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(α, β)-metrics with relatively isotropic mean
Landsberg curvature

By XINYUE CHENG (Chongqing), HUI WANG (Chongqing)
and MINGFENG WANG (Chongqing)

Abstract. (α, β)-metrics form an important class of computable Finsler metrics.

In this paper, we obtain firstly a formula of mean Cartan torsion for (α, β)-metrics and

characterize Riemann metrics among (α, β)-metrics. Further, we obtain a sufficient and

necessary condition for an (α, β)-metric to be of relatively isotropic mean Landsberg

curvature.

1. Introduction

In Finsler geometry, there are several very important non-Riemannian quan-
tities. The Cartan torsion C is a primary quantity. There is another quantity
which is determined by the Busemann–Hausdorff volume form, that is the so-
called distortion τ . The vertical differential of τ on each tangent space gives rise
to the mean Cartan torsion I := τykdxk. C, τ and I are the basic geometric
quantities which characterize Riemannian metrics among Finslers metrics. Dif-
ferentiating C along geodesics gives rise to the Landsberg curvature L.The hori-
zontal derivative of τ along geodesics is the so-called S-curvature S := τ|kyk. The
horizontal derivative of I along geodesics is called the mean Landsberg curvature
J := I|kyk. The Riemann curvature measures the shape of the space while the
non-Riemannian quantities describe the change of the “color” on the space. Hence
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Finsler spaces are “colorful” geometric spaces. It is found that the flag curvature
is closely related to these non-Riemannian quantities[3], [9], [10].

By the definition, J/I can be regarded as the relative growth rate of the mean
Cartan torsion along geodesic. We call a Finsler metric F is of relatively isotropic
mean Landsberg curvature if F satisfies J + cF I = 0, where c = c(x) is a scalar
function on the Finsler manifold. In particular, when c = 0, Finsler metrics with
J = 0 are called weakly Landsberg metrics. Many known Finsler metrics satisfy
J + cF I = 0 (cf. [3], [4], [9]). In [11], Z. Shen proves that a projectively flat
Randers metric of constant flag curvature on an n-dimensional manifold is either
locally Minkowskian or after a scaling, isometric to a Finsler metric on the unit
ball Bn in the following form

Fa =

√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

1− |x|2 ± 〈x, y〉
1− |x|2 ±

〈a, y〉
1 + 〈a, x〉 , y ∈ TxRn, (1)

where a ∈ Rn is a constant vector with |a| < 1. The Randers metric in (1)
satisfies J ± 1

2FaI = 0. In [4], the first author and Z. Shen classify Randers
metrics of isotropic flag curvature K = K(x) satisfying J + c(x)F I = 0 for some
c(x). Further, Cheng–Mo–Shen characterize flag curvature of Finsler metrics
of scalar flag curvature with relatively isotropic mean Landsberg curvature [3].

In the past several years, we witness a rapid development in Finsler geometry.
Various curvatures have been studied and their geometric meanings are better
understood. This is partially due to the study of a special class of Finsler metrics.
The special Finsler metrics we are going to discuss are expressed in terms of
a Riemannian metric α =

√
aijyiyj and a 1-form β = biy

i. They are called
(α, β)-metrics. The simplest (α, β)-metrics are the Randers metrics F = α + β.
(α, β)-metrics form an important class of Finsler metrics with many applications
in physics and biology (cf. [1]). Most important, (α, β)-metrics are “ computable”
and they are of many interesting curvature properties.

Let α =
√

aij(x)yiyj be a Riemannian metric and β = bi(x)yi be a 1-form
on an n-dimensional manifold M . Using α and β one can define a function F on
TM as follows

F = αφ(s), s =
β

α
, (2)

where φ = φ(s) is a C∞ positive function on an open interval (−bo, bo). The norm
‖βx‖α of β with respect to α is defined by

‖βx‖α := sup
y∈TxM

β(x, y)
α(x, y)

=
√

aij(x)bi(x)bj(x).
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We assume that

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, (|s| ≤ b < b0), (3)

so that F = αφ(s), where s = β/α, is a positive definite Finsler metric if and
only if b(x) := ‖βx‖α < b0 for all x ∈ M .

Recently, B. Li and Z. Shen characterize weakly Landsberg metrics in (α, β)-
metrics and show that there exist weakly Landsberg metrics which are not Lands-
berg metrics in dimension greater than two [8].

