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Curvature of locally conformal cosymplectic manifolds

By MARIA FALCITELLI (Bari)

Abstract. Locally conformal cosymplectic manifolds are investigated from the

point of view of the curvature. Particular attention to the N(k)-nullity condition is

given and classification theorems in dimension 2n + 1 ≥ 5 are stated. This also allows

to classify locally conformal cosymplectic manifolds which are locally symmetric spaces.

1. Introduction

Locally conformal cosymplectic (l.c. cosymplectic) manifolds are character-
ized as the almost contact metric manifolds (M, ϕ, ξ, η, g) which admit a closed
1-form ω such that the covariant derivative of ϕ with respect to the Levi–Civita
connection ∇ acts as

(∇Xϕ)Y = −ω(ϕY )X + ω(Y )ϕX + g(X,ϕY )B − g(X,Y )ϕB, (1.1)

where B = ] ω is the vector field g-associated to ω [17]. The vanishing of ω

in (1.1) is equivalent to the ∇-parallelism of ϕ, namely to the condition that
M is cosymplectic. Moreover, ω is exact if and only if M is globally conformal
cosymplectic. An f -Kenmotsu manifold, namely an l.c. cosymplectic manifold
such that ω = −fη, f being a smooth function, is locally realized as a warped
product ]− ε, ε [×h2 F , ε ∈ R?

+, where F is a Kähler manifold and h is a smooth
positive function on ] − ε, ε [ . These manifolds are studied from the point of
view of the curvature, too. In particular, a locally symmetric non-cosymplectic
f -Kenmotsu manifold has negative constant sectional curvature [18].
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In this paper, we consider an l.c. cosymplectic manifold. Denoting by R the
curvature of ∇, firstly we evaluate the “cosymplectic defect” R(X, Y ) ◦ ϕ − ϕ ◦
R(X, Y ), for any vector fields X, Y , and obtain general properties of the Ricci
and ∗-Ricci tensors. Then we focus our attention to the (k, µ)-condition, proving
that, in the context of locally cosymplectic geometry, it is equivalent to the N(k)-
condition. So, we consider N(k)-l.c. cosymplectic spaces, namely connected l.c.
cosymplectic manifolds admitting a smooth function k such that R(X, Y, ξ) =
k(η(Y )X − η(X)Y ). In particular, given an N(k)-space, the covariant derivative
∇ω is a combination of ω⊗ω, g and η⊗η by means of suitable functions depending
on δω, ‖ω‖ and k. This allows to obtain useful differential equations involving
δω, ‖ω‖ and k. We also relate the N(k)-condition to the concept of C(λ)-manifold
introduced by Janssens and Vanhecke [14].

Classification theorems in dimension 2n + 1 ≥ 5 are stated. We prove that a
non-cosymplectic N(k)-l.c. cosymplectic space is either globally conformal cosym-
plectic or f -Kenmotsu or, possibly, it is locally expressed as a warped product
N ×f2 N ′, N being a 2-dimensional manifold of curvature k and N ′ a cosym-
plectic manifold isometric to a leaf of the distribution kerω ∩ Ker η. Moreover,
given a cosymplectic manifold N ′, we define a class of smooth functions on R2

making R2 ×f2 N ′ an N(k)-globally conformal cosymplectic manifold such that
k is non-constant.

Suitable N(k)-l.c. cosymplectic spaces can be locally realized as a warped
product ] − ε, ε [ ×h2 F , where F is a Kähler manifold isometric to a leaf of
the distribution orthogonal to B. Examples of these manifolds are described,
considering on the hyperbolic space H2n+1 a family of almost contact metric
structures compatible with the metric of constant sectional curvature −c2, c > 0.

Finally, N(k)-l.c. cosymplectic, non-cosymplectic and locally symmetric
spaces are considered. They are characterized as the l.c. cosymplectic (non-
cosymplectic) manifolds with constant sectional curvature k. Any of these man-
ifolds is either globally conformal cosymplectic or it is locally a warped product
] − ε, ε [×h2 F , with h2 = a exp(−2‖ω‖t), a constant, ‖ω‖2 = −k, F being a flat
Kähler manifold.

2. Some curvature formulas

An l.c. cosymplectic manifold (M, ϕ, ξ, η, g) is an almost contact metric man-
ifold admitting an open covering {Ui}i∈I and, for any i, a smooth function
ρi : Ui → R such that the almost contact metric structure defined in Ui by

ϕi = ϕ/Ui
, ξi = exp(−ρi)ξ/Ui

, ηi = exp(ρi)η/Ui
, gi = exp(2ρi)g/Ui

(2.1)
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is cosymplectic.
The manifold M is globally conformal cosymplectic (g.c. cosymplectic) if

there exists a smooth function ρ :→R such that (ϕ, exp(−ρ)ξ, exp ρ η, exp(2ρ)g)
is a cosymplectic structure.
Several examples of l.c. cosymplectic manifolds are given in [7].

Now, we fix a 2n + 1-dimensional l.c. cosymplectic manifold (M,ϕ, ξ, η, g),
so (1.1) is satisfied. By direct calculus we get ω = ∇ξη + δη

2nη. Hence ω is the
Lee form and it is related to the local conformal change (2.1) by ω/Ui

= dρi. The
Lee vector field B = ] ω is expressed as B = ∇ξξ + δη

2nξ, and η(B) = ω(ξ) = δη
2n .

Moreover, for any vector field X, one has:

∇Xξ = −ω(ξ)X + η(X)B, (2.2)

X(ω(ξ)) = (∇Xω)ξ − ω(ξ)ω(X) + ‖ω‖2η(X). (2.3)

We denote by R the curvature of ∇, R(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ]. For the
Riemannian curvature we use the convention R(X, Y, Z,W ) = g(R(X, Y, W ), Z)
and denote by ρ, ρ∗ the Ricci and ∗-Ricci tensors, by τ , τ∗ the scalar and ∗-scalar
curvatures. Since ρ∗(X,Y ) is the trace of the operator Z → ϕ(R(X,Z, ϕY )),
with respect to an adapted local orthonormal frame {X1, . . . , X2n, ξ} we have
ρ∗(X,Y ) =

∑
1≤i≤2n R(X,Xi, ϕY, ϕXi), τ∗ =

∑
1≤i≤2n ρ∗(Xi, Xi).

Furthermore we recall that, given a symmetric (0, 2)-tensor field Q, the
Kulkarni–Nomizu product g ∧Q of g and Q acts as

(g ∧Q)(X, Y, Z, W ) = g(X, Z)Q(Y,W ) + g(Y,W )Q(X, Z)

− g(X, W )Q(Y,Z)− g(Y, Z)Q(X,W ).

In particular, to simplify the notations, we put π1 = 1
2g ∧ g, since it is the (0, 4)-

tensor field associated with the (1, 3)-tensor field π1 acting as

π1(X,Y, Z) = g(Y, Z)X − g(X,Z)Y.

By direct calculus, applying (1.1), (2.2), (2.3), one proves the following statement.

