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Generators of topological rings

By MIHAIL URSUL (Oradea) and MOHAMED AHMED M. SALIM (Al Ain)

Dedicated to Professor Adalbert Bovdi on his 70th birthday

Abstract. H. Fujita and D. Shakhmatov, in [FS], have introduced the con-

cept of a finitely generated – modulo open sets – topological group. In this paper we

transfer their results to topological rings which are finitely generated modulo open sets.

Moreover, we are introducing the concept of the free compact associative ring cFp〈X〉
of prime characteristic p over a set X. For a countable set X, the free ring cFp〈X〉 is

universal in the following two means: (i) that it contains an isomorphic copy of every

compact second countable associative ring of characteristic p; (ii) every compact second

countable associative ring with 1 of characteristic p is a continuous homomorphic image

of cFp〈X〉. We introduce also the concept of a free topologically nilpotent compact ring

of prime characteristic over a set. We give a realization of the free compact topologically

nilpotent ring with a countable set of generators and prove that it is a domain. It is

obtained that every compact second countable topologically nilpotent compact ring is a

continuous homomorphic image of a compact domain. There are compact rings of prime

characteristic which are not continuous images of compact reduced rings.

1. Introduction

H. Fujita and D. Shakhmatov have considered in a recent paper [FS] some
topological generalizations of finitely generated groups. In this paper we prove
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analogous results for topological rings, where the methods of [FS] are adapted in
Section 3.

In [U1], it was proved that a linearly compact ring having a set of topological
generators of cardinality less than 2ω is strictly linearly compact. A generalization
of this result will be given in Theorem 4.1, from which follows that every left
linearly compact finitely generated modulo open sets ring R having a fundamental
system of neighborhoods of 0 consisting of ideals is strictly linearly compact.

In [Mv], A. I. Mal’cev, has proved that every countable or finite associa-
tive ring can be embedded in a two-generated associative ring. Also, we should
mension the well known result that a free associative algebra of countably rank
is a subalgebra of rank two [Co, § 0.7, Ex. 6]. While in this context, we consider
the following question: can an associative compact separable ring be embedded
in a compact associative ring with two topological generators? A negative answer
is given in Example 5.1.

In Section 5, we prove that for a prime p the two free rings cFp 〈2〉 and cFp 〈ω〉
are universal in the sense that every compact associative second countable ring
of characteristic p can be embedded in cFp 〈2〉 and cFp 〈ω〉, respectively. In addi-
tion, every compact associative second countable ring with 1 of characteristic p

is a continuous homomorphic image of cFp 〈ω〉. We introduce the notion of a
free compact topologically nilpotent ring of prime characteristic. We prove that
the free compact topologically nilpotent ring with a countable set of generators
is a domain. This implies that every second countable compact topologically
nilpotent ring of prime characteristic is a continuous homomorphic image of a
compact domain. Not every compact ring of prime characteristic is a continuous
homomorphic image of a compact reduced ring.

In Section 6, we outline the construction of a compact right and left Noe-
therian ring without left classical quotient ring in abstract sense.

2. Notation

All topological rings are assumed to be T2, not necessarily associative. We
use the terminology on topological rings as it is given in [W]. We will identify
ω with the set of natural numbers, where ω is the first infinite ordinal. In the
set of natural numbers N, if m,n ∈ N, m ≤ n, then [m,n] will denote the set
{m,m + 1, . . . , n} of naturals. If X is a subset of a ring R then 〈X〉 stands for
the subring generated by X and (X) for the ideal generated by X; and if R is an
associative ring, then J(R) stands for the Jacobson radical of R. A Galois field
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containing pn elements, where p is prime, is denoted by Fpn . For each n ∈ N and
each ring R, M(n,R) stands for the ring of n×n-matrices over R. In a topological
space X, the closure of a subset A of X is denoted by A; and the weight of X is
denoted by wX.

3. Topological rings finitely generated modulo open sets

Recall that a topological ring R is said to be:

(i) compactly generated provided that R = 〈K〉 for some compact subspace K

of R,

(ii) σ-compact if there exists a sequence {Kn : n ∈ ω} of compact subsets such
that R = ∪n∈ωKn,

(iii) ω-bounded if for every neighborhood V of 0 there exists a countable subset
S ⊂ R such that R = S + V ,

(iv) totally bounded if for every neighborhood V of 0 there exists a finite subset
S such that R = S + V ,

(v) finitely generated modulo open sets if for every nonempty open set U ⊂ R,
there exists a finite subset F ⊂ R such that R = 〈F ∪ U〉,

(vi) almost metrizable provided there exist a nonempty compact subset K ⊂ R

and a sequence {Un}n∈ω of open subsets containing K such that every open
subset of R containing K contains some Un. The family {Un}n∈ω is called a
neighborhood basis of K.