In this paper, we study (α, β)-metrics with relatively isotropic mean Lands-
berg curvature and prove the following

Theorem 1.1. Let F = αφ(β/α) be an (α, β)-metric on an n-dimensional

manifold M (n ≥ 3), where α =
√

aij(x)yiyj is a Riemannian metric and β =
bi(x)yi is a 1-form. Then F is of relatively isotropic mean Landsberg curvature,

i.e. there exists a scalar function c = c(x) on M such that J+ c(x)F I = 0, if and

only if β satisfies

sij = 0, (4)

rij = k(b2aij − bibj) + σbibj , (5)

where k = k(x) and σ = σ(x) are scalar functions on M and φ = φ(s) satisfies

the following ODE:

{
Ψ1k + sσΨ3

}
+ c(x)Φ(φ− sφ′) = 0, (6)

where Φ, Ψ1, Ψ3 are defined as follows

Q :=
φ′

φ− sφ′
, ∆ := 1 + sQ + (b2 − s2)Q′, (7)

Φ := −(n∆ + 1 + sQ)(Q− sQ′)− (b2 − s2)(1 + sQ)Q′′, (8)

Ψ1 :=
√

b2 − s2∆1/2

[√
b2 − s2Φ
∆3/2

]′
, (9)

Ψ2 := 2(n + 1)(Q− sQ′) + 3
Φ
∆

(10)

and

Ψ3 :=
s

b2 − s2
Ψ1 +

b2

b2 − s2
Ψ2. (11)
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By Theorem 1.1, we can see that J = 0 if and only if β satisfies

sij = 0, rij = k(b2aij − bibj) + σbibj

and φ = φ(s) satisfies
Ψ1k + sσΨ3 = 0.

This is just the result of Proposition 3.1 in [8].

Example 1.2. Let φ(s) = 1 + s. Then F = αφ(β/α) = α + β is a Randers
metric on the manifold. By a direct computation, we can prove that F is of
relatively isotropic mean Landsberg curvature, J + c(x)F I = 0, if and only if β

satisfies (4) and (5) with k = 2c/b2 and σ = 2c(1 − b2)/b2, that is, β is closed
and rij = 2c(aij − bibj). This result is first given by the first author and Z. Shen

in [4].

2. Preliminaries

Let F = F (x, y) be a Finsler metric on an n-dimensional manifold M . Let

gij(x, y) :=
1
2
[F 2]yiyj (x, y)

and (gij) := (gij)−1. For a non-zero vector y = yi ∂
∂xi |x ∈ TxM , F induces an

inner product on TxM

gy(u, v) = giju
ivj ,

where u = ui ∂
∂xi , v = vj ∂

∂xj ∈ TxM . g = {gy} is called the fundamental tensor
of F .

Let
Cijk :=

1
4
[
F 2

]
yiyjyk =

1
2

∂gij

∂yk
.

Define symmetric trilinear form C := Cijk(x, y)dxi⊗dxj ⊗dxk on TM\{0} . We
call C the Cartan torsion. The mean Cartan torsion I = Iidxi is defined by

Ii := gjkCijk.

Further, we have ([3], [7], [9])

Ii = gjkCijk =
∂

∂yi

[
ln

√
det(gjk)

]
. (12)
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For a Finsler metric F , the geodesics are characterized locally by a system
of 2nd ODEs:

d2xi

dt2
+ 2Gi

(
x,

dx

dt

)
= 0,

where
Gi =

1
4
gil

{
[F 2]xmylym − [F 2]xl

}
. (13)

Gi are called the geodesic coefficients of F . The Landsberg curvature
L = Lijk(x, y)dxi ⊗ dxj ⊗ dxk is a horizontal tensor on TM \ {0} defined by
(cf. [9], [10])

Lijk := −1
2
FFym

[
Gm

]
yiyjyk . (14)

F is called a Landsberg metric if L = 0. The mean Landsberg curvature J = Jidxi

is defined by
Ji := gjkLijk. (15)

We call F a weakly Landsberg metric if J = 0. We say that F is of relatively
isotropic mean Landsberg curvature if Ji + c(x)FIi = 0 for a scalar function c(x)
on M .

Now we consider an (α, β)-metric on an n-dimensional manifold M , F =
αφ(s), s = β/α. By a linear algebra technique, one obtains (cf. [2], [7], [9])

det(gij) = φn+1(φ− sφ′)n−2
[
(φ− sφ′) + (b2 − s2)φ′′

]
det(aij), (16)

where b(x) := ‖βx‖α.
In order to study the geometric properties of (α, β)-metrics, one needs a

formula for the geodesic coefficients of an (α, β)-metric. Let

rij :=
1
2
(bi|j + bj|i), sij :=

1
2
(bi|j − bj|i),

si
j := aihshj , rj := bmrmj , sj := bis

i
j = bmsmj ,

where “|” denotes the covariant derivative with respect to the Levi–Civita con-
nection of α. We will denote r00 := rijy

iyj , si
0 := si

jy
j , etc. Let Gi and Ḡi

denote the geodesic coefficients of F and α respectively in the same coordinate
system. By a direct computation, one gets the following formula [7], [9]:

Gi = Ḡi + αQsi
0 + Θ

{− 2αQs0 + r00

} {
yi

α
+

Q′

Q− sQ′ b
i

}
, (17)
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where

Θ :=
Q− sQ′

2∆
.