Proposition 1. The curvature R of (M, ϕ, ξ, η, g) satisfies, for any vector

fields X, Y , Z:

i) R(X,Y, ϕZ)−ϕ(R(X, Y, Z))= ((∇Y ω)ϕZ −ω(Y )ω(ϕZ)+ ‖ω‖2g(Y, ϕZ))X

− ((∇Xω)ϕZ − ω(X)ω(ϕZ) + ‖ω‖2g(X, ϕZ))Y − ((∇Y ω)Z

− ω(Y )ω(Z))ϕX + ((∇Xω)Z − ω(X)ω(Z))ϕY + (ω(Y )g(X, ϕZ)

− ω(X)g(Y, ϕZ) + ω(ϕY )g(X,Z)− ω(ϕX)g(Y, Z))B + g(Y, ϕZ)∇XB

− g(X,ϕZ)∇Y B − g(Y, Z)∇XϕB + g(X, Z)∇Y ϕB,
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ii) R(X,Y, ξ) = Y (ω(ξ))X −X(ω(ξ))Y − η(Y )(ω(X)B −∇XB)

+ η(X)(ω(Y )B −∇Y B).

To the given manifold (M, ϕ, ξ, η, g) we associate the (0, 2)-tensor field

P = ∇ω − ω ⊗ ω +
1
2
‖ω‖2g.

Note that P is symmetric, ω being closed and trP = −δω +
(
n− 1

2

)‖ω‖2.
Proposition 2. For any vector fields X, Y , Z, W we have:

i) R(X,Y,Z,W )−R(X,Y, ϕZ, ϕW ) = (g∧P )(X,Y,Z,W )−(g∧P )(X,Y, ϕZ, ϕW ),

ii) (ρ−ρ∗)(X, Y ) = 2(n−1)P (X, Y )−P (ϕX, ϕY )+P (X, ξ)η(Y )+ trPg(X, Y ),

iii) τ − τ∗ = 2(ξ(ω(ξ))− (2n− 1)δω + 2n(n− 1)‖ω‖2).
Proof. We sketch the proof of i), which is obtained by a quite long calculus.

Considering X, Y , Z, W tangent to M , firstly we write:

R(X, Y, Z,W )−R(X, Y, ϕZ, ϕW ) = −g(ϕ(R(X,Y, Z), ϕW )

+ g(R(X,Y, ϕZ), ϕW ) + g(R(X, Y, ξ), Z)η(W ).

Then, we apply i), ii) in Proposition 1 and the following relation, which is a
consequence of (1,1), (2.3):

g(∇XϕB,ϕW ) = g((∇Xϕ)B, ϕW ) + g(∇XB, W )− η(∇XB)η(W )

= ‖ω‖2(g(X,W )− η(X)η(W ))− ω(ϕX)ω(ϕW )

− ω(X)(ω(W )− ω(ξ)η(W )) + (∇Xω)W − (∇Xω)ξ η(W )

= P (X, W ) +
1
2
‖ω‖2g(X,W )− ω(ϕX)ω(ϕW )−X(ω(ξ))η(W ).

The relation ii) directly follows by i). Moreover, considering an adapted local
orthonormal frame {X1, . . . , X2n, ξ}, since {ϕX1, . . . , ϕX2n, ξ} is an orthonormal
frame, also, from ii) we get:

τ − τ∗ = (4n− 1)trP −
∑

1≤i≤2n

P (ϕXi, ϕXi) + P (ξ, ξ) = 2(2n− 1)trP + 2P (ξ, ξ).

Then iii) follows, since (2.3) entails: P (ξ, ξ) = ξ(ω(ξ))− 1
2‖ω‖2. ¤
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Corollary 3. For any vector fields X, Y one has:

i) ρ∗(X, Y )− ρ∗(Y, X) = Y (ω(ξ))η(X)−X(ω(ξ))η(Y ),

ii) ρ∗(ϕX, ϕY ) = ρ∗(Y,X)− (X − η(X)ξ)(ω(ξ))η(Y ),

iii) ρ∗(X, ξ) = 0, ρ∗(ξ,X) = (X − η(X)ξ)(ω(ξ)),

iv) ρ(ϕX, ϕY ) = ρ(X, Y ) + (δω − (2n− 1)‖ω‖2)η(X)η(Y )

− (2n− 1)((∇Xω)Y −∇ϕXω)ϕY − ω(X)ω(Y ) + ω(ϕX)ω(ϕY )),

v) ρ(X, ξ) = (2n− 1)X(ω(ξ))− δω η(X).

Proof. We apply ii) in Proposition 2, use the symmetry of ρ and P and
then (2.3), so obtaining:

ρ∗(X, Y )− ρ∗(Y, X) = −P (X, ξ)η(Y ) + P (Y, ξ)η(X)

= −X(ω(ξ))η(Y ) + Y (ω(ξ))η(X).

Moreover, if {X1, . . . , X2n, ξ} is an adapted local orthonormal frame, via Propo-
sition 1 we have:

ρ∗(ϕX, ϕY ) =
∑

1≤i≤2n

R(ϕX, Xi, ϕ
2Y, ϕXi)

=
∑

1≤i≤2n

{R(Y, Xi, ϕX, ϕXi)− η(Y )g(R(ϕX, Xi, ξ), ϕXi)}

= ρ∗(Y, X)− η(Y )
∑

1≤i≤2n

Xi(ω(ξ))g(X,Xi),

and ii) follows. Formula iii) is a consequence of i), ii). Furthermore, via Proposi-
tion 2 and the just stated formulas, we have:

ρ(X,Y )− ρ(ϕX,ϕY ) = (ρ− ρ∗)(X, Y )− (ρ− ρ∗)(ϕX, ϕY ) + ρ∗(X, Y )

− ρ∗(Y, X) + (Y − η(Y )ξ)(ω(ξ))η(X) = (2n− 1)(P (X,Y )− P (ϕX, ϕY ))

+ η(X)(P (ξ, ξ)η(Y )−P (ξ, Y ) + trPη(Y ))+ Y (ω(ξ))η(X)− ξ(ω(ξ))η(X)η(Y ).

This, combined with (2.3), implies iv) and v). ¤

Remark. If M is f -Kenmotsu, we have df = ξ(f)η,∇η = f(g − η ⊗ η)
and P = −ξ(f)η ⊗ η − 1

2f2g. So, the formulas stated in Propositions 1, 2 and
Corollary 3 reduce to the ones proved in [18]. In particular, ρ∗ is symmetric and
ρ∗ = ρ + ((2n− 1)f2 + ξ(f))g + (f2 + (2n− 1)ξ(f))η ⊗ η.
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3. The N(k)-condition

In contact geometry the behaviour of the tensor field h = 1
2Lξϕ,Lξ denoting

the Lie derivative with respect to ξ, plays an important role for the classification
of contact manifolds satisfying suitable curvature conditions [4]. The next result
shows that the anti-Lee form θ = −ω ◦ ϕ specifies h in the locally conformal
cosymplectic case.

Lemma 4. Let (M, ϕ, ξ, η, g) be an l.c. cosymplectic manifold with Lee

form ω. For any vector field X, one has h(X) = − 1
2ω(ϕX)ξ. Then, h vanishes if

and only if M is f -Kenmotsu.

Proof. Formulas (1.1), (2.2) imply:

2h(X) = (∇ξϕ)X −∇ϕXξ + ϕ(∇Xξ) = −ω(ϕX)ξ.