Theorem 3.1. If a topological ring R contains a compactly generated dense

subring then its additive group is ω-bounded and R is finitely generated modulo

open sets.

Proof. Let V be an arbitrary neighborhood of 0, and let K be a compact
subset of R for which 〈K〉 is a dense subring. We may assume without loss in
generality that 0 ∈ K and K is symmetric. Obviously, there exist compact subsets
Kn, 0 ∈ Kn, n ∈ ω such that 〈K〉 = ∪n∈ωKn. For every n ∈ ω there exists a
finite subset Fn of Kn such that Kn ⊂ Fn +V ; and hence R = (∪n∈ωFn)+V +V .

We have to prove that R is finitely generated modulo open sets. Let U be
any nonempty subset of R. If u ∈ U , then −u + U is a 0-neighborhood of R.
There exists a finite subset T of K such that K ⊂ T −u+U . Put F = T ∪{−u};
then 〈F ∪ U〉 = R. ¤
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Lemma 3.2 ([FS]). Let X be a topological space and let K ⊂ X be a

compact set with a neighborhood basis {Un}n∈ω. Suppose that we have compact

sets Cn ⊂ ∪k≤nUk for all n ∈ ω. Then the set C = K ∪ (⋃
n∈ω Cn

)
is also

compact.

Theorem 3.3. An almost metrizable topological ring R contains a dense

compactly generated subring if and only if it is ω-bounded and finitely generated

modulo open sets.

Proof. The implication (⇒) is obviously true, so it suffices to prove the
implication (⇐ ). Let K be a compact subset of R with a countable neighborhood
basis {Un}n∈ω. Since the additive group of R is ω-bounded, for each n ∈ ω there
exists a countable subset Sn ⊂ R such that R = Sn +Un. The set S = ∪n∈ωSn is
countable, so we can fix its enumeration S = {sn}n∈ω. Let r ∈ R and let V be an
arbitrary neighborhood of 0. Then K − V is a neighborhood of K, and so there
exists n ∈ ω such that K ⊂ Un ⊂ K − V . Since Sn + Un = R, there is s ∈ Sn

such that r ∈ s + Un ⊂ s + K − V . Let r = s + k − v with k ∈ K and v ∈ V .
Then

r + v = s + k ∈ (r + V ) ∩ (S + K) 6= ∅.

It follows that S + K is dense in R. By the conditions for each n ∈ ω there
is a finite subset Fn such that R = 〈Fn ∪Un〉. Set E0 = F0 ∪ {s0}; it follows that
R = 〈F0 ∪ U0〉. So there is a finite subset E1 ⊂ U0 such that

F1 ∪ {s1} ⊂ 〈E0 ∪ E1〉,

which implies that 〈E0 ∪ E1 ∪ U1〉 = R. Hence there is a finite set E2 ⊂ U1

such that F2 ∪ {s2} ⊂ 〈E0 ∪ E1 ∪ E2〉. We obtain in this way finite subsets
En+1 ⊂ Un, n ∈ ω such that

Fn+1 ∪ {sn+1} ⊂ 〈E0 ∪ E1 ∪ · · · ∪ En+1〉.

By Lemma 3.2 the set C = K ∪ (
⋃

n∈ω En) is compact. The subring 〈C〉 is
dense since it contains S + K. It follows that R contains a compactly generated
dense subring. ¤

Corollary 3.4. A topological ring with the first axiom of countability con-

tains a dense compactly generated subring if and only if it is separable and finitely

generated modulo open sets.

Lemma 3.5. If a σ-compact almost metrizable ring R contains a dense

compactly generated subring, then R itself is compactly generated.
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Proof. Suppose that R = ∪n∈ωLn, where Ln are compact, and let H =
〈L0〉 be dense in R. Let K ⊂ R be a compact set with a neighborhood basis
{Un}n∈ω; we may assume that Un+1 ⊂ Un for every n ∈ ω. For n ∈ ω and
l ∈ Ln, then (l − Un+1) ∩ H 6= ∅. Then there exist ul ∈ Un+1 and hl ∈ H

such that l − ul = hl, hence l = hl + ul ∈ hl + Un+1. By compactness of Ln,
there exists a finite subset Fn of H such that Ln ⊂ Un+1 + Fn. Evidently,
Cn = (Ln − Fn) ∩ Un+1 is a compact subset and is contained in Un. We claim
that Ln ⊂ Cn+Fn. Indeed, if l ∈ Ln, then l = u+f , where u ∈ Un+1 and f ∈ Fn.
It follows that u = l−f ∈ (Ln−Fn)∩Un+1 ⊂ Cn which implies that l ∈ Cn +Fn,
and so Ln ⊂ Cn+Fn ⊂ 〈Cn∪L0〉. Therefore, by setting, C = L0∪K∪(

