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On continuous solutions and stability of a conditional
GoÃla̧b–Schinzel equation

By NICOLE BRILLOUËT-BELLUOT (Nantes) and JANUSZ BRZDȨK (Kraków)

This paper is dedicated to Professor Zoltán Daróczy
on the occasion of his 70th birthday

Abstract. We determine the continuous solutions f : R → R of the functional

equation

f(x + f(x)y)f(x)f(y)[f(x + f(x)y)− f(x)f(y)] = 0 (x, y ∈ R).

We also give some remarks on nonstability of the GoÃla̧b–Schinzel equation.

Let R denote the set of reals. The GoÃla̧b–Schinzel functional equation

f(x + f(x)y) = f(x)f(y)) (1)

has been introduced by S. GoÃla̧b and A. Schinzel in [17], for functions f :
R→ R. For continuous functions with more general domains (Hilbert space) the
equation has been studied for the first time by Z. Daróczy in [15], where he has
obtained a very elegant description of solutions. For further details concerning
equation (1) refer e.g. to [1]–[3], [19]–[22] and to the survey paper [5].

This paper has been motivated by the talk of R. Ger at the 44th ISFE (see
[16]), in which he stated that the problem of solving the following two conditional
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equations

f(x + f(x)y) = f(x)f(y) whenever f(x + f(x)y) 6= 0, (2)

f(x + f(x)y) = f(x)f(y) whenever f(x)f(y) 6= 0 (3)

(e.g. in the class of functions f : R→ R) is of interest and arises naturally in the
study of stability of (1). Namely, investigating Hyers–Ulam stability of (1) in the
sense of R. Ger we come across the following two conditional inequalities (see
e.g. [11])

∣∣∣∣
f(x)f(y)

f(x + f(x)y)
− 1

∣∣∣∣ ≤ ε whenever f(x + f(x)y) 6= 0, (4)

∣∣∣∣
f(x + f(x)y)

f(x)f(y)
− 1

∣∣∣∣ ≤ ε whenever f(x)f(y) 6= 0 (5)

for a given ε > 0 (for the information on the stability of functional equations
see [18]; stability of (1) has been investigated in [11], [12], [13]). It is easily seen
that those two inequalities are strictly connected with equations (2) and (3): e.g.
every solution of (2) ((3), respectively) satisfies (4) ((5), respectively) and one
could expect that every f : R → R satisfying (4) ((5), respectively) is close, in
some sense, to a solution of (2) ((3), respectively).

Note that every solution f : R → R of either of those two conditional equa-
tions is a solution of the functional equation

f(x + f(x)y)f(x)f(y)[f(x + f(x)y)− f(x)f(y)] = 0. (6)

Thus solving (6) we obtain all solutions of (2) and (3) as well; moreover (see
Corollary 2), in this way, we also solve the equations

f(y)f(x + f(x)y) = 0, (7)

f(x)f(y)f(x + f(x)y) = 0. (8)

In this paper we determine the continuous solutions f : R → R of (6). Our
results correspond to the recent papers [10], [19], [20], [21], [22] on conditional
versions of (1). The main tool in our proof is the well known theorem of J. Aczél

[1] (see also [14]), concerning the continuous cancellative associative operations
on a real interval; or more precisely the following consequence of it.

Theorem 1. Let L be a nontrivial real interval and let ◦ : L× L → L be a

continuous cancellative associative operation. Then the operation is commutative.
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For some further examples of applications of the Aczél theorem in solving
some functional equations of similar type see [4], [6], [7], [8], [9].

We start with some Lemmas. In what follows we assume that f : R → R is
a nonconstant continuous solution of the functional equation (6) and I := {x ∈
R : f(x) 6= 0}. Please note that I 6= R, because otherwise f is a solution of (1)
and consequently f ≡ 1 (see e.g. [5, Proposition 2]).

Lemma 1. Let J be a nontrivial interval included in I with x + f(x)y ∈ J

for all x, y ∈ J . Then there is c ∈ R with f(x) = cx + 1 for x ∈ J .

Proof. Write A(x, y) := x + f(x) for x, y ∈ R. Then A : J × J → J is a
continuous and associative operation, cancellative on both sides (cf. e.g. [9, p. 5]
or [6]). By Theorem 1, A is a commutative operation, which means that

x + f(x)y = y + f(y)x for x, y ∈ J. (9)

Let y ∈ J \ {0} and c := (f(y)− 1)y−1. Then (9) implies the statement. ¤

Lemma 2. The following two statements hold.