Therefore, h vanishes if and only if ω◦ϕ = 0, namely if and only if ω is proportional
to η. ¤

Proposition 5. Let (M, ϕ, ξ, η, g) be an l.c. cosymplectic manifold. Assume

the existence of smooth functions k, µ on M such that

R(X, Y, ξ) = k(η(Y )X − η(X)Y ) + µ(η(Y )h(X)− η(X)h(Y )), (3.1)

for any vector fields X, Y . Then, one has µh = 0.

Proof. By Lemma 4 and the hypothesis, one has:

0 = R(ξ, ϕB, ξ, ξ) = −µg(h(ϕB), ξ) =
1
2
µω(ϕ2B) = −1

2
µg(ϕB,ϕB).

Therefore µϕB vanishes on the whole M and Lemma 4 yields the statement. ¤

In [5] the authors call (k, µ)-manifold a contact metric manifold whose cur-
vature satisfies (3.1), k, µ being suitable real numbers. In particular, if µ = 0,
one obtains the concept of N(k)-contact metric manifold. Condition (3.1) with k,
µ smooth functions is considered in [16] and the authors prove that, if M is a
(k, µ)-contact metric manifold with k, µ smooth functions and dim M ≥ 5, then
either M is Sasakian (k = 1, h = 0) or k, µ are both constants. A local clas-
sification of non-Sasakian (k, µ)-contact manifolds, in any dimension, is due to
E. Boecks [6]. Moreover, N(k)-almost cosymplectic manifolds are studied by
Dacko [10] and a generalization of (3.1) is also studied in [11]. Proposition 5 clar-
ifies that the concepts of (k, µ) and N(k)-manifold are equivalent in the context
of locally conformal cosymplectic geometry.
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Definition 6. An N(k)-l.c. cosymplectic space is a connected l.c. cosymplectic
manifold (M,ϕ, ξ, η, g) admitting a smooth function k such that

R(X,Y, ξ) = k(η(Y )X − η(X)Y ), (3.2)

for any vector fields X, Y .

In [18] the authors prove that the curvature of an f -Kenmotsu manifold
satisfies (3.2) with k = −(ξ(f)+f2). Hence every connected f -Kenmotsu manifold
is an l.c. N(k)-cosymplectic space and k needs not to be constant.

Now we are going to state several formulas which are essential for the proof
of the theorems in Section 4.

Proposition 7. Let (M, ϕ, ξ, η, g) be a 2n+1-dimensional N(k)-l.c. cosym-

plectic space with Lee form ω. Then, we have:

i) (2n− 1)dω(ξ) = (2nk + δω)η,

ii) ∇XB = −k+δω
2n−1X + ω(X)B +

( (2n+1)k+2δω
2n−1 − ‖ω‖2)η(X)ξ, X ∈ X (M).

Proof. By (3.2) the Ricci tensor satisfies, for any X tangent to M , ρ(X, ξ) =
2nkη(X). Then we apply v) in Corollary 3 and obtain i). Combining with (2.3),
for any vector field X we also have:

g(∇XB, ξ) = (∇Xω)ξ = ω(ξ)ω(X) +
(

δω + 2nk

2n− 1
− ‖ω‖2

)
η(X).

Since ∇ω is symmetric, this implies:

∇ξB = ω(ξ)B +
(

δω + 2nk

2n− 1
− ‖ω‖2

)
ξ.

Now we apply Proposition 1, equation i), the previous relation and use the hy-
pothesis, so obtaining:

∇XB = −R(ξ, X, ξ) + X(ω(ξ))ξ − ξ(ω(ξ))X − η(X)(ω(ξ)B −∇ξB) + ω(X)B

= k(X − η(X)ξ) +
(

2(2nk + 2δω)
2n− 1

− ‖ω‖2
)

η(X)ξ

− 2nk + δω

2n− 1
X + ω(X)B.

Then ii) follows. ¤
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Given a (2n + 1)-dimensional N(k)-l.c. cosymplectic space with Lee form ω,
we put:

α = −k + δω

2n− 1
, β =

(2n + 1)k + 2δω

2n− 1
− ‖ω‖2. (3.3)

The functions α, β fulfill:

2α + β + ‖ω‖2 = k, α + β + ‖ω‖2 = ξ(ω(ξ)). (3.4)

They allow to express ∇ω by:

∇ω = ω ⊗ ω + αg + βη ⊗ η. (3.5)

In particular, Proposition 7 and (1.1) entail:

∇XϕB = (‖ω‖2 + α)ϕX − ω(ϕX)B, X ∈ X (M), (3.6)

d(‖ω‖2) = 2(‖ω‖2 + α)ω + 2β ω(ξ)η. (3.7)

Useful curvature identities can be derived applying the results in Section 2. In
fact, Proposition 1, (3.5), (3.6) entail, for any vector fields X, Y , Z:

R(X, Y, ϕZ)− ϕ(R(X,Y, Z)) = (k − β)(g(Y, ϕZ)X − g(X,ϕZ)Y − g(Y,Z)ϕX

+ g(X,Z)ϕY )− βη(Z)(η(Y )ϕX − η(X)ϕY )

+ β(η(X)g(Y, ϕZ)− η(Y )g(X, ϕZ))ξ. (3.8)

By (3.5) we also have P = (α + 1
2‖ω‖2)g + βη ⊗ η and also using (3.3), (3.4) we

obtain:

ρ∗ = ρ + (2(n− 1)β − (2n− 1)k)g − (2(n− 1)β + k)η ⊗ η, (3.9)

τ∗ = τ + 4n((n− 1)β − nk). (3.10)

In particular, ρ∗ is symmetric and by Proposition 7 and Corollary 3 one has:

ρ∗(X, Y ) = ρ∗(ϕX, ϕY ), ρ(X,Y ) = ρ(ϕX, ϕY ) + 2nkη(X)η(Y ). (3.11)

Lemma 8. Let (M,ϕ, ξ, η, g) be a 2n+1-dimensional N(k)-l.c. cosymplectic

space. For any X, Y ∈ X (M) we have:

i) R(X,Y, B) = X(α)Y − Y (α)X + (X(β)η(Y )− Y (β)η(X))ξ + α(ω(Y )X

− ω(X)Y )− βω(ξ)(η(Y )X − η(X)Y ) + 2β(η(X)ω(Y )− η(Y )ω(X))ξ,

ii) R(X,Y, ϕB) = X(α)ϕY − Y (α)ϕX + (β − k)(ω(ϕY )X − ω(ϕX)Y )

+ (α + β − k)(ω(Y )ϕX − ω(X)ϕY − 2βω(ξ)(η(Y )ϕX

− η(X)ϕY )− β(η(X)ω(ϕY )− η(Y )ω(ϕX))ξ,

iii) ρ(X,B) = −2nX(α)− (X − η(X)ξ)(β) + 2(nα + β)ω(X)

− 2(n + 1)βω(ξ)η(X)

iv) (X − η(X)ξ)(α + β) = (α + 2β − k)(ω(X)− ω(ξ)η(X)).
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Proof. Formula i) is obtained by direct calculus, applying Proposition 7,
(3.3) and (2.3). Formula ii) follows by i) and (3.8), as well as iii) is a direct
consequence of i). Furthermore, with respect to an adapted local orthonormal
frame {X1, . . . , X2n, ξ}, by i) and (3.2) we have:

ρ(X, B) = −
∑

1≤i≤2n

g(R(X,Xi, B), Xi) + g(R(X, ξ, ξ), B)

= (2n− 1)α ω(X) + (α− 2nβ)ω(ξ)η(X)− (2n− 1)X(α)− η(X)ξ(α)

+ k(ω(X)− ω(ξ)η(X)).