The Landsberg curvature of (α, β)-metrics is given by Z. Shen [12] as follows

Ljkl = − ρ

6α3

{
hjhkCl + hjhlCk + hkhlCj + 3(Ejhkl + Ekhjl + Elhjk)

}
, (18)

where
ρ = φ(φ− sφ′),

hj = bj − α−1syj ,

hjk = aj k − α−2yjyk,

Cj = α(X4r00 + Y4αs0)hj − 3Q′′Dj ,

Ej = α(X6r00 + Y6αs0)hj − (Q− sQ′)Dj ,

Dj =
α2

∆
(∆sj0 + rj0 −Qαsj)− 1

∆
(r00 −Qαs0)yj ,

where yj := ajkyk and

X4 =
1

2∆2

{− 2∆Q”′ + 3[(Q− sQ′) + (b2 − s2)Q′′]Q′′
}
,

X6 =
1

2∆2

{
(Q− sQ′)2 + [2(s + b2Q)− (b2 − s2)(Q− sQ′)]Q′′},

Y4 = −2QX4 +
3Q′Q′′

∆
,

Y6 = −2QX6 +
(Q− sQ′)Q′

∆
.

Then the mean Landsberg curvature of (α, β)-metrics is given by B. Li and
Z. Shen [8] as follows

Jj = − 1
2α4∆

{
2α3

b2 − s2

[
Φ
∆

+ (n + 1)(Q− sQ
′
)
]

(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ
∆

]
(r00 − 2αQs0)hj

+ α
[− α2Q′s0hj + αQ(α2sj − yjs0) + α2∆sj0

+α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

] Φ
∆

}
. (19)

For our aim, we need the following formula for the mean Cartan torsion of (α, β)-
metrics.
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Lemma 2.1. For an (α, β)-metric F = αφ(β/α), the mean Cartan torsion

is given by

Ii = − 1
2F

Φ
∆

(φ− sφ′)hi. (20)

Proof. By use of (12) and (16), after a direct computation, one can obtain

Ii =
1
2α

{
(n + 1)

φ′

φ
− (n− 2)

sφ′′

φ− sφ′
+

(b2 − s2)φ′′′ − 3sφ′′

φ− sφ′ + (b2 − s2)φ′′

}
hi. (21)

Further, by use of a Maple programm, one can get (20). ¤

By Deicke’s theorem, a Finsler metric is Riemannian metric if and only if
I = 0 [2]. By (3) and the assumption φ(s) > 0, we have φ(s) − sφ′(s) > 0,
|s| ≤ b < b0 (cf. [7]). Thus, from Lemma 2.1, we have the following

Proposition 2.2. An (α, β)-metric F is a Riemannian metric if and only if

Φ = 0.

In the following we always assume that F is not a Riemannian metric, that
is, Φ 6= 0. From (19) and (20), we have the following

Jj + c(x)FIj = − 1
2α4∆

{ 2α3

b2 − s2

[ Φ
∆

+ (n + 1)(Q− sQ′)
]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ
∆

]
(r00 − 2αQs0)hj

+ α
[− α2Q′s0hj + αQ(α2sj − yjs0) + α2∆sj0

+ α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

] Φ
∆

+ c(x)α4Φ(φ− sφ′)hj

}
. (22)

3. Necessary conditions

We have known that J can be expressed in terms of α, β and φ(s), φ′(s)
and etc, where s = β/α. But the formula (19) is very complicated. So the
equation J + c(x)F I = 0 is complicated too because one has to deal with the
terms φ(s), φ

′
(s), etc. To overcome this difficulty, a useful technique is to take a

special local coordinate system at a point x as in [12] such that

αx =

√√√√
n∑

i=1

(yi)2, βx = by1,
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where b = ‖βx‖α. Then we take another special coordinate: (s, uA) → (yi) given
by

y1 =
s√

b2 − s2
ᾱ, yA = uA,

where ᾱ =
√∑n

A=2(yA)2. We have

α =
b√

b2 − s2
ᾱ, β =

bs√
b2 − s2

ᾱ.

