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On the solution set of nonlinear evolution
inclusions depending on a parameter1

By NIKOLAOS S. PAPAGEORGIOU (Athens)

Abstract. In this paper examine nonlinear evolution inclusions depending on
a parameter. The parameter appears in all the data of the problem, including the
nonlinear operator. Using the general concept of G-convergence of operators, we prove
three continuous dependence results for both the Vietoris and Hausdorff hyperspace
topologies. Then we use these results to study the variational stability of a class of
nonlinear, parabolic optimal control problems.

1. Introduction

In a recent paper [13], we examined evolution inclusions depending
on a parameter and established the continuity properties of the solution
set with respect to the parameter. We proved two such results in [13]:
in the first (theorem 3.2), the abstract nonlinear operator modelling the
partial differential term, does not depend on the parameter and only the
orientor field does; in the second (theorem 3.3), the operator depends on
the parameter but is also linear (semilinear inclusions). In theorem 3.2,
we proved that the solution set, as a set-valued function (multifunction) of
the parameter, is Vietoris and Hausdorff continuous, while in theorem 3.3,
we established that the solution set is an upper semicontinuous (u.s.c.)
multifunction of the parameter. The purpose of this paper is to improve
theorems 3.2 and 3.3 of [13], by allowing the abstract operator to depend
on the parameter and to be nonlinear. For this general situation, we show
that the solution set multifunction is Vietoris and Hausdorff continuous
(see theorems 3.1 and 3.3 this paper).

Our approach is different from that of [13], since here we use a recent
stability result for the set of fixed points of Lipschitzian multifunctions,
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due to Rybinski [14]. By expressing the solution set of our evolution in-
clusion as the set of fixed points of an appropriately defined multifunction,
we are able to exploit the above mentioned result of Rybinski and prove
that the set of solutions of the nonlinear multivalued Cauchy problem is
both Vietoris and Hausdorff continuous as a set-valued function of the
parameter.

Having established these continuity results, in section 4 we use them
to study a class of parametric Meyer-type optimal control problems, moni-
tored by a nonlinear parabolic partial differential equation. We show (the-
orem 4.1) that the value of these problems, depends continuously on the
parameter, while the optimal trajectories (states) multifunction is u.s.c.
Such a sensitivity analysis, is useful both from the theoretical and ap-
plied viewpoints. It produces useful continuous dependence results which
help us analyze parametric problems, it can produce robust computational
schemes and finally it gives us information about the admissible tolerances
in the specification of the mathematical models.

Previously, continuous dependence results were obtained by Vasilev
[18] and Lim [7] for differential inclusions in Rn and by Tolstonogov [16]
and Papageorgiou [11], who examined differential inclusions in Banach
spaces. However, their continuity and boundedness hypotheses precludes
the applicability of their work to multivalued partial differential equations
and to distributed parameter optimal control problems.

Preliminaries

Let T = [0, r] and Y a separable Banach space. Throughout this
paper, we will be using the following notations:

Pf(c)(Y ) = {A ⊆ Y : nonempty, closed (and convex)}
and P(w)k(c)(Y ) = {A ⊆ Y : nonempty, (w−) compact (and convex)}.

A multifunction F : T → Pf (Y ) is said to be measurable, if for all
z ∈ Y , the R+-valued function t → d(z, F (t)) = inf{‖z − y‖ : y ∈ F (t)}
is measurable. By Sp

F (1 ≤ p ≤ ∞), we will denote the set of selectors of
F (·), that belong in the Lebesgue–Bochner space Lp(Y ); i.e. Sp

F = {f ∈
Lp(Y ) : f(t) ∈ F (t) a.e.}. This set may be empty. For a measurable F (·),
it is nonempty if and only if t → inf{‖v‖ : v ∈ F (t)} ∈ Lp

+. On Pf (Y ), we
can define a generalized metric, known in the literature as the Hausdorff
metric, by setting

h(A,B) = max
[
sup
a∈A

d(a,B), sup
b∈B

d(b, A)
]

for all A,B ∈ Pf (Y ). Recall that (Pf (Y ), h) is a complete metric space.
If Λ is a complete metric space, a multifunction G : Λ → Pf (Y ) is said



Evolution inclusion 33

to be Hausdorff continuous (h-continuous), if it is continuous from Λ into
(Pf (Y ), h). A multifunction G is said to be d-continuous if for all z∈Y , λ →
d(z, G(λ)) is a continuous R+-valued function. Clearly an h-continuous
multifunction, is d-continuous, while the converse is not in general true.
Also if h(G(λ), G(λ′)) ≤ kdΛ(λ, λ′) k > 0, then we say that G(·) is h-
Lipschitz.

Let {An, A}n≥1 ⊆ 2Y \ {∅} and denote by s- the strong (norm) topol-
ogy on Y and by w- the weak topology on Y . We define:

s- lim An = {z ∈ Y : lim d(z,An) = 0}
= {z ∈ Y : z = s- lim zn, zn ∈ An, n ≥ 1}

s- limAn = {z ∈ Y : lim d(z,An) = 0}
= {z ∈ Y : z = s- lim znk

, znk
∈ Ank

, n1 < n2 < · · · < nk < . . . }
and w- lim An

= {z ∈ Y : z = w- lim znk
, znk

∈ Ank
, n1 < n2 < · · · < nk < . . . }.

From these definitions, it is clear that we always have

s- lim An ⊆ s- limAn ⊆ w- limAn.