Comparing with iii) we obtain iv). ¤

Proposition 9. Let (M, ϕ, ξ, η, g) be an N(k)-l.c. cosymplectic space, with

dim M ≥ 5 Then we have:

dα = (α + β − k)ω − 2βω(ξ)η,

dk = β ω + (ξ(β)− 3β ω(ξ))η.

Proof. Putting dim M = 2n + 1, by (3.11) and Lemma 8 we obtain:

2nkω(ξ) = ρ(B, ξ) = −2nξ(α) + 2n(α− β)ω(ξ),

so that ξ(α) = (α− β − k)ω(ξ). By direct calculus, from ii) in Lemma 8, for any
X ∈ X (M) one has:

ρ(ϕX, ϕB) = −X(α) + ((2n− 1)k − 2(n− 1)β + α)ω(X)

+ ((2n− 3)β − 2nk)ω(ξ)η(X).

On the other hand (3.11) and iii), iv) in Lemma 8 entail:

ρ(ϕX, ϕB) = ρ(X, B)− 2nk ω(ξ) η(X) = −(2n− 1)X(α)

+ ((2n− 1)α + k)ω(X)− ((2n− 1)β + 2nk)ω(ξ) η(X).

Comparing the just stated formulas we have:

(n− 1)(X(α)− (α + β − k)ω(X) + 2βω(ξ) η(X)) = 0,

then the first equation, since n ≥ 2. The second equation follows by (3.4), (3.7)
and iv) in Lemma 8. ¤
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Proposition 10. Let (M, ϕ, ξ, η, g) be an N(k)-l.c. cosymplectic space with

dim M ≥ 5. For any vector fields X, Y , U we have:

i) R(X, Y, B) = (k − β)(ω(Y )X − ω(X)Y ) + βω(ξ)(η(Y )X − η(X)Y )

+ β(η(X)ω(Y )− η(Y )ω(X))ξ,

ii) (∇UR)(X, Y, ξ) = U(k)(η(Y )X − η(X)Y ) + ω(ξ)(R− kπ1)(X, Y, U)

+ βη(U)((ω(Y )− ω(ξ)η(Y ))X − (ω(X)− ω(ξ)η(X))Y )

− βη(U)(η(X)ω(Y )− η(Y )ω(X))ξ

Proof. Formula i) follows by Lemma 8 and Proposition 9. By direct calcu-
lus, applying (3.2) and (2.2) we have:

(∇UR)(X, Y, ξ) = U(k)(η(Y )X − η(X)Y ) + k((∇Uη)Y X − (∇Uη)X Y )

−R(X, Y,∇Uξ) = U(k)(η(Y )X − η(X)Y )− kω(ξ)(g(Y, U)X − g(X, U)Y )

+kη(U)(ω(Y )X−ω(X)Y )+ ω(ξ)R(X, Y, U)− η(U)R(X, Y, B).

Then, we apply i) and ii) follows. ¤

We end this section relating the N(k)-condition to the concept of C(λ)-
manifold. In [14] the authors call almost C(λ)-manifold an almost contact metric
manifold whose Riemannian curvature satisfies:

R(X, Y, Z, W ) = R(X, Y, ϕZ, ϕW )− λ(g(X,Z)g(Y,W )− g(Y,Z)g(X,W )

− g(X, ϕZ)g(Y, ϕW ) + g(X,ϕW )g(Y, ϕZ)), (3.12)

λ being a suitable real number.
In particular, if M is f -Kenmotsu and f is constant, M is a C(−f2)-manifold.

We also remark that, in accordance with the notation in [14], (3.12) is equivalent
to:

R(X, Y, Z) = −ϕ(R(X, Y, ϕZ)) + λ(g(Y,Z)X

− g(X,Z)Y + g(Y, ϕZ)ϕX − g(X, ϕZ)ϕY ), (3.13)

with R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

Proposition 11. Let (M, ϕ, ξ, η, g) be a connected l.c. cosymplectic manifold

with dim M = 2n + 1 ≥ 5. The following conditions are equivalent:

i) M is an almost C(k)-manifold,

ii) M is an N(k)-space and (2n− 1)‖ω‖2 = 2δω + (2n + 1)k.
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Proof. In the hypothesis i), by (3.13) we obtain:

R(X, Y, ξ) = k(η(Y )X − η(X)Y ), k ∈ R,

so M is an N(k)-space, k being a constant function. We prove that the corre-
sponding function β defined in (3.3) vanishes. In fact, given p ∈ M , we consider
orthonormal vectors X, Y ∈ TpM , both orthogonal to ξ, such that gp(X,ϕY ) = 0.
By (3.8) we have, at p,

R(X, Y, ϕX) = ϕ(R(X, Y,X)) + (k − β(p))ϕY.

On the other hand (3.13) entails, at p,

R(X, Y, ϕX) = ϕ(R(X,Y,X)) + kϕY

Then β(p) = 0. Since the vanishing of β is equivalent to (2n − 1)‖ω‖2 = 2δω +
(2n + 1)k, we get ii).

Viceversa, in the hypothesis ii) β vanishes and, by Proposition 9, k is con-
stant. Via (3.8) we also have, for any X,Y, Z ∈ X (M):

R(X, Y, ϕZ) = ϕ(R(X, Y, Z)) + k(g(Y, ϕZ)X − g(X, ϕZ)Y

− g(Y,Z)ϕX + g(X, Z)ϕY ).

Hence M is an almost C(k)-manifold. ¤

4. The main results

Let (M,ϕ, ξ, η, g) be an l.c. cosymplectic manifold with Lee form ω and anti-
Lee form θ = −ω ◦ ϕ. Since dη = η ∧ ω, the distribution D associated with the
subbundle ker η of TM is integrable. When ω never vanishes, the distribution
D1 associated with the subbundle kerω is integrable, also, and its orthogonal
distribution D⊥1 corresponds to the subbundle 〈B〉 of TM . We remark that D
and D1 coincide if and only if M is f -Kenmotsu.

Assume that θ never vanishes, equivalently ‖ω‖2 > ω(ξ)2 everywhere, then
the vector fields ξ and B are pointwise linearly independent and the distribution
D2 associated with 〈B, ξ〉 has rank two. Since ω is closed and dη = η ∧ ω, the
orthogonal distribution D⊥2 , which is associated with Ker ω∩Ker η, is integrable.
By Proposition 9, if M is an N(k)-space, k is constant on each leaf of D⊥2 .
We are going to state several results which clarify the role of the mentioned
distributions in the context of N(k)-l.c. cosymplectic spaces.
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Theorem 12. Let (M, ϕ, ξ, η, g) be an N(k)-l.c. cosymplectic space with

dim M = 2n + 1 ≥ 5 Then, one of the following cases occurs:

i) M is globally conformal cosymplectic,

ii) M is cosymplectic,

iii) M is f -Kenmotsu and k is constant on each leaf of D,

iv) the anti-Lee form θ never vanishes and the distribution D2 is totally geodesic.

