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On homomorphisms of an abelian group

into the group of invertible formal power series

By WOJCIECH JAB LOŃSKI (Rzeszów) and LUDWIG REICH (Graz)

Abstract. We study solutions of the translation equation in rings of formal power

series K[[X]], K ∈ {R, C} (the so called one-parameter groups or flows), and even, more

generally, homomorphisms Θ from an abelian group (G, +) into the group (Γ, ◦) of

invertible power series in K[[X]]. This problem can equivalently be formulated as the

question of finding homomorphisms Φ from (G, +) into the differential group L1
∞ =

(Z∞, ·) describing the chain rules of higher order of C∞-functions with fixed point 0.

We prove the general form of the homomorphisms Θ : G → Γ, Θ(t) =
P∞

k=1
ck(t)Xk

and Φ : G → Z∞, Φ = (fn)n≥1, for which c1 and f1 take infinitely many values (The-

orems 5 and 6). These representations use sequences (Pn)n≥2 of universal polynomials

in c1, and (vn)n≥2 of universal polynomials in f1, and some sequences of parameters,

which determine the individual homomorphism. We describe the connection between

these forms of the homomorphisms. These results are deduced from the special case

|f1| 6= 1 (Theorem 3) and the case when c1 is a regular function (Theorem 4).

1. Introduction

Let K ∈ {R, C} be the field of real or complex numbers. The aim of this paper

is to find a general form of homomorphisms Θ : G → Γ, Θ(t) =
∑∞

k=1 ck(t)Xk,

from an abelian group (G, +) into the group (Γ, ◦) of invertible formal power

series, under the condition that c1 takes infinitely many values (the case c1 = 1

has been considered in our previous paper [6]). Since the group (Γ, ◦) and the

differential group L1
∞ = (Z∞, ·) are in a natural way isomorphic (see [6, The-

orem 2]), the above mentioned problem is the same as the problem to find the
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general form of the homomorphisms Φ = (fn)n≥1 : G → Z∞ with the condition

that f1 takes infinitely many values. Then c1 and f1 are homomorphisms from

(G, +) to (K \ {0}, ·) (see (8) and (15)), or in the terminology of the theory of

functional equations, generalized exponential functions on G. Our approach is

similar to that one used in [6] to give the explicit form of homomorphisms Φ from

an abelian group (G, +) to L1
∞ in the case when f1 = 1. But it differs from the

approach in [6] in some important details, and hence the results are also different.

In Section 4 (Theorem 3) we show that in each homomorphism Φ = (fn)n≥1 :

G → Z∞ with |f1| 6= 1, the component functions fn can necessarily be represented

by universal polynomials in f1 and a sequence (pn)n≥2 of parameters in K. Using

this special case |f1| 6= 1 we will show the same representation of the components

fn of a homomorphism Φ : G → Z∞, if we only assume that the exponential

function f1 takes infinitely many values (Theorem 5). Next, in Section 5 (The-

orem 4, Corollary 2), we construct the general regular solution (F (t, X))t∈K,

F (t, X) =
∑∞

k=1 ck(t)Xk (the coefficient functions ck are C∞, if K = R, and

entire, if K = C) of the translation equation in Γ, under the hypothesis that c1 is

a nontrivial exponential function. We give a representation of the regular coeffi-

cient functions ck by means of a sequence of universal polynomials in the arbitrary

regular nontrivial exponential function c1(t) = eλ1t (λ1 6= 0) and an arbitrary se-

quence (λk)k≥2 of parameters. Using the results of Sections 4 and 5, we show in

Section 6 (Theorem 5) that the form of homomorphisms Φ = (fn)n≥1 : G → Z∞,

where f1 takes infinitely many values, is also sufficient. The same is also true

for solutions of translation equation (cf. Theorem 6). In Corollary 4 we give the

general form of homomorphisms Φs = (fn)1≤n≤s : G → Zs for 1 ≤ s < ∞. This

form is the same as for s = ∞, there are no new arbitrary functions involved,

in contrary to the case f1=1 (see [7, Theorem 1]). Therefore, in a Section 7 we

prove (Theorem 7) that each homomorphism Φs : G → Zs where f1 takes infin-

itely many values can be extended to a homomorphism from G to Zs+l for every

l with 1 ≤ l ≤ ∞.