If s- lim An = s- lim An = A, then we say that the An’s converge to

A in the Kuratowski sense, and denote it by An
K−→ A as n → ∞. If

s- lim An = w- limAn = A, then we say that the An’s converge to A in the

Kuratowski–Mosco sense and denote it by An
K−M−−−−→ A as n →∞.

A multifunction G : Λ → Pf (Y ) is said to be upper semicontinuous
(u.s.c.) (resp. lower semicontinuous (l.s.c.)), if for all U ⊆ Y open, the set
G+(U) = {λ ∈ Λ : G(λ) ⊆ U} (resp. G−(U) = {λ ∈ Λ : G(λ) ∩ U 6= ∅})
is open in Λ. A multifunction which is both u.s.c. and l.s.c., is said to be
continuous or Vietoris continuous, to emphasize that it is continuous into
the hyperspace Pf (Y ) equipped with the Vietoris topology (see Klein–
Thompson [5]). If G(Λ) =

⋃
λ∈Λ

G(Λ) is compact in Y , then G(·) is Vietoris

continuous if and only if for λn → λ in Λ, we have G(λn) K−→ G(λ). This
follows from remarks 1.6 and 1.8 of DeBlasi–Myjak [2]. Finally since on
Pk(Y ) the Vietoris and Hausdorff topologies coincide (see Klein–Thompson
[5], corollary 4.2.3, p. 41), we deduce that a Pk(Y )-valued multifunction
is Vietoris continuous if and only if it is h-continuous (see also DeBlasi–
Myjak [2], remark 1.9).

The following theorem was first proved by the author (see [11], theo-
rem 3.1) and was recently improved by Rybinski (see [14] theorem 1 and
the remark on page 33). Actually the result of Rybinski [14], is more gen-
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eral, but for the purpose of this paper, we only need the following special
case:

Theorem 2.1. If Z is a Banach space, K ∈ Pwk(Z), Fn, F : K →
Pfc(K) are h-Lipschitz multifunctions with the same Lipschitz constant

k ∈ (0, 1) s.t. if zn
s−→ z in Z, then Fn(zn) K−M−−−−→ F (z),

then if Ln = {z ∈ Z : z ∈ Fn(z)} and L = {z ∈ Z : z ∈ F (z)}, we

have Ln
K−→ L.

Remark. The fixed point sets Ln, L are nonempty by Nadler’s fixed
point theorem [9].

Now let H be a Hilbert space and let X be a dense subspace of H
carrying the structure of a separable, reflexive Banach space, which embeds
into H continuously. Identifying H with its dual (pivot space), we have
X → H → X?, with all embeddings being continuous and dense. Such a
triple of spaces, is known in the literature as “evolution triple” or “Gelfand
triple” (see Zeidler [20]). We will also assume that the embedding of X
into H is also compact (in fact, this implies that H → X? is compact
too). To have a concrete example in mind, let m be a positive integer and
2 ≤ p < ∞. Let Z ⊆ RN be a bounded domain and set X = Wm,p

0 (Z),
H = L2(Z) and X? = W−m,q(Z) where 1

p + 1
q = 1. Then from the Sobolev

embedding theorem, we know that (X, H,X?) is an evolution triple and
all embeddings are compact. By ‖ · ‖ (resp. | · |, ‖ · ‖?) we will denote
the norm of X (resp. of H, X?). Also by (· , ·) we will denote the inner
product of H and by 〈· , ·〉 the duality brackets of the pair (X, X?). The
two are compatible in the sense that 〈· , ·〉|X×H = (· , ·). Let 1 < p, q < ∞,
1
p + 1

q = 1. We define:

Wpq(T ) = {x(·) ∈ Lp(X) : ẋ ∈ Lq(X?)}.
The derivative involved in this definition is understood in the sense

of vector valued distributions. Equipped with the norm ‖x‖Wpq(T ) =[
‖x‖2Lp(X) + ‖ẋ‖2Lq(X?)

]1/2

, the space Wpq(T ) becomes a separable, re-
flexive Banach space. It is well known that Wpq(T ) embeds continuously
in C(T, H); i.e. every element in Wpq(T ) has a unique representative in
C(T, H). Since we have assumed that X → H compactly, we have that
Wpq(T ) → Lp(H) compactly (see Zeidler [20], p. 450). Finally if p = 2,
we simply write W (T ) for W2,2(T ), and this is a Hilbert space if X is.
Furthermore from Nagy [10], we know that in this case W (T ) → C(T,H)
compactly.

Let (X,H, X?) be an evolution triple with X embedding into H com-
pactly. Let An, A : X → X? be a sequence of operators. Following
Kolpakov [6], we say that the sequence {An}n≥1G-converges to A if and
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only if for every n ≥ 1, A−1
n , A−1 : X? → X are defined and for any

x? ∈ X?, A−1
n x? w−→ A−1x in X (and hence strongly in H). This is

the abstract nonlinear formulation of a convergence notion which was first
introduced by Spagnolo [15], in order to study the convergence of the
solutions of a sequence of elliptic problems. The abstract, linear case was
studied in detail by Zhikov–Kozlov–Oleinik–Kha Ten Ngoan [21]
and by Zhikov–Kozlov–Oleinik [22].