Each leaf F ′ of D⊥2 is a totally umbilical submanifold of M with mean

curvature B and inherits from M a cosymplectic structure. Moreover, (M, g)
is locally a warped product N ×f2 N ′, N being a 2-dimensional manifold of

Gaussian curvature k, f a positive smooth function and N ′ a cosymplectic

manifold.

Proof. Applying Proposition 9, (3.7) and (3.4) we have:

d(α + ‖ω‖2) = (α + ‖ω‖2)ω. (4.1)

Since ω is closed, locally ω can be expressed as −d log τ , for some strictly positive
function τ and (4.1) implies the existence of c ∈ R such that α + ‖ω‖2 = c

τ .
Together with the connectedness of M , this means that either α + ‖ω‖2 6= 0
everywhere or α + ‖ω‖2 = 0 [20].

Therefore, when α + ‖ω‖2 6= 0, ω = d log |α + ‖ω‖2| is exact and i) occurs.
Now, we assume α = −‖ω‖2, apply (3.4), (3.7) and obtain:

d(‖ω‖2) = 2(k + ‖ω‖2)ω(ξ) η. (4.2)

Since (2n− 1)‖ω‖2 = −(2n− 1)α = k + δω, i) in Proposition 7 yields:

d(ω(ξ)) = (k + ‖ω‖2)η, (4.3)

and using (4.2) we have d(‖ω‖2 − ω(ξ)2) = 0. Therefore ‖θ‖2 = ‖ω‖2 − ω(ξ)2 is
constant, so either θ vanishes or θ never vanishes. Note that θ = 0 is equivalent
to ω = ω(ξ)η and, in this case, either M is cosymplectic or M is f -Kenmotsu,
f = −ω(ξ). Moreover, if M is f -Kenmotsu, by Proposition 9 we have: dk =
(ξ(β) − 2βω(ξ))η and then dk ∧ η = 0, namely k is constant on any leaf of D.
Thus, the case α = −‖ω‖2 = −ω(ξ)2 yields ii) or iii).

Finally, we examine the case α = −‖ω‖2, C2 = ‖ω‖2 − ω(ξ)2, with C ∈ R∗+.
Firstly, we prove that the distribution D2, which has rank 2, is totally geodesic.
In fact, by (3.4), (3.5) we have:

ξ(ω(ξ)) = β = k + ‖ω‖2, (4.4)
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∇XB = ω(X)B − ‖ω‖2X + (k + ‖ω‖2)η(X)ξ, (4.5)

for any X ∈ X (M).
In particular, ∇ξB = ω(ξ)B + kξ and ∇BB = (k + ‖ω‖2)ω(ξ)ξ.
Since moreover ∇Bξ = 0,∇ξξ = B − ω(ξ)ξ, D2 is totally geodesic and inte-

grable. Note that
{
ξ, C−1(B − ω(ξ)ξ)

}
are orthonormal vector fields in D2 and

the curvature of a leaf of D2, which is a totally geodesic submanifold of M , is

R(ξ, C−1(B − ω(ξ)ξ), ξ, C−1(B − ω(ξ)ξ)) = k.

Now, considering X ∈ D⊥2 , by (2.2) and (4.5) we have ∇Xξ = −ω(ξ)X,

∇XB = −‖ω‖2X.

Then the Weingarten operators aξ, aB of a leaf F ′ of D⊥2 act as aξ = ω(ξ)ITF ′ ,
aB = ‖ω‖2ITF ′ and the second fundamental form is given by α(X,Y ) = g(X, Y )B.
Hence F ′ is a totally umbilical submanifold of M with parallel mean curvature B.
Note that, given X tangent to F ′, ϕX + C−2ω(ϕX)ϕ2B is tangent to F ′, also.
Putting

ϕ′ = (ϕ + C−2ϕ2B ⊗ ω ◦ ϕ)/TF ′ , ξ′ = C−1ϕB/F ′ , η′ = −C−1ω ◦ ϕ/TF ′ , (4.6)

it is easy to verify that (ϕ′, ξ′, η′) is an almost contact structure and the metric
g′ induced by g is compatible with (ϕ′, ξ′, η′).

We prove that ϕ′ is parallel with respect to the Levi–Civita connection ∇′ on
(F ′, g′). In fact, considering two vector fields X, Y on F ′, by the Gauss equation
∇XY = ∇′XY + g′(X, Y )B, we have:

(∇′Xϕ′)Y = ∇X(ϕ′Y )− g′(X,ϕ′Y )B − ϕ(∇′XY )− C−2ω(ϕ(∇′XY ))

= (∇Xϕ)Y − g(X,ϕY )B + g(X,Y )ϕB + C−2ω(ϕY )∇X(ϕ2B)

+ C−2((∇Xω)(ϕY ) + ω((∇Xϕ)Y ))ϕ2B.

Then (∇′Xϕ′)Y vanishes, since (1.1), (4.5), (2.2) and (2.3) imply:

(∇Xϕ)Y − g(X,ϕY )B + g(X, Y )ϕB = −ω(ϕY )X, (4.7)

∇X(ϕ2B) = (‖ω‖2 − ω(ξ)2)X = C2X, (∇Xω)ϕY + ω((∇Xϕ)Y ) = 0. (4.8)

Finally, we point out that the stated properties of D2 and D⊥2 allow to con-
sider (M, g), locally, as a warped product (9.104 [2]). More precisely, given
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p0 ∈ M , there exist an open neighborhood U of p0, two Riemannian manifolds
(N, G), (N ′, G′) with TN ' 〈B, ξ〉 , TN ′ ' Kerω∩Kerη, a positive smooth func-
tion f on N and an isometry ψ : (U, g) → (N ×N ′, G + f2G′).

Then π = p1 ◦ ψ, p1 denoting the projection onto the first factor, is a Rie-
mannian submersion with fibres isometric to the leaves of D⊥2 . Hence (N ′, f2G′)
is equipped with the cosymplectic structure corresponding to the one defined in
(4.6). Moreover, B|U projects onto the vector field − 1

f gradf , gradf denoting the
gradient of f with respect to G. So, given a basic vector field X π-related to X ′,
we have ω(X) = −G( 1

f gradf,X ′) ◦ π = −d log f(X ′) ◦ π. Since ω vanishes on the
vertical distribution, we get ω|U = −π∗(d log f). ¤

The following construction provides examples of N(k)-spaces which fall in
the class iv) of Theorem 12, k being a non-constant function.

Example. Given a positive smooth function h : R → R, we consider the
functions λ, µ, ν : R2 → R such that, for any (x, y) ∈ R2 λ(x, y) = exp(−x)

h(y) − y,

µ(x, y) = exp(−x)
h(y) , ν(x, y) = − exp(−x)h′(y)

h(y)2 − 1.
Then the vector fields e1 = λ ∂

∂x , e2 = ν ∂
∂x +µ ∂

∂y are linearly independent at
each point, so we can consider the Riemannian metric G which makes {e1, e2} an
orthonormal frame on R2. Since [e1, e2] = −e1 − λe2, the Levi–Civita connection
D on (R2, G) is determined by:

De1e1 = e2, De1e2 = −e1, De2e1 = λe2, De2e2 = −λe1. (4.9)

It follows that (R2, G) has non-constant Gaussian curvature R′(e1, e2, e1, e2) =
−(λ2 + e1(λ) + 1).