⋃
n∈ω Cn),

we obtain 〈C〉 = R. It follows from Lemma 3.2 that C is compact. ¤

Evidently, a topological ring without proper open subrings is finitely gener-
ated modulo open sets.

Corollary 3.6. Let R be an almost metrizable σ-compact ring. If R is either

without proper open subrings or is a connected ring or is totally bounded, then

it is compactly generated.

Theorem 3.7. For a locally compact ring R the following conditions are

equivalent:

(i) R has a dense compactly generated subring,

(ii) R is compactly generated,

(iii) R is finitely generated modulo open sets.

Proof. (i)⇒ (ii) Evidently.
(ii)⇒ (iii) Follows from Theorem 3.1.
(iii)⇒ (i) There exists a finite subset F such that 〈F ∪ U〉 = R. Then

R = 〈F ∪ U〉 is compactly generated. ¤

4. Topologically finitely generated modulo open
sets linearly compact rings

In ([U1], Theorem 2), we have proved that a linearly compact topological
ring having a set of topological generators of cardinality less than 2ω is strictly
linearly compact. Here, we will extend this result.

Recall that a complete linearly topologized module M is called strictly lin-
early compact provided for each open submodule V the factor module M/V is
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artinian. A topological ring R is called strictly linearly compact provided the left
topological R-module RR is strictly linearly compact.

Theorem 4.1. Let M a linearly compact module such that for every open

submodule V the factor module M/V has cardinality less than 2ω. Then M is

strictly linearly compact.

Proof. The module M is topologically isomorphic to the inverse limit
lim←−M/V , where V runs over all open submodules of M . By ([U1], Theorem 2),
each M/V is strictly linearly compact. Then M is strictly linearly compact as the
class of strictly linearly compact modules is closed under taking of inverse limits
by ([B2], Chapter III, Exercise 19). ¤

Corollary 4.2. Every σ-compact linearly compact R-module is strictly lin-

early compact. Every linearly compact ring finitely generated modulo open sets R

having a fundamental system of neighborhoods of 0 consisting of ideals is strictly

linearly compact.

Open Question. Is it true that every linearly compact ring R finitely
generated modulo open sets is strictly linearly compact?

5. Free compact rings

Recall that a topological space is called separable if it contains a dense subset
of cardinality ≤ ω, see ([E], 1.1.3).

Example 5.1. A separable compact associative Hausdorff ring which cannot
be embedded in a compact ring with a finite number of topological generators.

Fix a prime number p and let Fp be the field of p elements. According to
Theorem of Hewitt–Marczewski–Pondiczery ([E],Theorem 2.3.15), the compact
ring R = Fc

p, c = 2ω, is separable. We claim that R cannot be embedded in
a compact associative ring with a finite number of topological generators. As-
sume on the contrary that there exists a compact ring S with a finite number of
topological generators that contains R. Denote by S0 the connected component
of S, i.e., the maximal connected subgroup of the additive group of S. Since
S0 ∩ R = 0, the ring R is topologically isomorphic to a subring of S/S0. Since
S/S0 is topologically finitely generated, it is metrizable ([U2], Theorem 27.30),
and hence R is metrizable, a contradiction.
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Lemma 5.1. Let p be a prime and let Rn = M(1,Fp)× · · ·×M(n,Fp). For

each i ∈ [1, n], fix a pair of generators xi, yi of M(i,Fp); then Rn = 〈x, y〉, where

x = (x1, . . . , xn) and y = (y1, . . . , yn).

Proof. Obviously, pri(〈x, y〉) = M(i,Fp), where pri means the projection
of Rn on M(i,Fp), i ∈ [1, n]. Furthermore, denote

Ii = ker(pri〈x, y〉), i ∈ [1, n].