(i) The function g : R → R, given by: g(x) = f(−x), is a solution of equation

(6).

(ii) Let a > 0 and f(x) < 0 for x > a. Then f(y) ≥ 0 for y < 0.

Proof. Since (i) is obvious we prove only (ii). For the proof by contradiction
suppose that there is y < 0 with f(y) < 0 and take x > a. Then f(x) < 0, which
means that x + f(x)y > x > a. Hence f(x + f(x)y) < 0 and f(x)f(y) > 0.
Consequently f(x)f(y)f(x + f(x)y) 6= 0 and, by (1), we have f(x + f(x)y) =
f(x)f(y), which gives the contradiction. ¤

Lemma 3. Let (a, b) be a connected component of I. Then a = −∞ or

b = +∞.

Proof. For the proof by contradiction suppose −∞ < a < b < +∞. The
continuity of f implies f(a) = f(b) = 0.

Suppose that there are α, β ∈ (a, b) with α+f(α)β ≤ a. Since b+f(b)β = b,
by the continuity of f , there is γ ∈ [α, b) such that γ + f(γ)β = a. Let γ0 =
sup{γ ∈ [α, b) : γ + f(γ)β = a} ≥ α > a. Again, the continuity of f implies
γ0 + f(γ0)β = a, and therefore γ0 ∈ (a, b).

Let γ1 = inf{γ ∈ [γ0, b] : γ + f(γ)β = b}. For all x ∈ (γ0, γ1) we have:
x + f(x)β ∈ (a, b) and consequently f(x)f(β) = f(x + f(x)β). So, as x goes
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to γ0 + 0, we get 0 6= f(γ0)f(β) = f(γ0 + f(γ0)β) = f(a) = 0, which gives the
contradiction.

Thus we have shown α + f(α)β > a for α, β ∈ (a, b). Similarly (see Lem-
ma 2(i)), we prove α + f(α)β < b for α, β ∈ (a, b). So, by Lemma 1, there
is c ∈ R with f(x) = cx + 1 for x ∈ (a, b). This is a contradiction, because
f(a) = f(b) = 0. ¤

Corollary 1. I ∈ {(−∞, b) ∪ (a,+∞), (a,+∞), (−∞, a)} for some a, b ∈ R,

b ≤ a.

Lemma 4. Let a ∈ R, (a,+∞) ⊆ I and f(a) = 0. Then one of the following

two statements holds.

(i) a < 0, x + f(x)y > a for every x, y > a and

f(x) = 1− x

a
for x > a. (10)

(ii) a > 0, x + f(x)y ≤ a for every x, y > a and

f(x) ≤ 1− x

a
for x > a. (11)

Proof. First we show that either x+f(x)y > a for x, y > a or x+f(x)y ≤ a

for x, y > a. For the proof by contradiction suppose X1 := x1 + f(x1)y1 ≤ a and
X2 := x2 + f(x2)y2 > a for some x1, y1, x2, y2 > a. We consider only the case
x1 ≤ x2, y1 ≤ y2; the cases where x1 > x2 or y1 > y2 are analogous.

The continuity of f implies that A([x1, x2]× [y1, y2]) is an interval containing
[X1, X2]. Therefore, there are α1 ∈ [x1, x2] and β1 ∈ [y1, y2] with

A(α1, β1) = a +
X2 − a

2
.

Now, A([x1, α1] × [y1, β1]) is an interval containing the interval [X1,
a+X2

2 ]. So,
there exist α2 ∈ [x1, α1] and β2 ∈ [y1, β1] such that

A(α2, β2) = a +
X2 − a

22
.

In this way, we construct two decreasing sequences, {αn}n∈N in [x1, x2] and
{βn}n∈N in [y1, y2], such that

A(αn, βn) = a +
X2 − a

2n
.
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We have: f(A(αn, βn)) = f(αn)f(βn) for all n ∈ N. Let x0 = limn→+∞ αn ∈
[x1, x2] and y0 = limn→+∞ βn ∈ [y1, y2]. As n goes to +∞, we get: f(a) = 0 =
f(x0)f(y0) 6= 0, which gives the contradiction.

• If x+f(x)y > a for all x, y > a, we apply Lemma 1 to J = (a,+∞). Then
the continuity of f at a implies a 6= 0 and

f(x) = 1− x

a
for x ≥ a.

Suppose that a > 0 and take x, y > a. Then (x − a)(y − a) > 0, whence
x + y − xy

a < a. Consequently we have x + f(x)y < a. This contradiction proves
that a < 0.