The problem for homomorphisms Φ with f1 taking only finitely many values

will be treated in a separate paper.

2. The group of invertible formal power series

Let K[[X ]] denote the ring of all formal power series f(X) =
∑∞

k=0 ckXk

with ck ∈ K ∈ {R, C}. Let Γ = {f(X) ∈ K[[X ]] : ord f(X) = 1}. Then the
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set Γ with the substitution ◦ as a binary operation is a group. Finally, Γ1 ={
f(X) =

∑∞
k=1 ckXk ∈ Γ : c1 = 1

}
is a subgroup of Γ.

Definition 1. By a one-parameter group of formal power series we understand

every homomorphism of a group (G, +) into (Γ, ◦), i.e. each function ΘG : G → Γ

which satisfies the equation

ΘG(s + t) = ΘG(s) ◦ ΘG(t) for s, t ∈ G. (1)

Remark 1. If ΘG is a one-parameter group of formal power series, then for

an arbitrary group (H, +) and for each homomorphism a : H → G, also ΘH :=

ΘG ◦ a is a one-parameter group of formal power series.

Let F (t, X) = ΘG(t)(X) ∈ Γ. In the case when ΘG is one-parameter group

of formal power series we will also say that the family (F (t, X))t∈G forms a one-

parameter group of formal power series. From (1) we then obtain, as an equivalent

formulation, the so called translation equation

F (s + t, X) = F (s, F (t, X)) for s, t ∈ G. (2)

In the following we use the standard notation ∂F (t,X)
∂X

:=
∑∞

k=1 kck(t)Xk−1, and
∂F (t,X)

∂t
:=
∑∞

k=1 c′k(t)Xk in the case when G = K and the coefficient functions

are differentiable. For G = K the following theorem describes the general regular

solution of the translation equation (2) in the ring of formal power series, which

means that the coefficient functions are analytic when K = C, or C∞, if K = R.

Theorem 1 (Cf. [14]).

(i) If a family (F (t, X))t∈K is a regular one-parameter group of formal power

series, then there exists a formal power series H(X) ∈ K[[X ]] such that






∂F (t, X)

∂t
= H(F (t, X)), for t ∈ K,

F (0, X) = X.

(3)

(ii) For each formal power series H(X) ∈ K[[X ]] with ordH ≥ 1 the family

(F (t, X))t∈K defined by (3) is a regular one-parameter group of formal power

series.

(iii) The series H is uniquely determined by (F (t, X))t∈K. It is given by the

formula H(X) := ∂F (t,X)
∂t

|t=0, in particular, ordH ≥ 1.

Remark 2. Condition (iii) establishes a 1−1-correspondence between regular

one-parameter groups and formal series H with ordH ≥ 1.
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3. The one-dimensional differential group

Let K ∈ {R, C} and let k, l be positive integers. By |k, l| we denote the set

of all integers n such that k ≤ n ≤ l. Similarly, by |k,∞| we mean the set of all

integers n with n ≥ k. Finally, N stands for the set of all positive integers. We

assume that
∑

t∈∅ at = 0 and
∏

t∈∅ at = 1.

Definition 2. Let s ∈ N. By the group L1
s we mean the set

Zs = {xs := (x1, . . . , xs) ∈ Ks : x1 6= 0}

equipped with the operation

xs · ys = zs

defined by

zn =

n∑

k=1

xk

∑

un∈Un,k

Aun

n∏

j=1

y
uj

j for n ∈ |1, s|, (4)

where

Un,k :=

{
un := (u1, . . . , un) ∈ |0, k|n :

n∑

j=1

uj = k ∧

n∑

j=1

juj = n

}
,

Aun
:=

n!
n∏

j=1

(uj!(j!)uj )

.

Definition 3. By the group L1
∞ we understand the set

Z∞ = {x∞ := (x1, x2, . . . ) ∈ KN : x1 6= 0}

endowed with the operation

x∞ · y∞ = z∞,

given by

zn =

n∑

k=1

xk

∑

un∈Un,k

Aun

n∏

j=1

y
uj

j for n ∈ N, (5)

where Un,k and Aun
are given above.

