
Publ. Math. Debrecen

72/3-4 (2008), 469–474

Fixed points of isometries of a Finsler space

By SHAOQIANG DENG (Tianjin)

Abstract. In this paper, we study the zero points of Killing vector fields of a

Finsler space. It turns out that Kobayashi’s result on Killing vector fields of a Riemann-

ian manifold can be generalized to the Finslerian case. In particular, any connected

component of the set of zero points of a Killing vector field in a Finsler space is a totally

geodesic closed submanifold and the Euler number of the manifold is the sum of the

Euler numbers of the connected components provided the manifold is compact. Some

interesting corollaries are also given.

Introduction

Let (M, F ) be a Finsler space, where F is positively homogeneous of degree
one (but perhaps not absolutely homogeneous). A (smooth) vector field ξ on M

is called a Killing vector field if any local one-parameter transformation group
generated by ξ consists of local isometries of (M, F ). Killing vector fields play
a very important role in Riemannian geometry, see for example [7]. In Finsler
geometry, it has also proven to be a useful tool to study some problems related
to isometries, homogeneous spaces and curvatures. For example, it is the vital
tool in our previous work [3] to prove that a homogeneous Finsler space with
non-positive flag curvature and negative Ricci scalar is simply connected.

The purpose of this paper is to study the zero points of Killing vector fields
in a Finsler space. Since a Killing vector field can be viewed as an infinitesimal
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isometry, we can also view the zero points as fixed points of isometries. The main
result of this paper is the following

Theorem. Let (M, F ) be a (connected) Finsler space of dimension n and

ξ be a Killing vector field of (M, F ). Let V be the set of points in M where ξ

vanishes and let V = ∪Vi, where the Vi’s are the connected components of V .

Assume that V is not empty. Then we have

1. Each Vi is a totally geodesic closed submanifold of M and the co-dimensions

of the Vi’s are even.

2. If (M, F ) is forwardly complete and x ∈ Vi, y ∈ Vj with i 6= j, then there

is a one-parameter family of geodesics connecting x and y. In particular, x

and y are conjugate to each other.

3. If M is compact, then the Euler number of M is the sum of Euler numbers

of the Vi’s, i.e.,

χ(M) =
∑

χ(Vi).

We remark that Kobayashi’s original proof of the same theorem in the
Riemannian case [6] does not apply to the Finslerian case. So we need some new
technical arguments. In fact the proof of this theorem uses some deep results on
maximal compact subgroups of a connected semisimple group and the structure
theory of compact Lie groups. The theorem has the following corollaries:

Corollary 1. Let k be an abelian (finite-dimensional) Lie algebra consisting

of Killing vector fields and V the set of points where every element of k vanishes.

Then the same conclusions as in the main theorem hold.

Corollary 2. Under the same assumptions as in Corollary 1, if (M, F ) is a

globally symmetric (resp. locally symmetric) Finsler space, then so is each Vi.

Remark. A Finsler space (M, F ) is called globally symmetric if each point is
the isolated fixed point of an involutive isometry. It is called locally symmetric
if for any x ∈ M there exists a neighborhood U of x such that the local geodesic
symmetry is an isometry on U (see [4]).

Corollary 3. Under the same assumptions as in Corollary 1, if (M, F ) is

forwardly complete and the flag curvature is non-positive, then V is either empty

or connected.

Corollary 4. Let (M, F ) be a compact Finsler space of dimension 2m. Sup-

pose a torus group of dimension m acts on M differentiably and effectively. Then

the Euler number of M is zero or positive according as the fixed point set V is
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empty or not. If M is orientable and V is non-empty, then the Euler number of

M is ≥ 2.

1. The proof

First we give the proof of the theorem.

(1) Suppose x ∈ V . Then we can take a neighborhood U of x such that
ξ generates a local one-parameter transformation group from U into M . That
is, there is a set of mappings {ϕt | |t| < ε, ε > 0} such that each ϕt is a
diffeomorphism from U onto ϕt(U) and

ϕt(ϕs(p)) = ϕt+s(p), for p ∈ U, ϕs(p) ∈ U, |t + s| < ε.

Moreover, for any p ∈ U , ξ(p) is just the initial vector of the curve ϕt(p). Since
ξ(x) = 0, any ϕt keeps x fixed. Therefore the differentials (dϕt)|x, |t| < ε, are
linear automorphisms of the tangent space Tx(M). Since ϕt is an (local) isometry,
(dϕt)|x keeps the length of any vector in Tx(M). This implies that (dϕt)|x is a
linear isometry of the Minkowski space (Tx(M), F |x). Let L denote the group
of linear isometries of (Tx(M), F |x). Then a result of H. C. Wang asserts that
L is a compact subgroup of the general linear group GL(Tx(M)) ([8]). Fix a
basis {e1, e2, . . . , en} of Tx(M). Then GL(Tx(M)) is identified with the group
GL(n,R) of all n × n real invertible matrices. Since L is a compact subgroup
of GL(n,R), the unit component L0 of L must be contained in the subgroup
SL(n,R) of matrices of determinant 1. Now SL(n,R) is a connected semisimple
Lie group. Therefore any two maximal compact subgroups of it are conjugate
[5]. Since SO(n) is a maximal subgroup of SL(n,R) [5], there exists g ∈ SL(n,R)
such that g−1L0g ⊂ SO(n). Now consider the subset {(dϕt)|x} of L. It is obvious
that it is contained in L0. Thus g−1{(dϕt)|x}g is contained in a one-parameter
subgroup of SO(n). Since any two maximal connected commutative subgroups
(i.e., the maximal tori) are conjugate [5] and the matrices of the form




cos θ1 sin θ1

− sin θ1 cos θ1

. . .
cos θr sin θr

− sin θr cos θr

In−2r




, r ≥ 0, θi ∈ R



472 Shaoqiang Deng

constitute a maximal torus of SO(n), there is g1 ∈ SO(n), s ≥ 0 and γi ∈ R,
γi 6= 0 such that

g−1
1 (g−1{(dϕt)|x}g)g1 =




cos tγ1 sin tγ1

− sin tγ1 cos tγ1

. . .
cos tγs sin tγs

− sin tγs cos tγs

In−2s




Thus there is a basis {w1, w2, . . . , wn} of Tx(M) such that the matrix of (dϕt)|x
under this basis is as the right hand of the above equation.