• Suppose now:
x + f(x)y ≤ a for x, y > a. (12)

Clearly x = y = 0 in (12) implies a ≥ 0. Further, with a = 0, (12) gives
x+f(x)y ≤ 0 for x, y > 0 and consequently, with y → 0+, we get a contradiction.
Therefore a > 0. Moreover, as y → a + 0, from (12) we get

f(x) ≤ 1− x

a
for x ≥ a. ¤

From Lemmas 2(i) and 4 we easily derive the following result.

Lemma 5. If b ∈ R, (−∞, b) ⊆ I and f(b) = 0, then one of the following

two conditions holds.

(i) b > 0, x + f(x)y < b for x, y < b, and

f(x) = 1− x

b
for x < b. (13)

(ii) b < 0, x + f(x)y ≥ b for x, y < b, and f(x) ≤ 1− x

b
for x < b.

Lemma 6. Let a, b ∈ R, 0 < b ≤ a, f(a) = 0, and (11) and (13) hold. Then

a = b and

f(x) = 1− x

a
for x ∈ R. (14)

Proof. Take x, w ∈ (a, +∞). Then, by (11), f(x) < 0 and f(w) < 0,
whence there exists y0 > a such that x + f(x)y, w + f(w)y ∈ (−∞, b) for y > y0.
Consequently, in view of (13), for every y > y0,

0 6= f(x)f(y) = f(x + f(x)y) = 1− x + f(x)y
b



446 Nicole Brillouët-Belluot and Janusz Brzdȩk

and

0 6= f(w)f(y) = f(w + f(w)y) = 1− w + f(w)y
b

,

which implies that
b− x

bf(x)
− y

b
= f(y) =

b− w

bf(w)
− y

b
.

Thus we have proved that there is c ∈ R \ {0} with b − x = cf(x) for
x ∈ (a,+∞). Now writing α = − 1

c and β = b
c we have f(x) = αx + β for

x ∈ (a,+∞). Since f is continuous and f(a) = 0, we have β = −aα. Therefore

f(x) = α(x− a) for x ∈ (a, +∞). (15)

Let x ∈ (a,+∞). There is y ∈ (a,+∞) with x + f(x)y < b for y > y. Thus,
for y > y,

α2(x− a)(y − a) = f(x)f(y) = f(x + f(x)y) = 1− x + α(x− a)y
b

and consequently bα(x− a)
(
α(y − a) + y

b

)
= b− x, which yields α = − 1

b .

So we have proved that −a
b (x− a) = (b− x) for x > a, whence a = b. This,

(13), and (15) yield (14). ¤

Lemma 7. Let a, b ∈ R, b ≤ a, and I = (−∞, b)∪ (a,+∞). Then a = b 6= 0
and (14) holds.

Proof. In view of Lemma 2(i) it is enough to consider only the case a ≥ 0.
Then, according to Lemma 4, condition (11) holds, which means that f(x) < 0
for x > a. Hence, in view of Lemma 2(ii), f(y) ≥ 0 for y < 0. On account of
Lemma 5, this is possible only if b > 0 and (13) is valid. Consequently Lemma 6
yields the statement. ¤

Now we are in a position to prove the main result.

Theorem 2. A continuous function f : R→ R is a solution of equation (6)
if and only if one of the following four conditions holds.

(α) f ≡ 0.

(β) There is c ∈ R such that

f(x) = max{cx + 1, 0} for x ∈ R
or

f(x) = cx + 1 for x ∈ R.
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(γ) There is a ∈ (0,∞) such that

f(x) ≤ 1− x

a
for x ∈ (a,∞)

and

f(x) = 0 for x ∈ (−∞, a].

(δ) There is b ∈ (−∞, 0) such that

f(x) ≤ 1− x

b
forx ∈ (−∞, b)

and

f(x) = 0 for x ∈ [b,∞].

Proof. First assume that one of conditions (α)–(δ) holds; we show that
then f is a solution of equation (6). The cases where (α) or (β) is valid are
trivial, because then f is a solution of the GoÃla̧b–Schinzel equation (see e.g. [3],
[5], [17]). So, in view of Lemma 2(i), it remains to consider the case of (γ).

Take x, y ∈ R with f(x)f(y) 6= 0. This means that x, y ∈ (a,∞), whence
(x−a)(y−a) > 0. Consequently x+(1− x

a )y < a, which implies that x+f(x)y < a.
Hence f(x + f(x)y) = 0 and therefore (6) holds.