In the case K = R the formulas (4) and (5) describe the higher chain rules

for Cs- and C∞-functions, respectively, with fixed point 0 (cf. [2], [9]). We call

the group L1
s one-dimensional s-th differential group. As examples of (5) we have

z1 = x1y1, z2 = x1y2 + x2y
2
1 , z3 = x1y3 + 3x2y1y2 + x3y

3
1 . (6)

In what follows we will need some property of the group operation in L1
∞

(and in Γ) related to formula (5).
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Lemma 1.

(i) For every n ≥ 2, k ∈ |2, n− 1| and un ∈ Un,k we have (cf. [3])

1) there exists j ∈ |2, n− k + 1| such that uj ≥ 1;

2) for every j ∈ |n − k + 2, n| we have uj = 0.

(ii) For every n ≥ 2 we have (cf. [5])

zn = x1yn +

n−1∑

k=2

xk

∑

un∈Un,k

Aun

n−k+1∏

j=1

y
uj

j + xnyn
1 .

As we have mentioned earlier, the groups Γ and L1
∞ are isomorphic, which

is stated in the following theorem.

Theorem 2 (cf. Theorem 2 in [6]). The groups L1
∞ and (Γ, ◦) are isomorphic.

A natural isomorphism from L1
∞ to (Γ, ◦) is given by Ψ : Z∞ → Γ,

Ψ(x1, x2, . . . )(X) =

∞∑

k=1

xk

k!
Xk. (7)

4. Homomorphisms into the group L
1

∞

Throughout this section we assume that (G, +) is an abelian group which

admits generalized exponential functions f : G → (K \ {0}), i.e. functions f

satisfying

f(x + y) = f(x)f(y) for x, y ∈ G,

which are not characters, i.e. such that there exists an x0 ∈ G with |f(x0)| 6= 1.

It is known (cf. [1]) that if f : G → (K \ {0}) is a generalized exponential

function, then f(x) = ea(x) with an additive function a : G → R in the real case,

and f(x) = ea(x)+ib(x) with an additive function a : G→R and a function b :G→R

additive modulo 2π in the complex case. This means that the assumption that G

admits generalized exponential functions which are not characters is equivalent to

the one that G admits nonzero homomorphisms into the additive group (R, +).

Let s be a positive integer or s = ∞. Consider a function Φs : G → Zs,

Φs = (fj)j∈|1,s| ,

where f1 : G → K \ {0}, fn : G → K for n ∈ |2, s|.
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The function Φs is a homomorphism if and only if

Φs(x + y) = Φs(x) · Φs(y) for x, y ∈ G,

i.e.

(fj(x + y))
j∈|1,s| = (fj(x))

j∈|1,s| · (fj(y))
j∈|1,s| for x, y ∈ G.

Then we obtain (see (6) and Lemma 1) that Φs is a homomorphism if and only

if the functions fn solve the system of functional equations





f1(x + y) = f1(x)f1(y),

f2(x + y) = f1(x)f2(y) + f2(x)f1(y)2,

fn(x + y) = f1(x)fn(y)

+

n−1∑

k=2

fk(x)
∑

un∈Un,k

Aun

n−1∏

j=1

fj(y)uj + fn(x)f1(y)n, n ∈ |3, s|,

(8)

for x, y ∈ G.

As one can see, f1 : G → K\{0} is then an exponential function. Here we will

investigate in detail the form of the solution of the system (8) in the case where

f1 is a general exponential function such that |f1(x0)| 6= 1 for at least one x0 ∈ G.

We will write |f1| for the function |f1| : G → (K \ {0}) with |f1|(x) = |f1(x)| for

x ∈ G. The case when we only assume that f1 takes infinitely many values (so

that f1 may be also a character) will be treated in Section 6. Let us only mention

here that the results on the general form of the solution of translation equation

(2) are also valid, if we assume that a generalized exponential function f takes

infinitely many values. We will prove

Theorem 3. Assume that the abelian group (G, +) admits nonzero additive

functions. Then there exists a sequence (vn)n∈|2,s| of universal polynomials such

that for each solution (fn)n∈|1,s| of the system of equations (8) (that is for each

homomorphism Φs = (fj)j∈|1,s| from G to L1
s) with a generalized exponential

function f1 which is not a character, there is a sequence of constants (pn)n∈|2,s|

such that

(i) v2(X) = 0;