Let T = [0, r] and (X, H, X?) an evolution triple as above (so X
embeds into H compactly). Also let Λ be a metric space (the parameter
space). We consider the following evolution equation:

(1)

{
ẋ(t)+A(t, x(t), λ) = f(t)

x(0) = x0(λ) ∈ H

}

with f ∈ Lq(H). We will need the following hypothesis:

H(A) : A : T ×X × Λ → X? is an operator s.t.
(1 ) for all t, t + τ ∈ T , all λ ∈ Λ and all x ∈ X, we have

‖A(t, x, λ)−A(t + τ, x, λ‖? ≤ c(τ)(1 + ‖x‖p−1), 2 ≤ p < ∞,

with c(·) nondecreasing, c(τ) ↓ 0 as τ → 0+ and is independent
of x ∈ X and λ ∈ Λ,

(2 ) x → A(t, x, λ) is hemicontinuous (i.e. for all x, y, z ∈ X, β →
〈A(t, x + βy, λ), z〉 is continuous from [0,1] into R),
and A(t, 0, λ) = 0 for all (t, λ) ∈ T × Λ,

(3 ) if λn → λ in Λ, then A(t, x, λn) G−→ A(t, x, λ) for all (t, x) ∈
T ×X,

(4 ) cB‖x−y‖p ≤ 〈A(t, x, λ) − A(t, y, λ), x−y〉, for all t ∈ T , x, y∈X
and all λ ∈ B ⊆ Λ, B compact and with cB > 0 (strong mono-
tonicity of A(t, · , λ)),

(5 ) ‖A(t, x, λ)‖? ≤ c1B(1 + ‖x‖p−1) for all t ∈ T , λ ∈ B ⊆ Λ, B
compact and with c1B > 0.

Remarks.
(i) Since A(t, · , λ) is strongly monotone and A(t, o, λ) = 0, we get

that c1B‖x‖p ≤ 〈A(t, x, λ), x〉 for all t ∈ T , x ∈ X and λ ∈ B ⊆ Λ
compact (coercivity property).

(ii) Since A(t, · , λ) is monotone, hemicontinuous, it is demicontinu-
ous; i.e. if xn

s−→ x in X, then A(t, xn, λ) w−→ A(t, x, λ) in X?

(see Zeidler [20], p. 596).
(iii) Because A(t, · , λ) is a monotone, hemicontinuous, coercive oper-

ator, it is surjective (see Zeidler [20], theorem 32.H, p. 887).
This combined with the strong monotonocity hypothesis H(A)
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(4 ), implies that for all (t, λ) ∈ T × Λ, A−1(t, · , λ) : X? → X is
well defined. So hypothesis H(A) (3 ) makes sense.

From theorem 30.A, p. 771 of Zeidler [20], we know that for every
λ ∈ Λ, problem (1 ) above has a unique solution p(f, λ)(·) ∈ Wpq(T ).
Recalling that Wpq(T ) embeds continuously into C(T,H), we see that the
initial condition in (1 ) makes sense. For this initial vector, we assume the
following:

H0: λ → x0(λ) is continuous from Λ into H.
The next proposition examines the continuity properties of the solu-

tion map p : Lq(H)× Λ → C(T, H) :

Proposition 2.1. If hypotheses H(A) and H0 hold, then p(· , ·) is
continuous.

Proof. Let (fn, λn) → (f, λ) in Lq(H) × Λ and let xn = p(fn, λn)
and x = p(f, λ). Let yn ∈ Wpq(T ) → C(T,H) be the unique solution of
the evolution equation

{
ẏn(t) + A(t, yn(t), λn) = f(t) a.e.

yn(0) = x0(λ).

}

From theorem 1 (see also Lemmata 6 and 7) of Kolpakov [6], we
have that yn

w−→ x in Wpq(T ) and since Wpq(T ) embeds compactly into
Lp(H), we have that yn

s−→ x in Lp(H). Exploiting the monotonicity of
the operator A(t, · , λ), we have

〈ẋn(t)− ẏn(t), xn(t)− yn(t)〉 ≤ (fn(t)− f(t), xn(t)− yn(t)) a.e.

⇒ 1
2

d

dt
|xn(t)− yn(t)|2 ≤ |fn(t)− f(t)| . |xn(t)− yn(t)| a.e.

⇒ 1
2
|xn(t)− yn(t)|2 ≤ 1

2
|x0(λn)− x0(λn)|2

+

t∫

0

|fn(s)− f(s)| . |xn(s)− yn(s)|ds.

Invoking lemma A.5, p. 157 of Brezis [23], we get

|xn(t)− yn(t)| ≤ |x0(λn)− x0(λ)|+
t∫

0

|fn(s)− f(s)|ds, t ∈ T

⇒ xn
s−→ x in C(T,H) ⇒ p(· , ·) is continuous. ¤
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3. Parametric evolution inclusions

Let T = [0, r] and (X, H,X?) an evolution triple as in section 2, with
X embedding into H compactly and X being uniformly smooth. We will
consider the following evolution inclusion parametrized by elements in Λ:

(2)

{
ẋ(t) + A(t, x(t), λ) ∈ F (t, x(t), λ) a.e.

x(0) = x0(λ).

}

We will need the following hypothesis on the orientor field F (t, x, λ):
H(F ) : F : T ×H × Λ → Pfc(H) is a multifunction s.t.
(1 ) t → F (t, x, λ) is measurable,
(2 ) h(F (t, x, λ), F (t, y, λ)) ≤ kB(t)|x − y| a.e. for all λ ∈ B ⊆ Λ, B

compact and with kB ∈ L1
+,

(3 ) λ → F (t, x, λ) is d-continuous,
(4 ) |F (t, x, λ)| = sup{|y| : y ∈ F (t, x, λ)} ≤ αB(t) + βB(t)|x|2/q a.e.

for all λ ∈ B ⊆ Λ, B compact and with αB , βB ∈ Lq
+.