Now assume that f is a solution of (6) and f 6≡ 0. If f is constant, i.e.,
f ≡ γ 6= 0, then, by (6), γ = γ2, whence γ = 1. So (β) holds with c = 0.

Now assume that f is not constant; then, in view of [5, Proposition 2],
I 6= R. Consequently, by Corollary 1, there exist a, b ∈ R, b < a, such that
I ∈ {(a,∞), (−∞, b), (−∞, b) ∪ (a,∞)}.

First consider the case where I = (a,∞). If a > 0, then, according to
Lemma 4, (γ) holds. If a < 0, then Lemma 4 implies (β). The case where
I = (−∞, b) is analogous on account of Lemma 2(i).

In the case where I = (−∞, b) ∪ (a,∞) it is enough to use Lemma 7. ¤

Corollary 2. 1◦ Every continuous f : R → R, satisfying (2) or (3), is a

solution of (1).

2◦ Continuous f : R→ R satisfies (7) if and only if (α) or (γ) or (δ) holds.

3◦ Continuous f : R→ R satisfies (8) if and only if (α) or (γ) or (δ) holds.

Proof. Suppose that (γ) or (δ) holds. Then taking y = 0 and f(x) 6= 0 we
obtain that (2) does not hold. Next, arguing as in the proof of Theorem 2, we
show that f(x + f(x)y) = 0 for x, y ∈ R with f(x)f(y) 6= 0. Hence (3) does not
hold, either; but equations (7) and (8) are fulfilled. Taking x = y = 0 we see that
functions given by (β) do not satisfy (7) nor (8). ¤
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Remark 1. It follows from Corollary 2 that a continuous f : R → R is a
solution of (6) if and only if it is a solution of (1) or of (8). This is no longer true
if f is discontinuous at least at one point. Namely the function f : R→ R, given
by

f(x) =

{
1, if x ≥ 0;

0, if x < 0,

satisfies (6) and it is neither a solution of (1) (take x = 2, y = −1) nor of (8)
(take x = y = 1).

Remark 2. J. Chudziak [11, Theorem 1] has proved that every, continuous
at 0, function f : R → R that satisfies (4) and (5) is a solution of (1) or it
is bounded. This is not the case if we replace conditions (4) and (5) by the
following weaker one

∣∣∣∣
f0(x)f0(y)

f0(x + f0(x)y)
− 1

∣∣∣∣ ≤ ε and
∣∣∣∣
f0(x + f0(x)y)

f0(x)f0(y)
− 1

∣∣∣∣ ≤ ε

for x, y ∈ R, f0(x + f0(x)y)f0(x)f0(y) 6= 0.

(16)

The following two examples show this.

Example 1. Let f0 : R→ R be given by

f0(x) =

{
x + 1, if x ≥ 1;

0, if x < 1.

It is easy to check that f0(x + f0(x)y) = f0(x)f0(y) for x, y ∈ [1,∞), which
means that (16) holds with any ε > 0, but f0 is not a solution of (1) (take e.g.
x = 2, y = − 1

4 ) nor it is bounded. Moreover, for every solution f : R→ R of the
GoÃla̧b–Schinzel equation (1), we have

sup
x∈R

|f(x)− f0(x)| ≥ 1,

because either f(R) = {0} or f(0) = 1.
However, f0 satisfies (6).

Example 2. Let ε ∈ (0, 1) and f0 : R→ R be given by

f0(x) =





x, if x ≥ 1
ε
;

0, if x <
1
ε
.
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It is easy to check that (16) holds, but f0 is not a solution of (1) or of (6) (take
e.g. x = y = 1

ε ), nor it is bounded. Moreover, analogously as in Example 2, for
every solution f : R→ R of equation (1), we obtain

sup
x∈R

|f(x)− f0(x)| ≥ 1.

We also have the following example.

Example 3. Let ε ∈ (0, 1), k ∈ [
1

1+ε , 1 + ε
]
, k 6= 1, and f0 : R → R be given

by: f0(x) = k for x ∈ R. Then

1− ε <
1

1 + ε
≤ k ≤ ε + 1 <

1
1− ε

,

which means that f0 is a continuous solution of (16), but it is not a solution of (6).
We do not know if there exist an unbounded continuous solution f0 : R → R of
(16) that do not satisfy equation (6).
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Sitzungsber. II 208 (1999, 2000), 171–177.

[3] N. Brillouët and J. Dhombres, Équations fonctionnelles et recherche de sous-groupes,
Aequationes Math. 31 (1986), 253–293.
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