(ii) vn ∈ Z[X ; p2, . . . , pn−1] for n ∈ |2, s|;

(iii) degX vn(X ; p2, . . . , pn−1) ≤ n − 2;

(iv) for every n ∈ |2, s|

fn = (f2
1 − f1)

(
pn

n−2∑

l=0

f l
1 + vn(f1; p2, . . . , pn−1)

)
.
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The polynomials vn are given for n ∈ |2, s| by the recurrent formula






v2(X) = 0, V2(X ; p2) = p2,

vn(X ; p2, . . . , pn−1) =

n−1∑

k=2

∑

un∈Un,k

Aun

Vk(0; p2, . . . , pk)(X2 − X)k−1−u1Xu1

n−k+1∏

j=2

Vj(X ; p2, . . . , pj)
uj ,

Vn(X ; p2, . . . , pn) = pn

n−2∑

l=0

X l + vn(X ; p2, . . . , pn−1),

(9)

where Vn are polynomials in X and in p2, . . . , pn.

Proof. The proof is by induction on n. Consider the second equation of

the system (8) that is

f2(x + y) = f1(x) f2(y) + f1(y)2f2(x) for x, y ∈ G. (10)

From the symmetry of the left hand side of (10) we get

f1(x) f2(y) + f1(y)2f2(x) = f1(y) f2(x) + f1(x)2f2(y)

and hence f2(x)(f1(y)2 − f1(y)) = f2(y)(f1(x)2 − f1(x)). Take y0 such that

f1(y0)
2−f1(y0) 6= 0. Such a y0 exists since every generalized exponential function

f1, |f1| 6= 1, takes infinitely many values. Then f2(x) = p2(f1(x)2 − f1(x)) with

p2 := f2(y0)
f1(y0)2−f1(y0)

.

Denote v2(f1) = 0 and assume that for some n ∈ |3, s| there exist polynomi-

als vj ∈ Z[X ; p2, . . . , pj−1] with degX vj(X ; p2, . . . , pj−1) ≤ j−2 for j ∈ |2, n−1|,

such that for a solution (fn)n∈|2,s| of the system (8) there exist constants

p2, . . . , pn−1 ∈ K such that

fj = (f2
1 − f1)Vj(f1; p2, . . . , pj) for j ∈ |2, n − 1|, (11)

where Vj(f1; p2, . . . , pj) = pj

∑j−2
l=0 f l

1 + vj(f1; p2, . . . , pj−1). Consider the n-th

equation of the system (8). From the symmetry of the left hand side of this

equation and by Lemma 1(ii) we obtain

f1(x) fn(y) +

n−1∑

k=2

fk(x)
∑

un∈Un,k

Aun

n−k+1∏

j=1

fj(y)uj + f1(y)nfn(x)

= f1(y) fn(x) +

n−1∑

k=2

fk(y)
∑

un∈Un,k

Aun

n−k+1∏

j=1

fj(x)uj + f1(x)nfn(x),
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and hence

fn(x)(f1(y)n − f1(y)) = fn(y)(f1(x)n − f1(x))

+

n−1∑

k=2

∑

un∈Un,k

Aun

[
fk(y)

n−k+1∏

j=1

fj(x)uj − fk(x)

n−k+1∏

j=1

fj(y)uj

]
. (12)

It is known (see Lemma 1(i)) that for k ∈ |2, n − 1| and un ∈ Un,k there exists

j ∈ |2, n − k + 1| such that uj ≥ 1. Then k − 1 − u1 ≥ 0. Note that for each

k ∈ |2, n− 1| and for every un ∈ Un,k we have

n−k+1∏

j=2

f
uj

j = fu1

1

n−k+1∏

j=2

(
(f2

1 − f1)Vj(f1; p2, . . . , pj)
)uj

= fu1

1

n−k+1∏

j=2

(f2
1 − f1)

uj

n−k+1∏

j=2

Vj(f1; p2, . . . , pj)
uj

= fu1

1 (f2
1 − f1)

k−u1

n−k+1∏

j=2

Vj(f1; p2, . . . , pj)
uj ,

since (cf. Lemma 1(i))
∑n−k+1

j=2 uj =
∑n

j=2 uj = k − u1. Thus we can write

n−k+1∏

j=2

f
uj

j = (f2
1 − f1)

(
(f2

1 − f1)
k−1−u1fu1

1

n−k+1∏

j=2

Vj(f1; p2, . . . , pj)
uj

)
.