By a solution of (2), we mean a function x ∈ Wpq(T ) → C(T,H)
such that ẋ(t) + A(t, x(t), λ) = f(t) a.e., x(0) = x0(λ), with f ∈ Lq(H),
f(t) ∈ F (t, x(t), λ) a.e.

We will denote the solution set of problem (2) by S(λ) ⊆ Wpq(T ) →
C(T, H). Our goal is to investigate the continuity properties of the mul-
tifunction λ → S(λ). We already know (see [13]), that S(λ) ∈ Pk(Lp(H))
and S(λ) ∈ Pf (C(T, H)).

Theorem 3.1. If hypotheses H(A), H(F ) and H0 hold, then
S : Λ → Pk(Lp(H)) is Vietoris and Hausdorff continuous.

Proof. Let B ⊆ Λ be compact. We will start by obtaining an a
priori bound for the elements in

⋃
λ∈B

S(λ). So let x(·) ∈ ⋃
λ∈B

S(λ). Then

by definition, there exists f ∈ Sq
F (·,x(·),λ) s.t.

{
ẋ(t) + A(t, x(t), λ) = f(t) a.e.

x(0) = x0(λ).

}

We have:

〈ẋ(t), x(t)〉+ 〈A(t, x(t), λ), x(t)〉 = (f(t), x(t)) a.e.

⇒ 1
2

d

dt
|x(t)|2 + cB‖x(t)‖p ≤ (f(t), x(t)) = 〈f(t), x(t)〉

≤ ‖f(t)‖? . ‖x(t)‖ a.e.
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Applying Cauchy’s inequality with ε > 0 on the rigt-hand side, we get

(3)
1
2

d

dt
|x(t)|2 + cB‖x(t)‖p ≤ εq

q
‖f(t)‖q

? +
1

pεp
‖x(t)‖p a.e.

Let εp = 1
pcB

. Then we get

1
2

d

dt
|x(t)|2 ≤ M‖f(t)‖q

? (with M =
1

q(pcB)q−1
> 0)

⇒ |x(t)|2 ≤ |x0(λ)|2 + 2M

t∫

0

‖f(s)‖q
?ds ≤ |x0(λ)|2 + 2M

t∫

0

γq|f(s)|qds

where γ > 0 is such that ‖ · ‖? ≤ γ| · |. It exists since by hypothesis, X
embeds into H continuously. So using hypothesis H(F ) (4 ), we get

|x(t)|2 ≤ |x0(λ)|2 + 2M

t∫

0

γq(αB(s) + βB(s)|x(s)|2/q)qds

≤ |x0(λ)|2 + 2q+1Mγq

t∫

0

(αB(s)q + βB(s)q|x(s)|2)ds.

Because of hypothesis H0, there exists M ′ > 0 s.t. |x0(λ)| ≤ M ′
for all λ ∈ B. Thus invoking Gronwall’s inequality, we deduce that there
exists M1 > 0 s.t.

(4) |x(t)| ≤ M1 for all t ∈ T and all x ∈
⋃

λ∈B

S(λ).

Next in inequality (3) above, we let εp = 2
pcB

. We get

1
2

d

dt
|x(t)|2 +

cB

2
‖x(t)‖p ≤ 2Mγq|f(t)|q a.e.

⇒ |x(t)|2 + cB

t∫

0

‖x(s)‖pds ≤

≤ 4Mγq

t∫

0

2q(αB(s)q + βB(s)q|x(s)|2)ds + (M ′)2

⇒ cB

t∫

0

‖x(s)‖pds ≤ 2q+2Mγq

t∫

0

(αB(s)q + βB(s)qM2
1 )ds + (M ′)2
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⇒ ‖x‖Lp(X) ≤ M2 for some M2 > 0 and all x ∈
⋃

λ∈B

S(λ).(5)

Finally let h ∈ Lp(X). Using bounds (4) and (5) above, we get

〈ẋ(t), h(t)〉 ≤ ‖A(t, x(t), λ)‖? . ‖h(t)‖+ ‖f(t)‖? . ‖h(t)‖ a.e.

≤ [c1B(1 + ‖x(t)‖p−1) + γ(αB(t) + βB(t)M2/q
1 )] . ‖h(t)‖ a.e.

⇒
r∫

0

〈ẋ(t), h(t)〉dt = ((ẋ, h))0 ≤ M3‖h‖Lp(X) for some M3 > 0.

Here by ((· , ·))0 we denote the duality brackets of the pair
(Lq(X?), Lp(X)). Since h ∈ Lp(X) was arbitrary, we conclude that

(6) ‖ẋ‖Lq(X?) ≤ M3 for all x ∈
⋃

λ∈B

S(λ).

From (5) and (6) above, we get that
⋃

λ∈B

S(λ) is bounded in Wpq(T ),

hence
⋃

λ∈B

S(λ)
‖·‖Lp(H) is compact (see section 2). Furthermore because of

the a priori bound (4) above, we may assume without any loss of generality,
that for all λ ∈ B, we have

|F (t, x, λ)| ≤ αB(t) + βB(t)M1 = ψB(t) a.e.

with ψB(·) ∈ Lq
+.