If n− 2s = 0, then n is even and x is an isolated fixed point of ϕt, hence an
isolated zero point of ξ. Suppose n − 2s > 0. Then for any vector v ∈ S, where
S is the span of w2s+1, w2s+2, . . . , wn, the geodesic emanating from x with the
direction v must be kept fixed by the one-parameter group ϕt. This can be easily
seen from the obvious fact that in a Finsler space an isometry sends a geodesic
to a geodesic and the uniqueness of the (constant speed) geodesics. Now we
assert that there exists a neighborhood W of x such that the set of such geodesics
form a n − 2s-dimensional submanifold W ′ of W . This is not obvious as in the
Riemannian case because in a general Finsler space the exponential mapping is
only C1 at the zero section (but it is smooth away from the zero section, cf. [1]).
Let c be a positive number and define as in [1]

B+
x (c) = {y ∈ M | d(x, y) < c}, B−x (c) = {y ∈ M | d(y, x) < c}.

Then for sufficiently small c the exponential mapping is a C1 diffeomorphism from
Bx(c) = {v ∈ Tx(M) | F (v) < c} onto B+

x (c). Thus the exponential mapping is
a C1 diffeomorphism from S ∩ Bx(c) onto exp(S ∩ Bx(c)). Hence the latter is
a n − 2s-dimensional C1 submanifold of B+

x (c). To prove our assertion we only
need to proceed to take c so small so that every pair of points in B+

x (c) ∩ B−x (c)
can be joint by a unique minimizing geodesic (see [1]). Fix an arbitrary point z

in exp(S ∩Bx(c)) ∩ (B+
x (c) ∩ B−x (c)) and consider the exponential mapping at z.

Since each ϕt (We can take c small enough so that B+
x (c) ⊂ U) keeps z fixed it is

easily seen that there exists a n−2s-dimensional subspace S′ of Tz(M) such that
exp is a (smooth) diffeomorphism from S′∩Bz(c)−{0} onto exp(S′∩Bz(c)−{0}),
which is a neighborhood of x in exp(S ∩Bx(c)). This proves our assertion. Now
we show that any zero point of ξ in B+

x (c)∩B−x (c) must be in exp(S∩Bx(c)). Let
y be a zero point of ξ in B+

x (c)∩B−x (c). Select a geodesic τ joining x and y. Since
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x and y are zero points of ξ, ϕt keeps x and y fixed. Hence ϕt must keep the
geodesic τ point-wise fixed. Therefore the initial vector of τ at x must be in S.
This proves that y is in exp(S ∩ Bx(c)). Hence each Vi is a closed submanifold
and the codimension is even. From the above arguments we easily see that each
Vi must be a totally geodesic submanifold.

(2) Suppose x ∈ Vi, y ∈ Vj , i 6= j and (M,F ) is forwardly complete. By the
Hopf–Rinow theorem ([1]), there is a geodesic τ joining x and y. The restriction
of the Killing vector field ξ to τ is a Jacobi field along τ (see [3]). Hence ξ|τ is
the variation vector field of a one-parameter family geodesics [1]. Since x and y

are zero points of ξ, this family of geodesics can be taken to start from x and to
end at y. However, since i 6= j, this family of geodesics can not be left fixed by
the local transformation group generated by ξ. Otherwise there would be a curve
consisting of zero points of ξ and joining Vi and Vj , contradicting the definition
of Vi.

(3) Since M is compact, the Killing vector field ξ is complete. Hence ξ

generates a global one-parameter group of transformations ϕt, −∞ < t < ∞.
Any ϕt is an isometry of the Finsler space (M, F ). Let G be the full group of
isometries of (M,F ). Then G is a Lie transformation group of M and for any
x ∈ M , the isotropic subgroup Gx of G at x is a compact subgroup of G [2]. Since
M is compact, G is a compact Lie group (this can be seen from the observation
that the orbit of G at a point x ∈ M is a closed submanifold of M (see [5]) and
G · x = G/Gx). Let G0 be the unit component of G and dµ be the standard
normalized bi-invariant Haar measure of G0. Fix any Riemannian metric h on M

and for x ∈ M , v1, v2 ∈ Tx(M) define

h1(x)(v1, v2) =
∫

G0

h(g(x))(dg|x(v1), dg|x(v2))dµ(g).

Then it is easily seen that h1 is a Riemannian metric on M . In fact, the only
thing we need to check is the smoothness of h1. But this follows easily from the
smoothness of the action of G on M . Now by the definition of h1, we see that
h1 is invariant under the action of G0. Thus every element of G0 is an isometry
of h1. It is easily seen that the one-parameter subgroup {ϕt} must be contained
in G0. Thus any ϕt is an isometry of the Riemannian metric h1. This means
that the vector field ξ is also a Killing vector field with respect to the Riemannian
metric h1. Consequently the conclusion of (3) follows from the Riemannian case
in [6]. ¤

It is obvious that the above argument can also be used to prove Corollary 4.
Other corollaries can be proved similarly as in the Riemannian case. We omit the
details here. See [6].
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