From (12), using the induction hypothesis (11) one can deduce (with the abbre-

viation V j(f1) = Vj(f1; p2, . . . , pj))

fn(x)
n−2∑

l=0

f1(y)l = (f1(x)2 − f1(x))

[
fn(y)

f1(y)2 − f1(y)

n−2∑

l=0

f1(x)l

+

n−1∑

k=2

∑

un∈Un,k

Aun

[
V k(f1(y))(f1(x)2−f1(x))k−1−u1f1(x)u1

n−k+1∏

j=2

V j(f1(x))uj

− V k(f1(x))(f1(y)2 − f1(y))k−1−u1f1(y)u1

n−k+1∏

j=2

V j(f1(y))uj

]]
.

Fix x ∈ G such that f1(x)n − f1(x) 6= 0. Then clearly
∑n−2

l=0 f1(x)l 6= 0.

Since f1 is a generalized exponential function with |f1| 6= 1, we find a sequence
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(ym)m∈N of elements of G such that limm→∞ f1(ym) = 0. This can be seen as

follows. From |f1| 6= 1 we deduce the existence of y1 ∈ G with |f1|(y1) 6= 1. If

|f1|(y1) < 1, then for ym = my1 we get f1(ym) = f(y1)
m, hence limm→∞ f1(ym) =

limm→∞ f1(y1)
m = 0. If |f1|(y1) > 1, then f1(−y1) = f1(y1)

−1, and so the first

case with y′
1 = −y1 occurs.

Put y = ym and let m tend to ∞. Then on the left hand side we have

limm→∞ fn(x)
∑n−2

l=0 f1(ym)l = fn(x). On the right hand side we see immedi-

ately that the limit limm→∞ V k(f1(ym)) exists since V k is a polynomial in f1.

Moreover, we have either u1 ≥ 1 and k− 1−u1 ≥ 0 or u1 ≥ 0 and k− 1−u1 ≥ 1,

so

lim
m→∞

(f1(ym)2 − f1(ym))k−1−u1f1(ym)u1

n−k+1∏

j=2

V j(f1(ym))uj = 0.

Since
∑n−2

l=0 f1(x)l 6= 0, the limit limm→∞
fn(ym)

f1(ym)2−f1(ym) =: pn exists.

Fix x ∈ G arbitrarily and put y = ym. Then letting m → ∞ we get

fn(x) =
(
f1(x)2 − f1(x)

) [
pn

n−2∑

l=0

f1(x)l

+

n−1∑

k=2

∑

un∈Un,k

Aun
V k(0)(f1(x)2−f1(x))k−1−u1f1(x)u1

n−k+1∏

j=2

V j(f1(x))uj

]

=
(
f1(x)2 − f1(x)

) [
pn

n−2∑

l=0

f1(x)l + vn(f1(x); p2, . . . , pn−1)

]

and the recurrent formula (9) for universal polynomials vn. Finally, on account

of Lemma 1 (ii) we get

degX

{
(X2 − X)k−1−u1Xu1

n−k+1∏

j=2

V j(X)uj

}

≤ 2(k − 1 − u1) + u1 +
n−k+1∑

j=2

(j − 2)uj

= 2k − 2 − u1 +

n∑

j=2

(j − 2)uj = 2k − 2 − u1 +

n∑

j=2

juj − 2

n∑

j=2

uj

= 2k − 2 − u1 + (n − u1) − 2(k − u1) = n − 2,

so degX vn(X ; p2, . . . , pn−1) ≤ n − 2. �
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Remark 3. Note that the form of the polynomials vn in Theorem 3 does not

depend on s, that is if s1 < s2 and (vn)n∈|2,s1|, (ṽn)n∈|2,s2| are sequences of poly-

nomials existing in virtue of Theorem 3 corresponding to s1 and s2, respectively,

then vn = ṽn for n ∈ |2, s1|.