Let KB = {h ∈ L1(H) : |h(t)| ≤ ψB(t) a.e.}. Clearly KB ∈
Pwkc(L1(H)). Consider the multifunction R : KB × B → Pfc(L1(H))
defined by

R(f, λ) = S1
F (·,p(f,λ)(·),λ) .

Let ‖f‖B =
r∫
0

exp[−L
t∫
0

kB(s)ds]|f(t)|dt, L > 0. Clearly this is a

norm on L1(H) equivalent to the usual one. We claim that the family
{R(· , λ)}λ∈B is Hausdorff–Lipschitz continuous with the same constant
ηB ∈ (0, 1), provided L > 1. To this end, let f, g ∈ KB and let v ∈ R(g, λ).
Through a straightforward application of Aumann’s selection theorem, (see
Wagner [19], theorem 5.10), we get u ∈ R(f, λ) s.t.

d(v(t), F (t, p(f, λ)(t), λ)) = |v(t)− u(t)| a.e.
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Then we have

dB(v, R(f, λ)) ≤ ‖v − u‖B

=

r∫

0

exp(−L

t∫

0

kB(s)ds)|v(t)− u(t)|dt

=

r∫

0

exp(−L

t∫

0

kB(s)ds)d(v(t), F (t, p(f, λ)(t), λ))dt

≤
r∫

0

exp(−L

t∫

0

kB(s)ds)h(F (t, p(g, λ)(t), λ), F (t, p(f, λ)(t), λ))dt

≤
r∫

0

exp(−L

t∫

0

kB(s)ds)kB(t)|p(g, λ)(t)− p(f, λ)(t)|dt.

Exploiting the monotonicity of the operator A(t, · , λ), we easily get that

|p(g, λ)(t)− p(f, λ)(t)| ≤
t∫

0

|g(s)− f(s)|ds.

So we have:

dB(v, R(f, λ)) ≤
r∫

0

exp(−L

t∫

0

kB(s)ds)kB(t)

t∫

0

|g(s)− f(s)| ds dt

≤ − 1
L

r∫

0

(

t∫

0

|g(s)− f(s)|ds)d(exp(−L

t∫

0

kB(s)ds))

=
1
L

r∫

0

exp(−L

∫ t

0

kB(s)ds)|g(t)− f(t)|dt (integration by parts)

≤ 1
L
‖g − f‖B .

Similarly we can get that if w ∈ R(f, λ), then

dB(w,R(g, λ)) ≤ 1
L
‖g − f‖B ⇒ h(R(f, λ), R(g, λ)) ≤ 1

L
‖g − f‖B .
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Thus if L > 1, we see that {R(· , λ)}λ∈B is equi-h-Lipschitz with constant
ηB = 1

L ∈ (0, 1). Next we claim that if [fn, λn] → [f, λ] in (KB , ‖·‖B)×B,
then

R(fn, λn) K−M−−−−→ R(f, λ).

To this end, let u∈R(f, λ). Then by definition, u(t)∈F (t, p(f, λ)(t), λ) a.e.
Set

θn(t) = d(u(t), F (t, p(fn, λn)(t), λn))

≤ d(u(t), F (t, p(f, λ)(t), λn)) + h(F (t, p(f, λ)(t), λn), F (t, p(fn, λn)(t), λn))

≤ d(u(t), F (t, p(f, λ)(t), λn)) + kB(t)|p(fn, λn)(t)− p(f, λ)(t)| a.e.

But from hypothesis H(F )(3 ), we have that

d(u(t), F (t, p(f, λ)(t), λn)) → 0 as n →∞
while from proposition 2.1 (note that fn

s−→ f in L1(H) and |fn(t)| ≤
ψB(t) a.e. imply fn

s−→ f in Lq(H)), we have

|p(fn, λn)(t)− p(f, λ)(t)| → 0 as n →∞.

Thus θn(t) → 0 a.e. as n →∞. Via Aumann’s selection theorem, we
get un ∈ R(fn, λn) s.t.

|u(t)− un(t)| ≤ θn(t) +
1
n

, t ∈ T

⇒ un(t) s−→ u(t) in H as n →∞
⇒ un

s−→ u in L1(H) (dominated convergence theorem).
Since un ∈ R(fn, λn)n ≥ 1, we deduce that

(7) R(f, λ) ⊆ s-limR(fn, λn).

Next let u ∈ w- limR(fn, λn). Then by definition and by denoting
subsequences with the same index as sequences, we get un ∈ R(fn, λn) s.t.

un
w−→ u in L1(H). Then invoking theorem 3.1 of [12], we get

u(t) ∈ convw- limF (t, p(fn, λn)(t), λn) a.e.

Note that for every v ∈ H, we have

d(v, F (t, p(f, λ)(t), λn)) ≤ d(v, F (t, p(fn, λn)(t), λn))

+h(F (t, p(f, λ)(t), λn), F (t, p(fn, λn)(t), λn))

≤ d(v, F (t, p(fn, λn)(t), λn)) + kB(t)|p(fn, λn)(t)− p(f, λ)(t)|
⇒ d(v, F (t, p(f, λ)(t), λ)) ≤ lim d(v, F (t, p(fn, λn)(t), λn)).
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Since X is assumed to be uniformly smooth, it has a Fréchet differ-
entiable norm and so we can apply theorem 2.2 (iv) of Tsukada [17] and
get that

w- limF (t, p(fn, λn)(t), λn) ⊆ F (t, p(f, λ)(t), λ) a.e.

⇒ u(t) ∈ F (t, p(f, λ)(t), λ) a.e. ⇒ u ∈ R(f, λ).