Because the expression (22) involves rij , sij etc, one needs the following expres-
sions:

r1 = br11, rA = br1A, s1 = 0, sA = bs1A,

r00 =
s2ᾱ2

b2 − s2
r11 + 2

sᾱ√
b2 − s2

r̄10 + r̄00,

r10 =
sᾱ√

b2 − s2
r11 + r̄10, s10 = s̄10,

where r̄10 = r1AuA, s̄10 = s1AuA, r̄00 = rABuAuB . We have r̄0 = rAuA = br̄10,
s̄0 = sAuA = bs̄10.

By a direct computation and using the formula (22), one can show that
J1 + c(x)FI1 = 0 is equivalent to that

{
Ψ3[s2r11ᾱ

2 + (b2 − s2)r̄00]− b2Ψ2r̄00

}
+ c(x)sb2Φ(φ− sφ′)ᾱ2 = 0 (23)

and
(2sΨ1 + b2Ψ2)r̄10 + b2(Ψ2 − 2QΨ1)s̄10 = 0, (24)

JA + c(x)FIA = 0 (A = 2, · · · , n) is equivalent to that

{
Ψ3[s2r11ᾱ

2 + (b2 − s2)r̄00]− b2Ψ2r̄00

}
yA + b2 Φ

∆
[
r̄00yA − (r̄A0 + ∆s̄A0)ᾱ2

]

+c(x)sb2Φ(φ− sφ′)ᾱ2yA = 0 (25)

and

s
{
2sΨ1 + b2Ψ2

}
r̄10yA + sb2

{
Ψ2 − 2QΨ1

}
s̄10yA

+ b2 Φ
∆

{
s(r̄10yA − r1Aᾱ2)− (b2Q + ∆s)(s̄10yA − s1Aᾱ2)

}
= 0. (26)
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Lemma 3.1. (n ≥ 3) For an (α, β)-metric F , if Jj + c(x)FIj = 0 at a

point x, then we have

sAB = 0, (27)

rAB = kb2δAB , (28)

r11 = σb2, (29)

where k = k(x) and σ = σ(x) are scalar functions on M .

Proof. It follows from (23) and (25) that

r̄00yA − (r̄A0 + ∆s̄A0)ᾱ2 = 0. (30)

Since n ≥ 3, (30) implies (27) and (28). Letting σ := r11/b2, we obtain (29). ¤
Lemma 3.2. (n ≥ 3) For an (α, β)-metric F , if Ji+c(x)FIi = 0 at a point x,

then

s1A = 0, r1A = 0. (31)

Proof. It follows from (24) and (26) that
{
sr̄10 − (b2Q + ∆s)s̄10

}
yA −

{
r1A − (b2Q + ∆s)s1A

}
ᾱ2 = 0. (32)

Since n ≥ 3, we obtain from (32) that

sr1A − (b2Q + ∆s)s1A = 0. (33)

Then we can claim that s1A = 0 and r1A = 0. See Lemma 4.2 in [8] for more
details. ¤

From Lemma 3.1 and 3.2, one obtains the following

Corollary 3.3. For an arbitrary (α, β)-metric F on an n-dimensional man-

ifold M (n ≥ 3), if Ji + c(x)FIi = 0, then β must be closed.

Now, plugging (28) and (29) into (23) yield
{
Ψ1k + sσΨ3

}
+ c(x)Φ(φ− sφ′) = 0. (34)

Let us summarize what we have proved.

Proposition 3.4. Let F = αφ(s) be an (α, β)-metric on an n-dimensional

manifold (n ≥ 3). Suppose that Ji + c(x)FIi = 0 at a point x. Then β satisfies

sij = 0, (35)

rij = k(b2aij − bibj) + σbibj (36)

and φ = φ(s) satisfies
{
Ψ1k + sσΨ3

}
+ c(x)Φ(φ− sφ′) = 0.
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4. Sufficient conditions

In this section, we are going to prove the sufficient conditions for an (α, β)-
metric F = αφ(β/α) to be of relatively isotropic mean Landsberg curvature.
Assume that α and β satisfy (4) and (5), we have

sj0 = 0, sj = 0, s0 = 0, (37)

rj0 = k(b2yj − βbj) + σβbj , r0 = σβb2, (38)

r00 = k(b2α2 − β2) + σβ2. (39)

Substituting them into (22), we obtain

Jj + c(x)FIj = − 1
2∆

{
Ψ1k + sσΨ3 + c(x)Φ(φ− sφ′)

}
hj .

By our assumption (6) on φ, we have

Jj + c(x)FIj = 0.

This completes the proof of the sufficient conditions.
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