5. Solution of the translation equation in rings

of formal power series

From Theorem 2, using (7), we obtain that if

∞∑

k=1

ak

(
∞∑

l=1

blX
l

)k

=

∞∑

n=1

dnXn,

then

dn =

n∑

k=1

ak

∑

un∈Un,k

Bun

n∏

j=1

b
uj

j for n ∈ N, (13)

where

Bun
:=

k!∏n

j=1 uj !
.

We mention as examples of (13)

e1 = c1d1, e2 = c1d2 + c2d
2
1, e3 = c1d3 + 2c2d1d2 + c3d

3
1. (14)

As a Corollary from Theorem 2 and Lemma 1 we obtain

Corollary 1. For every n ≥ 2

en = c1dn +

n−1∑

k=2

ck

∑

un∈Un,k

Bun

n−k+1∏

j=1

d
uj

j + cndn
1 .

Let F (t, X) =
∑∞

k=1 ck(t)Xk, where c1 : G → K \ {0}, ck : G → K for k ≥ 2.

Then we get from (2)

∞∑

k=1

ck(s + t)Xk =

∞∑

l=1

cl(t)

(
∞∑

j=1

cj(t)X
j

)l
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for s, t ∈ K, which in virtue of (13), (14) and Corollary 1 is the same, by comparing

coefficients, as the infinite system of functional equations





c1(s + t) = c1(s)c1(t)

c2(s + t) = c1(s)c2(t) + c2(s)c1(t)
2

cn(s + t) = c1(s)cn(t) +

n−1∑

k=2

ck(s)
∑

un∈Un,k

Bun

n−1∏

j=1

cj(t)
uj

+ cn(s)c1(t)
n, n ∈ |2,∞|

(15)

for s, t ∈ G. We are interested here in the case when c1 is a nontrivial exponential

function.

Now, let us consider the case G = K. Assume that F (t, X) =
∑∞

k=1 ck(t)Xk

is a regular one-parameter group of formal power series (which means that the

sequence of regular functions (cn)n∈N satisfies the system of equations (15)). Then

c′1(0) 6= 0 and, by Theorem 1(i) and (iii), there exists a power series

H(X) =

∞∑

k=1

c′k(0)Xk =: λ1X +

∞∑

k=2

((k − 1)λ1λk)Xk,

(here λk :=
c′k(0)

λ1(k−1) ) the so called infinitesimal generator of the one-parameter

group, such that

∞∑

k=1

c′k(t)Xk = λ1

∞∑

l=1

cl(t)X
l +

∞∑

k=2

((k − 1)λ1λk)

(
∞∑

l=1

cl(t)X
l

)k

,

and
∑∞

k=1 ck(0)Xk = X , i.e.





c′1(t) = λ1c1(t), c1(0) = 1,

c′2(t) = λ1c2(t) + λ1λ2c1(t)
2, c2(0) = 0,

c′n(t) = λ1cn(t) +

n−1∑

k=2

((k − 1)λ1λk)
∑

un∈Un,k

Bun

n−k+1∏

j=1

cj(t)
uj

+(n − 1)λ1λnc1(t)
n, cn(0) = 0, n ∈ |3,∞|.

(16)

Then c1(t) = eλ1t, and c2(t) = λ2e
λ1t(eλ1t − 1) = c1(t)(λ2c1(t) − λ2). Finally,

let us assume that P2(X) = 0 and for some n ∈ N, n ≥ 3 there are polynomials

Pj ∈ Q[X ; λ2, . . . , λj−1] such that for every j ∈ |2, n − 1|

cj = c1

(
λj(c

j−1
1 − 1) + Pj(c1; λ2, . . . , λj−1

)
= c1Rj(c1; λ2, . . . , λj),

Pj(0; λ2, . . . , λj−1) = 0, degX Pj(X ; λ2, . . . , λj−1) ≤ j − 1
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holds. Then, from the n-th equation of the system (16), one can derive

cn(t) = c1(t)

(
λn(c1(t)

n−1 − 1) +
n−1∑

k=2

((k − 1)λ1λk)
∑

un∈Un,k

Bun

×

∫ t

0

(
(c1(s))

k−1
n−k+1∏

j=2

(Rj(c1(s); λ2, . . . , λj))
uj

)
ds

)
. (17)