Therefore we deduce that
(8) w- lim R(fn, λn) ⊆ R(f, λ).

From (7) and (8) above, we get that

R(fn, λn) K−M−−−−→ R(f, λ) as n →∞.

Let L(λn) = {f ∈ KB : f ∈ R(f, λn)} n ≥ 1 and L(λ) = {f ∈ KB :
f ∈ R(f, λ)}. All these are nonempty by Nadler’s fixed point theorem [9].
Then from theorem 2.1, we have

L(λn) K−→ L(λ) as n →∞
in (L1(H), ‖ · ‖B), hence in (L1(H), ‖ · ‖1) too. Note that if {fn, f}n≥1 ⊆
KB and fn

s−→ f in L1(H), then fn
s−→ f in Lq(H). So using proposi-

tion 2.1 and the dominated convergence theorem, we get that p(L(λn), λn)
K−→ p(L(λ), λ) as n → ∞ in Lp(H). But note that p(L(λn), λn) = S(λn)

and p(L(λ), λ) = S(λ). So finally we have

S(λn) K−→ S(λ) as n →∞ in Lp(H).

Recall that
⋃

λ∈B

S(λ)
‖·‖Lp(H) is compact. So S|B is Vietoris continuous,

in particular then u.s.c. Since B ⊆ Λ, B compact was arbitrary, from
lemma β of [13], we deduce that S(·) is u.s.c. Also since S(λn) K−→ S(λ)
as n → ∞ in Lp(H), from remark 1.7 of DeBlasi–Myjak [2], we have
that S(·) is l.s.c. Therefore S(·) is Vietoris continuous. Since S(·) is
Pk(Lp(H))-valued, we also have that S(·) is Hausdorff continuous.

A useful byproduct of the above proof, is the following convergence
result. Note that for all λ ∈ Λ, S(λ) ∈ Pf (C(T, H)).

Theorem 3.2. If hypotheses H(A), H(F ) and H0 hold, and λn → λ

in Λ, then S(λn) K−→ S(λ) as n →∞ in C(T, H).
We can improve the above theorem, if we assume that X is a separable

Hilbert space too and as before X embeds compactly in H. Also we take
p = q = 2. Then from Nagy [10], we know that W (T ) imbeds into
C(T, H) compactly. Knowing that, we see that proof of theorem 3.1, with
Lp(H) replaced by C(T,H), gives us:
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Theorem 3.3. If X is a separable Hilbert space and hypotheses H(A),
H(F ), H0 hold with p = q = 2, then S : Λ → Pk(C(T,H)) is Vietoris and
Hausdorff continuous.

4. Sensitivity analysis of optimal problems

In this section, we use the continuous dependence results obtained
earlier, to study the sensitivity of a parametric, nonlinear, parabolic op-
timal control problem, to changes in the parameter (“variational stability
analysis”). The interesting feature of our problem is that the parameter
appears in all the data of the problem, including the partial differential
operator.

So let T = [0, r] and Z a bounded domain in RN with boundary
Γ = ∂Z. Let Λ be a complete metric space (the parameter space). We
consider the following parametric nonlinear optimal control problem, with
p ≥ 2:

∫

Z

η(z, x(b, z), λ)dz → inf = m(λ)

s.t.
∂x

∂t
−

N∑

i=1

Di(a
(
z, λ)(|Dix|p−2Dix)

)
= g(t, z, x(t, z), λ)u(t, z)(9)

x|T×Γ = 0, x(0, z) = x0(z, λ), |u(t, z)| ≤ θ(t, z, λ) a.e.

u(· , ·) measurable.

Here z = (zk)N
k=1 ∈ Z and Di =

∂

∂zi
. We will need the following

hypotheses on the data of (9).

H(a) : 0 < c1 ≤ a(z, λ) ≤ c2 for all (z, λ) ∈ Z × Λ and if λn → λ in Λ,
then 1

a(·,λn)q−1
w−→ 1

a(·,λ)q−1 in L1(Z).
H(g) : g : T × Z ×R× Λ → R is a function s.t.

(1 ) (t, z) → g(t, z, x, λ) is measurable,
(2 ) |g(t, z, x, λ)−g(t, z, y, λ)| ≤ kB(t, z)|x−y| a.e., for all λ ∈ B ⊆ Λ,

B compact and with kB ∈ L1
+,

(3 ) λ → g(t, z, x, λ) is continuous,
(4 ) |g(t, z, x, λ)| ≤ αB(t, z) + βB |x|2/q for all λ ∈ B ⊆ Λ, B compact

and with αB ∈ L2, βB ∈ R+.
H(θ) : (t, z) → θ(t, z, λ) is measurable, λ → θ(t, z, λ) is continuous and

|θ(t, z, λ)| ≤ ξB(t, z) a.e. for all λ ∈ B ⊆ Λ, B compact and
ξB(· , ·) ∈ L∞+ .
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H(η) : η : Z × R× Λ → R is an integrand s.t.
(1 ) z → η(z, x, λ) is measurable,
(2 ) (x, λ) → η(z, x, λ) is continuous,
(3 ) |η(z, x, λ)| ≤ ψ1B(z)+ψ2B |x|p a.e. for all λ ∈ B ⊆ Λ, B compact

and with ψ1B ∈ L1
+, ψ2B ∈ R+.

H ′
0 : λ → x0(· , λ) is continuous from Λ into L2(Z).

By Q(λ) ⊆ Lp(T, L2(H)), we denote the set of all optimal states for
problem (9) above.