Let (F ′, ϕ′, ξ′, η′, G′) be a cosymplectic manifold and denote by ϕ the (1, 1)-
tensor field on M = R2 × F ′ such that

ϕe1 = 0, ϕe2 = µξ′, ϕξ′ = − 1
µ

e2, ϕX = ϕ′X,

X ∈ TF ′ with η′(X) = 0.

(4.10)

It is easy to verify that (ϕ, e1, e
1 = [e1, g = G + µ−2G′) is an almost contact

metric structure on M . Since F ′ is a totally umbilical submanifold of M with
mean curvature grad log µ, the Levi–Civita connection ∇ on (M, g) satisfies, for
any vector field X on F ′:

∇XY = ∇′XY + g(X, Y )grad log µ, Y ∈ X (F ′),

∇Xe1 = ∇e1X = λX, ∇Xe2 = ∇e2X = −X. (4.11)
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Recalling that R2 is totally geodesic, by a direct calculus, also applying (4.9),
(4.11), one proves that (M, ϕ, e1, e

1, g) is g.c. cosymplectic with Lee form ω =
d log µ. The anti-Lee form never vanishes, since ‖ϕB‖ = ‖µξ′‖ = 1. Furthermore,
(4.9), (4.11) entail the curvature formulas, for any X, Y tangent to F ′:

R(X, Y, e1) = 0, R(X, e2, e1) = 0, R(X, e1, e1) = −(λ2 + e1(λ) + 1)X,

R(e1, e2, e1) = (λ2 + e1(λ) + 1)e2.

Therefore, M is an N(k)-space with k = −(λ2 + e1(λ) + 1).

It is known that the C(k)-condition for an f -Kenmotsu manifold M with
dim M ≥ 5 entails k = −f2. Hence k is constant and either M is cosymplectic or
k < 0 [18]. This fits in the following more general result.

Proposition 13. Let (M, ϕ, ξ, η, g) be an N(k)-l.c. cosymplectic space with

Lee form ω. Assume that dim M = 2n+1 ≥ 5 and (2n−1)‖ω‖2 = 2δω+(2n+1)k.

Then k is constant and one of the following cases occurs:

i) ‖ω‖2 + k never vanishes, ω is exact and g̃ = (‖ω‖2 + k)2g is a cosymplectic

metric with curvature R − kπ1. In particular, (M, g̃) is flat if and only if

(M, g) has constant sectional curvature,

ii) k = 0 and M is cosymplectic,

iii) k = −‖ω‖2 < 0 , M is f -Kenmotsu, f is constant and f2 = −k,

iv) k = −‖ω‖2 < 0, the anti-Lee form never vanishes and (M, g) is locally a

warped product N ×f2 N ′, N being a 2-dimensional manifold of constant

curvature and N ′ cosymplectic. Moreover, (M, g) has constant sectional

curvature if and only if each leaf of D⊥2 is flat.

Proof. By Proposition 11 the hypothesis is equivalent to the request
that M is an almost C(k)-manifold. In particular, k is constant. By (3.4) we
have: α = k−‖ω‖2

2 and (4.1) yields:

d(k + ‖ω‖2) = (k + ‖ω‖2)ω. (4.12)

Arguing as in the proof of Theorem 12, the connectedness of M and (4.10) imply
that either k + ‖ω‖2 never vanishes or k = −‖ω‖2. So, if k + ‖ω‖2 6= 0, ω =
d log |k + ‖ω‖2| is exact and the Levi–Civita connection ∇̃ of the cosymplectic
structure (ϕ, |k + ‖ω‖2|−1ξ, |k + ‖ω‖2|η, g̃ = (k + ‖ω‖2)2g) acts as:

∇̃XY = ∇XY + ω(Y )X + ω(X)Y − g(X, Y )B.
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Since ∇ω = ω ⊗ ω + k−‖ω‖2
2 g, by direct calculus we obtain: R̃ = R − kπ1, R̃

denoting the curvature of (M, g̃). Hence i) occurs. Now, we discuss the case
k = −‖ω‖2. Obviously, M is cosymplectic if and only if k = 0. Assuming
k = −‖ω‖2 < 0, we observe that ω(ξ) is constant. In fact δω = −2nk and
Proposition 7 entails d(ω(ξ)) = 0. Hence, when ‖ω‖ = |ω(ξ)|, we have that M is
f -kenmotsu and f2 = ‖ω‖2 = −k, so that case iii) occurs.

Finally, we consider the case k = −‖ω‖2, ‖ω‖2 > ω(ξ)2. Then the anti-Lee
form, which has constant norm, never vanishes. By Theorem 12, (M, g) is locally
a warped product N ×f2 N ′, where N is isometric to a leaf of D2 and N ′ to a
leaf of D⊥2 equipped with the structure defined in (4.6). By Proposition 10, also
applying the first Bianchi identity and (3.2), for any X, Y ∈ X (M), we have:

R(X, Y, B) = kπ1(X, Y,B), R(B, ξ,X) = kπ1(B, ξ, X). (4.13)

Let (F ′, g′) be a leaf of D⊥2 . Considering X ∈ X (F ′), since [X, ξ] = [X, B] = 0,
we have ∇BX = ∇XB = kX, ∇ξX = ∇Xξ = −ω(ξ)X. Then, also applying the
Gauss equation ∇XY = ∇′XY + g′(X, Y )B, we obtain, for any X, Y, Z ∈ X (F ′):

R(ξ, X, Y ) = kπ1(ξ,X, Y ), R(B, X, Y ) = kπ1(B,X, Y ),

R(X, Y, Z) = R′(X, Y, Z) + kπ1(X,Y, Z), (4.14)

R′ denoting the curvature of F ′. Formulas (3.2), (4.13), (4.14) imply that the
flatness of each leaf of D⊥2 is equivalent to the condition R = kπ1. ¤

Remark. Proposition 13 also allows to describe almost C(0)-l.c. cosymplectic
spaces. In fact, we assume that the curvature of a connected l.c. cosymplectic
manifold (M,ϕ, ξ, η, g) with dim M = 2n + 1 ≥ 5 satisfies, for any vector fields
X,Y, Z, W : R(X,Y, Z,W ) = R(X, Y, ϕZ, ϕW ). By Proposition 11, M is an
N(0)-space and (2n − 1)‖ω‖2 = 2δω. Therefore M satisfies the hypothesis of
Proposition 13. It follows that either M is cosymplectic or ω never vanishes.
Furthermore, if ω 6= 0, we have ω = d log ‖ω‖2 and R coincides with the curvature
of the cosymplectic metric g̃ = ‖ω‖4g.

Now, we state another classification of the spaces considered in Proposition 13
for which k = −‖ω‖2.

Proposition 14. Let (M, ϕ, ξ, η, g) be an N(k)-l.c. cosymplectic space with

dim M = 2n + 1 ≥ 5. Assume that δω = 2n‖ω‖2 and k = −‖ω‖2 < 0. Then,

any leaf of the distribution D1 is a totally umbilical submanifold of M with

mean curvature the Lee vector field B and inherits from M a Kähler structure.

Furthermore, the following equivalences hold:
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a) (M, g) has constant sectional curvature if and only if all the leaves of D1 are

flat.

b) (M, g) is Einstein if and only if all the leaves of D1 are Ricci-flat.