From the equality (17) one can deduce, by explicitly calculating the involved

integrals, the existence of a polynomial Pn such that

cn(t) = eλ1t
(
λn

(
e(n−1)λ1t − 1

)
+ Pn(eλ1t; λ2, . . . , λn−1)

)
. (18)

We have thus proved that there is a sequence of polynomials (Pn)n≥2 such that

for every regular solution of (15) there exists a sequence of constants (λn)n∈N

such that c1(t) = eλ1t, λ1 6= 0 and (18) holds for every n ≥ 2. The polynomials

Pn are recurrently defined by the formula





P2(X) = 0; R2(X ; λ2) = λ2X − λ2

Pn(X ; λ2, . . . , λn−1) =

n−1∑

k=2

((k − 1)λk

∑

un∈Un,k

Bun

∫ X

1

sk−2
n−k+1∏

j=2

(Rj(s; λ2, . . . , λj))
uj ds.

Rn(X ; λ2, . . . , λn) = λn(Xn−1 − 1) + Pn(X ; λ2, . . . , λn−1).

(19)

Moreover Pn(0, λ2, . . . , λn−1) = 0 and

degX Pn(X ; λ2, . . . , λn−1) = max
k∈|2,n−1|,
un∈Un,k

degX

∫ X

0

sk−2
n−k+1∏

j=2

Rj(s; λ2, . . . , λj)
uj ds

≤ 1 +

(
k − 2 +

n−k+1∑

k=2

(j − 1)uj

)
= k − 1 +

n∑

k=2

juj −
n∑

k=2

uj

= k − 1 +

n∑

k=1

juj −

n∑

k=1

uj = k − 1 + n − k = n − 1.

Now, fix arbitrarily a sequence of numbers (λn)n∈N with λ1 6= 0. Then, by

Theorem 1(ii), the family (F (t, X))t∈K given by F (t, X) =
∑∞

n=1 cn(t)Xn with

functions cn defined by (17) is a one-parameter group of formal power series,

which means that the functions (cn)n∈N satisfy the system of equations (15).

We have proved



On homomorphisms of an abelian group into the group. . . 37

Theorem 4. There exists a sequence of polynomials (Pn)n≥2 defined by (19)

such that for every regular solution F (t, X) =
∑∞

k=1 ck(t)Xk of the translation

equation (2) with a nontrivial exponential function c1 there exists a sequence of

constants (λn)n∈N, λ1 6= 0 such that

c1(t) = eλ1t,

cn(t) = λn

(
enλ1t − eλ1t

)
+ eλ1tPn

(
eλ1t; λ2, . . . , λn−1

)
, n ≥ 2.

(20)

Conversely, for every sequence (λn)n∈N with λ1 6= 0, the family (F (t, X))t∈K =(∑∞
k=1 ck(t)Xk

)
t∈K

defined by (20) is a solution of the translation equation (2).

As a Corollary from Theorem 4 and Remark 1 we obtain

Corollary 2. If a sequence (c̃n)n∈N is a regular solution of the system (15)

(i.e. represents a regular solution F (t, X) =
∑∞

k=1 ck(t)Xk of the translation

equation), then the sequence (c̃n◦a)n∈N with an arbitrary homomorphism a : G →

K (by K we mean the additive group of the field K), is a solution of this system.

This means that for each homomorphism a : G → K and for each sequence

(λn)n∈N with λ1 = 1 the sequence of functions (cn)n∈N defined by c1(t) = ea(t)

and by

cn(t) = λn

(
ena(t) − ea(t)

)
+ ea(t)Pn

(
ea(t); λ2, . . . , λn−1

)
, n ≥ 2, (21)

where Pn are polynomials from Theorem 4, satisfies the system of equations (15).

We will show in this paper that (21) is, in fact, the general solution of the

system (15) in the case when K = R and c1(t) = ea(t) takes infinitely many values.

We will also show that if K = C and c1 takes infinitely many values, then the

general solution of (15) has the form

cn(t) = λn

(
c1(t)

n − c1(t)
)

+ c1(t)Pn

(
c1(t); λ2, . . . , λn−1

)
, n ≥ 2,

i.e. ea(t) in (21) has to be replaced by c1(t).