Theorem 4.1. If hypotheses H(a), H(g), H(θ), H(η) and H ′
0 hold,

then for all λ ∈ Λ, Q(λ) 6= ∅, m(·) is continuous and λ → Q(λ) is u.s.c.
from Λ into Pk(Lp(T, L2(Z))).

Proof. In this case, our evolution triple consists of the spaces X =
W 1,p

0 (Z), H = L2(Z) and X? = W−1,q(Z). From the Sobolev embedding
theorem, we know that X embeds into H compactly. Also X is uniformly
smooth.

Then consider the Dirichlet form vλ : W 1,p
0 (Z)×W 1,p

0 (Z) → R defined
by

vλ(x, y) =
∫

Z

(a(z, λ)
N∑

i=1

|Dix|p−2DixDiy)dz, λ ∈ Λ.

From Hölder’s inequality, we get that

|vλ(x, y)| ≤ c2

N∑

i=1




∫

Z

|Dix|pdz




1/q 


∫

Z

|Diy|pdz




1/p

≤ c2‖x‖p−1 ‖y‖ for all λ ∈ Λ.

So we can define A : X × Λ → X? by

〈A(x, λ), y〉 = vλ(x, y).

Recall Tartar’s inequality, which says that if a, b ∈ R, then for some
fixed µ > 0, we have:

µ|a− b|p ≤ (|a|p−2a− |b|p−2b)(a− b).

Using this inequality, we easily check that

c3‖x− y‖p ≤ 〈A(x, λ)−A(y, λ), x− y〉
for some c3 > 0 and all λ ∈ B, x, y ∈ W 1,p

0 (Z) = X, while from above we
have

‖A(x, λ)‖? ≤ c2 ‖x‖p−1
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for all λ ∈ Λ and all x ∈ X. Also note that A(0, λ) = 0.
Next we will show the continuity of A(· , λ). To this end, let xn

s−→ x
in X. Also let f : R → R be defined by f(x) = |x|p−2x. Then by Kras-
nosel’ski’s theorem, the Nemitsky (superposition) operator f̂ : Lp(Z) →
Lq(Z) corresponding to f(·) and defined by f̂(x)(·) = |x(·)|p−2x(·) is con-
tinuous. So f̂(Dixn) s−→ f̂(Dix) in Lq(Z). Then using Hölder’s inequality,
we get that

〈A(xn, λ)−A(x, λ)y〉 ≤ c4

(
N∑

i=1

‖f̂(Dixn)− f̂(Dix)‖q

)
‖y‖

⇒ ‖A(xn, λ)−A(x, λ)‖? ≤ c4 ·
N∑

i=1

‖f̂(Dixn)− f̂(Dix)‖q → 0

⇒ A(· , λ) is indeed continuous, in particular then hemicontinuous.
Finally let ϕ : Z × RN × Λ → R be defined by

ϕ(z, v, λ) = a(z, λ)
1
p

N∑

i=1

|vi|p = a(z, λ)
1
p
‖v‖p

⇒ ϕ(z, · , λ) is convex and ϕ?(z, v?, λ) =
1

qa(z, λ)q−1
‖v?‖q.

Let Φ : W 1,p
0 (Z)× Λ → R be defined by

Φ(x, λ) =
∫

Z

a(z, λ)
1
p

N∑

i=1

|Dix|pdz

=
∫

Z

a(z, λ)
1
p
‖Dx‖pdz (D = grad).

Because of hypothesis H(A) (3), we have that if λn → λ in Λ,

then ϕ?(· , v?, λn) w−→ ϕ?(· , v?, λ) in L1(Z) and so by theorem 3.4 of
Marcellini–Sbordone [8] we have that Φ(· , λ) = Γseq(w) − Φ(· , λn),
where Γseq(w) denotes the sequential Γ-limit on the space (W 1,p

0 (Z), w)
(see for example Buttazzo [1]). Then from theorems 3.3 and 2.17 of De-

fianceschi [3], we get that if λn → λ in Λ, A(· , λn) G−→ A(· , λ). So we
have satisfied hypothesis H(A).

Let ĝ : T ×H × Λ → H be defined by:

ĝ(t, x, λ)(·) = g(t, · , x(·), λ);
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i.e. ĝ is the Nemitsky (superposition) operator corresponding to g. Also let
Û(t, λ) = {u ∈ L2(Z) : |u(z)| ≤ θ(t, z, λ) a.e.}. Define the multifunction
F : T ×H × Λ → Pwkc(H) by F (t, x, λ) = ĝ(t, x, λ)Û(t, λ) = {ĝ(t, x, λ)u :
u ∈ Û(t, λ)} ∈ Pwkc(H). We will check that F (· , · , ·) satisfies hypothesis
H(F ). To this end let w ∈ H be given. Then we have:

d(w, F (t, x, λ)) = inf{‖w − ĝ(t, x, λ)u‖2 : u ∈ Û(t, λ)}

= inf




∫

Z

|w(z)− g(t, z, x(z), λ)u(z)|2dz : u ∈ Û(t, λ)




1/2

=


inf

∫

Z

|w(z)− g(t, z, x(z), λ)u(z)|2dz : u ∈ Û(t, λ)




1/2

=




∫

Z

inf[ |w(z)− g(t, z, x(z), λ)u|2 : |u| ≤ θ(t, z, λ)]dz




1/2

(the last equality follows from theorem 2.2 of Hiai–Umegaki [4])

⇒ d(w, F (t, x, λ)) =




∫

Z

d(w(z), G(t, z, λ))2dz




1/2

where G(t, z, λ) = {g(t, z, x(z), λ)u : |u| ≤ θ(t, z, λ)}. But from hypotheses
H(g) and H(θ) it is clear that (t, z) → G(t, z, λ) is a measurable multi-
function. So

t →



∫

Z

d(w(z), G(t, z, λ))2dz




1/2

is measurable

⇒t → d(w, F (t, x, λ)) is measurable

⇒t → F (t, x, λ) is measurable.