Since I1∩I2∩· · ·∩In = 0, then 〈x, y〉 is a subdirect product of M(i,Fp). Therefore
〈x, y〉 is a finite semisimple in the sense of Jacobson ring; and hence has identity.
If i, j ∈ [1, n], i 6= j, then

〈x, y〉/Ii
∼= M(i,Fp), and 〈x, y〉/Ij

∼= M(j,Fp)

which implies that Ii 6= Ij . Thus Ii+Ij = 〈x, y〉 for i, j ∈ [1, n], i 6= j since both Ii

and Ij are maximal ideals. By Chinese Remainder Theorem ([AF], p. 103), 〈x, y〉
is isomorphic to the direct product

(〈x, y〉/I1)× · · · × (〈x, y〉/In) ∼= M(1,Fp)× · · · ×M(n,Fp);

and it follows that 〈x, y〉 = Rn. ¤

Lemma 5.2. For any prime p, the ring R =
∏∞

n=1 M(n,Fp) is compact

second countable and has two topological generators.

Proof. For each n ∈ N, fix a pair xn and yn of generators of M(n,Fp)
and set x = (xn), y = (yn) in R. Let qn denotes the projection of R on Rn =
M(1,Fp) × · · · × M(n,Fp). By Lemma 5.1, qn(〈x, y〉) = Rn which means that
〈x, y〉 is dense in R. ¤

Let R be a finite associative ring with identity 1 of prime characteristic p.
Then R is a subring of EndR, where R considered as a vector Fp -space. Indeed,
the mapping R → EndR: r 7→ Lr (x 7→ rx) is an embedding of R in EndR.

The following Remark is well known, see [C]:

Remark 5.1. Every compact ring R of prime characteristic p is an open ideal
of a compact ring S of characteristic p.

Indeed, considering the group S = Fp × R with the product topology and
multiplication

(α, x)(β, y) = (αβ, αy + βx + xy),

the ring R is topologically isomorphic to the open ideal {0} ×R.
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Theorem 5.3. Every associative compact second countable ring S of prime

characteristic p is topologically isomorphic to a subring of R =
∏

n∈NM(n,Fp).

Proof. We may consider, according to Remark 5.1, that S has an identity.
Fix a fundamental system {Si}i∈N of 0S consisting of two-sided ideals and asso-
ciate to each i ∈ N a number ki ∈ N for which S/Si is embedded in M(i,Fp). We
can assume without loss of generality that ki < ki+1, i ∈ N; then S is embedded
in

∏
i∈NM(ki,Fp) which is embedded in R. ¤

Let X be a set and p be a prime. Considering the ring Fp 〈X〉 of all non-
commutative polynomials over X with coefficients from Fp, let B be the set of
all cofinite ideals V of Fp 〈X〉 with the property that X\V is finite. Then B is a
filter basis, ∩B = 0, and hence B gives a totally bounded ring topology T .

The completion (cFp 〈X〉 , cT ) is a compact ring of characteristic p and has
the following universal property: every mapping f : X → S in a compact ring
S with 1 and charS = p with the property that X \ f−1(V ) is finite for every
0-neighborhood V of S has an extension f̂ : cFp 〈X〉 → S, f̂(1) = 1 . The ring
(cFp 〈X〉, cT ) is called the free compact ring of characteristic p over X. We will
denote the ring (cFp 〈X〉 , cT ) briefly by cFp 〈X〉. When X = {x1, x2, . . . , xn} is
finite, we will write cFp 〈x1, x2, . . . , xn〉.

Note that the ring cFp 〈X〉 is analogous to the free pro-p-group, see
([Se], I.1.5).

Lemma 5.4. For any set X, w(cFp 〈X〉) = max{|X|, ω}.
Proof. It is well known that every compact totally disconnected ring with

a finite number of topological generators is metrizable ([U2], Theorem 27.30).
Therefore, the assertion is true when X is finite. Assume that X is infinite,
then the ring cFp 〈X〉 is mapped on FX

p , and hence w(cFp 〈X〉) ≥ |X|. Every
open ideal of (Fp 〈X〉 , T ) contains a cofinite ideal of the form (X\F ), where F is
finite. Since the cardinality of the family of sets of the form X\F , where F runs
over finite subsets of X, is |X|, we obtain that w(Fp 〈X〉 , T ) ≤ |X|. Therefore
w(cFp 〈X〉) ≤ |X| which implies that w(cFp 〈X〉) = |X|. ¤

Theorem 5.5. Let p be a prime and X = {x, y}. The ring cFp 〈x, y〉 con-

tains an isomorphic copy of every compact second countable associative ring of

characteristic p.