Proof. By Proposition 13, k is constant. Moreover, for any X ∈ X (M) we
have:

∇XB = ω(X)B − ‖ω‖2X, (4.15)

and the Weingarten operator aB of a leaf N ′ of D1 acts as aBX = ‖ω‖2X.
So, the second fundamental form α is given by α(X, Y ) = g′(X,Y )B, g′

denoting the metric induced by g on N ′.
Moreover, if ω = ω(ξ)η, then (N ′, J ′ = ϕ|TN ′ , g′) is a Kähler manifold [18].
Now, we consider the case ‖ω‖2 > ω(ξ)2. Then C ′ = ‖ω‖+ω(ξ) is a nonzero

constant and, for any X ∈ D1, ϕX − 1
C′ω(ϕX)

(
B
‖ω‖ + ξ

)
is in D1, also. Let N ′

be a leaf of D1 and J ′ the endomorphism of TN ′ defined by:

J ′X = ϕX − 1
C ′

(
η(X)ϕB + ω(ϕX)

(
B

‖ω‖ + ξ

))

|N ′
. (4.16)

We prove that (J ′, g′) is an almost Hermitian structure.
In fact, since ξ′0 = ‖ω‖ξ − ω(ξ)

‖ω‖B is orthogonal to B and ϕB, ξ′0|N ′ and
ϕB|N ′ , simply denoted by ξ′0, ϕB, are mutually orthogonal, ‖ξ′0‖ = ‖ϕB‖ and
J ′(ϕB) = ξ′0, J

′(ξ′0) = −ϕB. Considering X tangent to N ′ and orthogonal to ξ′0
and ϕB one has: η(X) = 0, J ′X = ϕX, hence ‖J ′X‖ = ‖X‖ and J ′2X = −X.
Therefore J ′ is an almost complex structure and g′ is compatible with J ′.

Now, we prove that J ′ is parallel with respect to the Levi–Civita connection
∇′ of N ′. Firstly, we point out that ∇XB = −‖ω‖2X, ∇′XϕB = 0, for any
X ∈ TN ′. Hence we have: ∇′Xξ′0 = ‖ω‖(∇Xξ − η(X)B + ω(ξ)X) = 0, and
then (∇′XJ ′)ξ′0 = 0, (∇′XJ ′)ϕB = 0. Furthermore, given a vector field Y on
N ′ orthogonal to ξ′0 and ϕB, ∇′XY is orthogonal to ξ′0 and ϕB, also. Then
(∇′XJ ′)Y = ∇′XϕY − ϕ(∇′XY ) = (∇Xϕ)Y − g′(X,ϕY )B + g′(X, Y )ϕB = 0.
Therefore, (N ′, J ′, g′) is Kähler.

Finally, we state the equivalences a) and b). By the Codazzi equation, the
curvature R′ of a leaf N ′ of D1 acts as:

R′(X, Y, Z, W ) = R(X, Y, Z, W )− k(g′(X, Z)g′(Y, W )− g′(Y,Z)g′(X, W )),

for any X, Y, Z, W ∈ TN ′.
By Proposition 10, for any X, Y ∈ X (M), we have:

R(X, Y,B) = k(ω(Y )X − ω(X)Y ).
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Then a) follows, taking account of the symmetries of R.
Moreover, the Ricci tensor ρ′ of a leaf N ′ of D1 acts as:

ρ′(X, Y ) = ρ(X, Y )− 2nkg′(X, Y ), X, Y ∈ TN ′. (4.17)

and we have, also:
ρ(X,B) = 2nkω(X), X ∈ TM. (4.18)

Then the scalar curvature of a leaf N ′ of D1 is given by:

τ ′ = τ − 2n(2n + 1)k. (4.19)

Assume that (M, g) is Einstein. By (4.19) and (4.17) each leaf N ′ of D1 is an
Einstein manifold with Ricci tensor ρ′ = τ ′

2n+1g′. Since dim N ′ = 2n we also have:
τ ′ = traceρ′ = 2n

2n+1τ ′. Then τ ′ = 0 and N ′ is Ricci-flat.
The converse statement in b) follows by (4.17),(4.18). ¤

Theorem 15. Let (M, ϕ, ξ, η, g) be an N(k)-l.c. cosymplectic space with

dim M = 2n + 1 ≥ 5. Assume that the Lee form ω satisfies: δω = 2n‖ω‖2 and

k = −‖ω‖2 < 0. Then M is locally a warped product ]− ε, ε [×h2 F , where F is

a Kähler manifold, h2 = a exp(−2‖ω‖t), for some positive constant a, t denoting

the Euclidean coordinate.

Proof. We know that TM = 〈B〉 ⊕ kerω, the corresponding distributions
D⊥1 ,D1 are integrable, the integral manifolds of D1 are totally umbilical Kähler
manifolds with second fundamental form α = g ⊗ B and (4.15) entails that D⊥1
is totally geodesic. Then, as a manifold, M is locally a product ] − ε, ε [ × F ,
where T ( ] − ε, ε [ ) = 〈B〉 and F is Kähler. We can choose a neighborhood with
coordinates (t, x1, . . . , x2n) such that π∗B = ‖ω‖ ∂

∂t , π : ] − ε, ε [ × F → ] − ε, ε [
being the first projection. Then π is a C∞-submersion with vertical distribution
V = TF and horizontal distribution H = T ( ] − ε, ε [ ). The splitting V ⊕ H is
orthogonal and π preserves the length of horizontal vectors, so π is a Riemannian
submersion. The vector field H = 2nB is basic, the O’Neill tensor A vanishes
and, by direct calculus, the trace-free part T 0 of the O’Neill tensor T vanishes.
Hence ] −ε, ε [×F , and then M , is locally a warped product by a smooth function
h2, h > 0. Moreover H = 2nB is π-related to − 2n

h grad0h, where the gradient is
evaluated with respect to the Euclidean metric [2]. Since B is π-related to ‖ω‖ ∂

∂t ,
we have: d log h = −‖ω‖dt, ‖ω‖ being constant. Hence h = λ exp(−‖ω‖t), λ
constant, and the warped metric is locally given by dt⊗ dt + λ2 exp(−2‖ω‖t)g̃, g̃

being a Kähler metric. ¤
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Example. On the hyperbolic space H2n+1={(x1, . . . , x2n+1)∈R2n+1; x1 > 0}
we consider the metric gc = 1

(cx1)2

∑
1≤i≤2n+1 dxi ⊗ dxi of constant sectional

curvature −c2, c > 0. For any i ∈ {1, . . . , 2n + 1} we put Ei = cx1 ∂
∂xi , and

the action of the Levi–Civita connection with respect to the orthonormal frame
{E1, . . . , E2n+1} is given by:

∇Ei
Ej = c(δijE1 − δ1jEi), i, j ∈ {1, . . . , 2n + 1} . (4.20)

Let (ϕ, ξ, η, gc) be an almost contact metric structure on H2n+1 such that ϕ and
ξ have constant components with respect to {Ei}1≤i≤2n+1 and assume n ≥ 2.
We claim that (H2n+1, ϕ, ξ, η, gc) is an N(−c2)-l.c. cosymplectic space whose Lee
form satisfies ‖ω‖2 = c2, δω = 2n‖ω‖2. In fact the N(−c2)-condition holds since
gc has constant sectional curvature −c2. We know that (H2n+1, ϕ, ξ, η, gc) is in
the Chinea–Gonzales class C4⊕C5⊕C12 [8]. We remark that, as stated in [12], in
dimension 2n + 1 ≥ 5, any manifold in this class is l.c. cosymplectic if and only if
the codifferential of the fundamental form Φ, Φ(X, Y ) = g(X, ϕY ), satisfies:

δΦ ◦ ϕ + (2n− 1)∇ξη = 0. (4.21)

Condition (4.21) is fulfilled by H2n+1.
By (4.20), we have: ∇ξξ =−cϕ2(E1),

∑
1≤i≤2n+1(∇Eiϕ)Ei=−(2n−1)cϕE1,

so δΦ(ϕX) =
∑

1≤i≤2n+1 gc((∇Eiϕ)Ei, ϕX) = (2n− 1)cgc(ϕ2E1, X) =
−(2n− 1)(∇ξη)X.

