x3 + x4 − xi − 2p)
]

=
1

2
(x1 + x2 + x3 + x4) − p.

The proofs of (ii)–(iv) are analogous to that of (i). �



380 Horst Martini and Margarita Spirova

For i, j ∈ {1, 2, 3, 4}, i 6= j, and Ci = C(xi, λ), C∗

i = C(x∗

i , λ) let us con-

sider the first and the second skeleton of any even configuration C = {Ci, C∗

i ,

pij , p, p∗} as complete quadrilaterals. We will prove that the lines 〈ppij〉 are

James orthogonal to the sides of the quadrangle x1x2x3x4. The same holds for

the point p∗ and the sides of x∗

1x
∗

2x
∗

3x
∗

4. (Note that the vector x ∈ (A2, C) is James

(or isosceles) orthogonal to y ∈ (A2, C) if

‖x + y‖ = ‖x − y‖,

in which case we will write x#y. Also we note that in the Euclidean plane the

notion of James orthogonality coincides with that of usual orthogonality.) In [14]

the following statement is proved.

Lemma 4.1. If x, y ∈ (A2, C), then

‖x‖ = ‖y‖ ⇐⇒ x + y # x − y.

Applying Lemma 4.1 to the parallelogram xipijxjp (see Lemma 2.1) in any

even Clifford configuration C = {Ci, C∗

i , pij , p, p∗}, where i, j ∈ {1, 2, 3, 4}, i 6=

j, and Ci = C(xi, λ), C∗

i = C(x∗

i , λ), we get

xi − xj # p − pij .

Thus we can state

Theorem 4.3. For any even Clifford configuration C = {Ci, C∗

i , pij , p, p∗},

where i, j ∈ {1, 2, 3, 4}, i 6= j, and Ci = C(xi, λ), C∗

i = C(x∗

i , λ), the relation

xi − xj # p − pij

holds.

4.2. An odd Clifford configuration. Let Ci = C(xi, λ), i = 1, . . . , 5, and p,

p1234, p1235, p1245, p1345, p2345 be as in Theorem 3.2. We write

pijkl =: pm,

where {i, j, k, l, m} = {1, . . . , 5}. Thus by (5) we have

pi = x1 + . . . + x5 − xi − 3p. (14)

We call the configuration {Ci, p, pi}, i = 1, . . . , 5, of circles and points an odd

Clifford configuration, the pentagon x1 . . . x5 the corresponding skeleton pentagon,

and p1 . . . p5 the corresponding Clifford pentagon. Since p is the common point of
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the circles Ci = C(xi, λ), the skeleton pentagon is inscribed to the circle C(p, λ).

Theorem 3.2 (Second Clifford Theorem) implies that the Clifford pentagon is also

concyclic. By the proof of Theorem 3.2 we get that the circumcircle of the Clifford

pentagon p1 . . . p5 is

C(x1 + . . . + x5 − 4p, λ). (15)

Theorem 4.4. The Feuerbach circles of the skeleton pentagon and of the

Clifford pentagon of any odd Clifford configuration coincide.

Proof. Let C = {Ci, p, pi}, where i = 1, . . . , 5, and Ci = C(xi, λ) be an

odd Clifford configuration. The Feuerbach circle of the skeleton pentagon x1 . . . x5

is

C

(

1

2
(x1 + . . . + x5 − 3p),

1

2
λ

)

, (16)

see (10). Again by (10) and in view of (15) we obtain

C

(

1

2

[

p1 + . . . + p5 − 3(x1 + . . . + x5 − 4p)
]

,
1

2
λ

)

(17)

for the Feuerbach circle of the Clifford pentagon p1 . . . p5. Using (14) it is easy to

check that the centers of the circles (16) and (17) coincide. �

Remark 4.2. We call the point

1

2
(x1 + . . . + x5 − 3p) (18)

the Feuerbach point of the odd Clifford configuration C.

In view of (14) and (18) we get immediately

Theorem 4.5. The skeleton pentagon and the Clifford pentagon of any odd

Clifford configuration are symmetric with respect to its Feuerbach point.
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