Proof. Let R = cFp 〈x, y〉. Consider the Wedderburn-Mal’cev decomposi-
tion R = S ⊕ J(R) (a topological direct sum of subgroups S and J(R)) of R,
where S is a compact semisimple ring. The existence of this decomposition for
compact rings was proved in [Ze], see also ([U2], p. 170). Evidently, 1 ∈ S.
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By Kaplansky’s Theorem ([K], [U2]), we have that

S ∼=top

∏

i∈ω

M (ni, Fi) .

Identifying S with
∏

i∈ω M (ni, Fi), we claim that the ring M (n,Fp) appears in
the decomposition of S for each n ∈ ω. As the ring M (n,Fp) can be gener-
ated by two elements, there exists a surjective homomorphism h : cFp 〈x, y〉 →
M (n,Fp). Evidently, h (S) = M (n,Fp), and hence S contains an ideal isomorphic
to M (n,Fp). It follows that S contains an ideal isomorphic to

∏∞
n=1 M (n,Fp)

which, by Theorem 5.3, contains an isomorphic copy of every compact second
countable associative ring of characteristic p. ¤

Theorem 5.6. If |X| = ω, then cFp 〈X〉 has the property that every com-

pact second countable associative ring with 1 of prime characteristic p is a con-

tinuous homomorphic image of cFp 〈X〉 and every compact second countable as-

sociative ring of characteristic p is a subring of cFp 〈X〉.
Proof. The ring cFp 〈X〉 contains a copy of the topological ring cFp 〈x, y〉.

By Theorem 5.5, cFp 〈X〉 contains an isomorphic copy of every compact second
countable associative ring of prime characteristic p.

Let R be any compact second countable associative ring of characteristic p.
We may assume without loss of generality that R is infinite, then R(+) ∼=top

(Z/pZ)ω. It follows from the structure of (Z/pZ)ω that R contains a countable
subset Y such that R(+) is topologically generated by Y and for every open ideal
V of Y , the set Y \ V is finite. Fix any bijection f : ω → Y . There exists a
continuous homomorphism h : cFp 〈X〉 → R extending f such that h(1) = 1. ¤

The notion of a free compact topologically nilpotent associative ring of prime
characteristic p over a set X is similar to the notion of a free compact ring.
Namely, let X be a set and p be a prime number. Consider the free ring Fp(X) of
all noncommutative polynomials over X with coefficients from Fp without terms
of degree zero. Let B be the set of all cofinite ideals V of Fp(X) with the property
that X\V is finite and Fp(X)/V is nilpotent. Then B is a filter basis, ∩B = 0,
and hence B gives a totally bounded ring topology T .

The completion (cFp(X), cT ) is a compact ring of characteristic p and has
the following universal property: every mapping f : X → S in a compact ring
topologically nilpotent ring S of characteristic p with the property that X\f−1(V )
is finite for every 0-neighborhood V of S has an extension f̂ : cFp(X) → S.
The ring (cFp(X), cT ) is called the free compact topologically nilpotent ring of
characteristic p over X.
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Remark 5.2. We will need some properties of inverse limits of topological
rings. Let {Rα : fαβ ,Ω} be an inverse system of topological rings, R = lim←−Rα

and πα denotes the canonical projection of R in Rα. Then:

(i) The family {π−1
α (Vα)}α∈Ω where Vα is a neighborhood of 0Rα is a fundamen-

tal system of 0R.
This implies immediately the following fact:

(ii) If S is a subring of R = lim←−Rα and πα(S) is dense in Rα for every α ∈ Ω,
then S is a dense subring of R.

(iii) If Rα are compact and the canonical projections fαβ are surjective, then πα

are surjective ([E], Corollary 3.2.15).

Theorem 5.7. The free compact topologically nilpotent ring R of prime

characteristic p with a countable number of topological generators is a domain.

Proof. Consider for each n∈N the ring Rn of formal noncommutative series
on n variables x1, . . . , xn. Consider the ring R = lim←−Rn where fn : Rn+1 → Rn

be the continuous homomorphism which sends xi to xi, i = 1, . . . , n and xn+1

to 0. It is well known that each Rn is a domain. Set yi = (0 . . . 0xixi . . . ), (i− 1
zeros).

Claim I. For each n ∈ N the subring 〈y1, . . . , yn〉 is a free associative ring in
the class of rings of characteristic p with y1, . . . , yn as free generators.