Since moreover δη = −∑
1≤i≤2n+1 gc(∇Eiξ, Ei) = 2ncgc(ξ, E1), the Lee form

acts as ω(X) = cgc(E1, X). It follows that B = cE1 is the Lee vector field
and ω = 1

x1 dx1, so ‖ω‖ = c. By (4.20) we also have δω = 2nc2. Hence
(H2n+1, ϕ, ξ, η, gc) satisfies the hypothesis of Proposition 14, the distribution D1

corresponding to the subbundle spanned by {E2, . . . , E2n+1}. Then the leaves of
D1 carry a flat Kähler structure and by Theorem 15 gc can be locally expressed
as dt⊗ dt + a exp(−2‖ω‖t)g0, t being the Euclidean coordinate, a ∈ R∗+ and g0 a
Kähler metric. In this case, the previous expression holds everywhere, considering
t = 1

c log x1, a = 1
c2 , g0 =

∑
2≤i≤2n+1 dxi ⊗ dxi.

Finally, we describe the action of the complex structure J ′ on a leaf F of D1.
If ω = ω(ξ)η, namely if ξ = E1 or ξ = −E1, then J ′ = ϕ|TF , so J ′ has constant
components with respect to a suitable orthonormal frame. If ξ = ξiEi, with
ξi 6= 0 for some i ≥ 2, as in Proposition 14 we consider the vector field ξ′0 =
‖ω‖ξ − ω(ξ)

‖ω‖B = c(ξ − ξ1E1), which is tangent to F and orthogonal to ϕB. With
respect to an orthonormal frame {Y1, . . . , Y2n−2, ξ

′
0, ϕB}, J ′ acts as J ′(Yi) = ϕYi,

i ∈ {1, . . . , 2n− 2}, J ′(ξ′0) = ϕE1, J ′(ϕE1) = −ξ′0.
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The previous example ensures the existence of N(k)-l.c. conformal cosym-
plectic spaces which are locally symmetric. We also recall that, for any c > 0, the
hyperbolic space (H2n+1, gc) is the local model of non-cosymplectic f -Kenmotsu
locally symmetric spaces, f = −c2 [18].

This fits in the following more general result.

Theorem 16. Let (M,ϕ, ξ, η, g) be a connected, non-cosymplectic, l.c.

cosymplectic manifold with dim M = 2n + 1 ≥ 5. The following conditions are

equivalent:

i) M has constant sectional curvature k,

ii) M is a locally symmetric N(k)-l.c. cosymplectic space.

Moreover, if one of the previous conditions holds, either k + ‖ω‖2 6= 0 everywhere

and g̃ = (‖ω‖2+k)2g is a flat cosymplectic metric on M , or k = −‖ω‖2 and (M, g)
is locally a warped product ] − ε, ε [ ×h2 F , where F is a flat Kähler manifold,

h2 = a exp(−2‖ω‖t), t being the Euclidean coordinate, a = const > 0.

Proof. The statement i)→ ii) is obvious. Viceversa, assuming ii), by (3.11),
for any vector field X, one has ρ(X, ξ) = 2nkη(X), hence (∇Xρ)(ξ, ξ) = 2nX(k).
Then k is constant, ρ being ∇-parallel. By Proposition 9 and Lemma 8 the
function β defined in (3.3) satisfies:

β(ω − ω(ξ)η) = 0, dβ = 2βω(ξ) η. (4.22)

Then, applying Proposition 10 and the hypothesis, for any U,X, Y ∈ X (M) we
have:

0 = (∇UR)(X, Y, ξ) = ω(ξ) (R− kπ1)(X, Y, U).

Since R − kπ1 is ∇-parallel, ω(ξ) is constant and then, if ω(ξ) 6= 0, M has
constant sectional curvature k. Now, we assume ω(ξ) = 0, apply (4.22) and
obtain βω = 0, β being constant. Hence, since M is non-cosymplectic, β vanishes,
namely (2n−1)‖ω‖2 = 2δω +(2n+1)k. By Proposition 11 M is an almost C(k)-
manifold, that is, for any vector fields X, Y , Z, one has:

R(X,Y, ϕZ)− ϕ(R(X, Y, Z)) = k(g(Y, ϕZ)X − g(X, ϕZ)Y

− g(Y,Z)ϕX + g(X, Z)ϕY ).

Therefore the covariant derivative ∇R satisfies:

(∇UR)(X,Y, ϕZ)− ϕ((∇UR)(X,Y, Z)) = (∇Uϕ)(R(X, Y, Z))

−R(X, Y, (∇Uϕ)Z)− k(g(Y, Z)(∇Uϕ)X − g(X, Z)(∇Uϕ)Y

+ g(X, (∇Uϕ)Z)Y − g(Y, (∇Uϕ)Z)X). (4.23)
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By i) in Proposition 10, the hypothesis and (4.23) we also obtain:

R(X, Y, (∇Uϕ)B) = −k(g(X, (∇Uϕ)B)Y − g(Y, (∇Uϕ)B)X),

and, by (1.1), we have: ‖ω‖2(R− kπ1)(X, Y, ϕU) = 0.
Since moreover (R− kπ1)(X,Y, ξ) = 0, we get: ‖ω‖2(R− kπ1) = 0. Since M

is non-cosymplectic and R − kπ1 is parallel, we obtain R = kπ1, namely M has
constant sectional curvature k.

Finally, assuming i), equivalently ii), M is a C(k)-space, so the function α

defined in (3.3) satisfies: 2α = k − ‖ω‖2 and (3.7) reduces to d(‖ω‖2) = (k +
‖ω‖2)ω. Therefore, either k + ‖ω‖2 never vanishes or k + ‖ω‖2 = 0.

If k + ‖ω‖2 6= 0, ω is exact and g̃ = (k + ‖ω‖2)2g is a cosymplectic metric
with curvature R̃ = R− kπ1 = 0.

If k = −‖ω‖2, we also have δω = 2n‖ω‖2. By Theorem 15, (M, g) is locally
a warped product ] − ε, ε [×h2 F , h2 = a exp(−2‖ω‖t), a > 0, and F is a Kähler
manifold. The flatness of F follows by Proposition 14, since F is isometric to a
leaf of D1 and M has constant sectional curvature. ¤
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