Next using hypothesis H(g)(2 ), we have that

h(F (t, x, λ), F (t, y, λ)) ≤ ‖ĝ(t, x, λ)− ĝ(t, y, λ)‖2‖θ‖∞r

≤ k̂‖x− y‖2 with k̂ > 0.

Finally let λn → λ in Λ and let u ∈ Û(t, λ). Because of hypothesis
H(θ), clearly Û(t, ·) is continuous and so we can find un ∈ Û(t, λn) s.t.
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un
s−→ u in L2(Z). We then have:

d(w,F (t, x, λn)) ≤ ‖w − ĝ(t, x, λn)un‖2
⇒ lim d(w,F (t, x, λn)) ≤ ‖w − ĝ(t, x, λ)u‖2.

Since u ∈ Û(t, λ) was arbitrary, we get that

(10) lim d(w, F (t, x, λn)) ≤ d(w, F (t, x, λ)).

On the other hand, let un ∈ Û(t, λn) s.t.

d(w, F (t, x, λn)) = ‖w − ĝ(t, x, λn)un‖2.
Their existence is guaranteed by the fact that Û(· , ·) is Pwkc(L2(Z))-valued
and the L2(Z)-norm ‖ · ‖2 is w-l.s.c. Because of hypothesis H(θ) and by

passing to a subsequence if necessary, we may assume that un
w?

−→ u in
L∞(Z). So for every h ∈ L2(Z) we have

(ĝ(t, x, λn)un, h)L2(Z) =
∫

Z

g(t, z, x(z), λn)un(z)h(z)dz

→ (ĝ(t, x, λ)u, h)L2(Z) =
∫

Z

g(t, z, x(z), λ)u(z)h(z)dz as n →∞,

⇒ ĝ(t, x, λn)un
w−→ ĝ(t, x, λ)u in H = L2(Z).

Hence we have

(11)
‖w − ĝ(t, x, λ)u‖2 ≤ lim ‖w − ĝ(t, x, λn)un‖2
⇒ d(w, F (t, x, λ)) ≤ lim d(w, F (t, x, λn)).

From (10) and (11) above, we deduce that

d(w,F (t, x, λn)) → d(w, F (t, x, λ)) as n →∞
⇒ λ → F (t, x, λ) is d-continuous.

Note that because of hypothesis H(g) (4 ), we have

|F (t, x, λ)| ≤ α̂B(t) + β̂B |x|2/q

with α̂B(t) = 2‖ξB‖∞‖αB(t, ·)‖2 ∈ L2
+ and β̂B = 2‖ξB‖∞‖βB‖∞ > 0.

So we have satisfied hypethesis H(F ). Also λ → x̂0(λ) = x0(· , λ) is
continuous from Λ into H (see hypothesis H ′

0).
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Rewrite the dynamics of (9) as the following equivalent abstract evo-
lution inclusion:

(9)′d

{
ẋ(t) + A(t, x(t), λ) ∈ F (t, x(t), λ) a.e.

x(0) = x̂0(λ).

}

As always, the equivalence can be established through an easy appli-
cation of Aumann’s selection theorem. Let S(λ) ∈ Pk(Lp(T, H)) be the
solution set of (9)′d. From theorem 3.1 we know that S : Λ → Pk(Lp(T, H))
is Vietoris and Hausdorff continuous.

Now let η̂ : GrS → R be defined by η̂(x, λ) =
∫
Z

η(z, x(b, z), λ)dz

(the pointwise evaluation x(b, ·), makes sense since S(λ) ⊆ Wpq(T ) →
C(T, H)). Using hypothesis H(η), we can easily check that η̂(· , ·) is in
fact continuous. So Q(λ) = {x ∈ S(λ) : η̂(x, λ) = m(λ)} 6= ∅.

Next let λn → λ in Λ and pick x ∈ S(λ) s.t. η̂(x, λ) = m(λ). Then
since S(·) is Vietoris continuous, we can find xn ∈ S(λn) s.t. xn

s−→ x in
Lp(T, H). Then η̂(xn, λn) → η̂(x, λ) ⇒ limm(λn) ≤ m(λ). On the other

hand, let xn ∈ S(λn) s.t. η̂(xn, λn) = m(λn). Since
⋃

n≥1

S(λn)
‖·‖Lp(T,H)

is compact (see the proof of theorem 3.1), by passing to a subsequence if
necessary, we may assume that xn

s−→ x in Lp(T, H). Then theorem 3.1
tells us that x ∈ S(λ). Also η̂(xn, λn) → η̂(x, λ) ⇒ lim m(λn) ≥ m(λ).
Therefore, m(λn) → m(λ) ⇒ m(·) is continuous.

Using the continuity of m(·), we can easily check that

s- limQ(λn) ⊆ Q(λ)

⇒ Q|B is u.s.c.

and so by lemma β of [13], we conclude that Q(·) is u.s.c. ¤
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