Claim II. The subring P = 〈yi : i ∈ N〉 is the free associative ring of charac-
teristic p with yi, i ∈ N as free generators.

Claim III. The subring P is dense in R. Indeed, πn〈y1, . . . , yn〉 is 〈x1, . . . , xn〉,
which is dense in Rn (see, [B1], Chapter II, §5).

Claim IV. R is a domain. This follows immediately since the inverse limit of
domains is a domain.

Claim V. The ring R is second countable.
Claim VI. The ring R is free in the class of all second countable compact

topologically nilpotent rings of characteristic p.
Indeed, let S be a second countable compact topologically nilpotent ring of

characteristic p. Let S = 〈ai : i ∈ N〉 where {ai : i ∈ N} has the property that
limi→∞ ai = 0. Let f1 : P → S, yi 7→ ai.

We claim that f1 is continuous. Indeed, let V ′ be an open ideal of S. Let
n ∈ N such that ai ∈ V ′ for i ≥ n. Let m ∈ N, Sm ⊂ V ′, m ≥ n. Consider the
neighborhood W = (〈x1〉m × · · · × 〈x1, . . . , xn〉m ×∏

i≥n+1〈x1, . . . xi〉)∩ P of 0P .
If w ∈ W , then w = g1(y1, . . . , yn) + g2(y1, . . . , yn, yn+1, . . . , yn+k), where g2 = 0
or each monomial of g2(y1, . . . , yn, yn+1, . . . , yn+k) contains at least one element
from {yn+1, . . . , yn+k}. Then pri(w) = g1(pri(y1), . . . , pri(yn)) for each i ≤ n
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is of degree ≥ m (here pri is the projection of
∏

n∈N on Ri). This implies that
f1[g1(y1, . . . , yn)] ∈ V ′. It is obviously that f1[g2(y1, . . . , yn, yn+1, . . . , yn+k)] ∈ V ′

and so f1(w) ∈ V ′.
We extend by continuity f1 to a continuous homomorphism f : R → S;

obviously, f is surjective. ¤

Corollary 5.8. Every compact second countable topologically nilpotent ring

of prime characteristic is a continuous homomorphic image of a compact domain

Recall that an associative ring is called reduced provided it has no nonzero
nilpotent elements.

Example 5.2. The ring M(2,F2) is not a continuous image of a compact
reduced ring.

Assume the contrary: let R be a compact reduced ring and f : R → M(2,F2)
be a continuous surjective homomorphism. Pick up e11 ∈ M(2,F2). By ([U2],
Theorem 4.20) there exists an idempotent e ∈ R, f(e) = e11; evidently e is central,
a contradiction. ¤

6. Compact Noetherian rings

It is well known that a compact Noetherian ring has a finite number of topo-
logical generators ([U2], Corollary 6.45, p. 135). We have modified an example of
L. W. Small, see [Sm], in order to obtain a compact left and right Noetherian
ring having no classical quotient ring in abstract sense.

For a prime p, let Zp denotes the ring of p-adic numbers with the natural

compact topology, and let T be the ring of 2 × 2 matrices of the form

[
a b

0 c

]
,

where a ∈ Zp and b, c ∈ Zp/pZp
∼= Fp, such that Zp acts on Zp/pZp in the usual

way.

Lemma 6.1. T is left and right Noetherian.

Proof. The ring T has identity and its additive group is topologically iso-
morphic to Zp × (Z/pZ)2. This group satisfies the ACC on closed subgroups.
The ring T with the natural compact topology satisfies the ACC on closed sub-
groups, so T satisfies the ACC on left finitely generated ideals. Therefore T is
left Noetherian. Analogously, T is right Noetherian. ¤
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Set T1 =

{[
a 0
0 c

]
: a ∈ Zp, c ∈ Zp/pZp

}
and let S be the ring of 2 × 2

matrices of the form

[
t t′

0 t1

]
, where t, t′ ∈ T , t1 ∈ T1.

Lemma 6.2. The ring S is left and right Noetherian.

Proof. The ring S has identity and its additive group is topologically iso-
morphic to (Zp)3 × (Z/pZ)5. This group satisfies the ACC condition on closed
subgroups. The ring S with the natural compact topology satisfies the ACC on
closed subgroups, so S satisfies the ACC on left finitely generated ideals. There-
fore S is left Noetherian. Analogously, S is right Noetherian. ¤

Theorem 6.3. The ring S does not satisfy the left Ore condition.

The last Theorem shows that as S does not satisfy the left Ore condition, S

does not have a left quotient ring.
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