6. Connection between homomorphisms into the group L
1

∞

and one-parameter groups of formal power series

From now on, if we do not make explicitly another assumption, whenever

we will consider the systems of equations (8), we will assume that s = ∞. As

we have mentioned, a one-parameter group of formal power series (F (t, X))t∈G
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with F (t, X) =
∑∞

k=1 ck(t)Xk is a homomorphism ΘG : G → Γ such that

ΘG(t)(X) = F (t, X). Then the functions cn satisfy the infinite system of func-

tional equations (15). On the other side, a function Φ : G → Z∞, Φ = (f1, f2, . . . )

is a homomorphism into L1
∞ if and only if the functions fn satisfy the infinite

system of functional equations (8). As we have seen, the groups (Γ, ◦) and L1
∞ are

isomorphic (see Theorem 2). Consequently, systems (8) and (15) are equivalent

in the following sense.

Proposition 1. The sequence of functions (ck)k∈N is a solution of the system

of equations (15) if and only if fk = k!ck, where the sequence of functions (fk)k∈N

is a solution of the system of equations (8).

As a simple consequence of Proposition 1 and Theorem 4 we obtain

Corollary 3. Let G = K. There exists a sequence of polynomials (Pn)n≥2

defined by (19) such that for every regular solution (fn)n∈N of the system of

functional equations(8) with a nontrivial exponential function f1 there exists a se-

quence of constants (λn)n∈N, λ1 6= 0 such that f1(x) = eλ1x and for n ≥ 2

fn(x) = n!
(
λn

(
enλ1x − eλ1x

)
+ eλ1xPn

(
eλ1x; λ2, . . . , λn−1

))
. (22)

Conversely, for each sequence (λn)n∈N with λ1 6= 0 the sequence (fn)n∈N such

that f1(x) = eλ1x and for every n ≥ 2 the functions fn are defined by (22) is a

(regular) solution of the system (8).

Consider now a sequence of functions (fn)n∈N, fn : K → K with f1(x) = ex.

By Theorem 3 the following holds true: there exists a sequence of polynomials

(vn)n≥2 such that if the sequence (fn)n∈N with f1(x) = ex satisfies the system

(8) with G = K (f1 is an exponential function!), then there exists a sequence of

scalars (pn)n≥2 such that for every n ≥ 2

fn = (f
2

1 − f1)

(
pn

n−2∑

l=0

f
l

1 + vn(f1; p2, . . . , pn−1)

)
. (23)

So, if (fn)n∈N with f1(x) = ex is a solution of system of equations (8), then it

is a regular solution of this system. First we will show that for every sequence

(pn)n≥2 this is really the solution of (8). The proof of this fact is divided into

two steps.

1. Choose arbitrarily a sequence (λn)n∈N with λ1 = 1. Then the sequence of

functions (f̂n)n∈N such that f̂1(x) = ex and f̂n are defined by (22) with λ1 = 1,

satisfies the system of equations (8), that is, according to what has been said,

there exists a sequence (pn)n≥2 such that f̂n for n ≥ 2 is given by (23). Putting
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x = 1 we get

n!(λn(en − e) + ePn(e; λ2, . . . , λn−1)) = (e2 − e)

(
pn

n−2∑

l=0

el + vn(e; p2, . . . , pn−1)

)

or equivalently

n!(λn(en − e) + ePn(e; λ2, . . . , λn−1)) = pn(en − e) + (e2 − e)vn(e; p2, . . . , pn−1).

Then for n ≥ 2 we have

pn = n!

(
λn +

e

en − e
Pn(e; λ2, . . . , λn−1)

)
−

e2 − e

en − e
vn(e; p2, . . . , pn−1). (24)

Thus the sequence (pn)n≥2 is uniquely determined by the sequence (λn)n≥2, and

moreover we find, by induction on n,




p2 = 2λ2,

pn = n!λn + Sn (λ2, . . . , λn−1) ,
(25)

with universal polynomials (Sn)n≥3. By the same argument we get





λ2 =
1

2
p2,

λn =
pn

n!
+ Tn(p2, . . . , pn−1),

(26)

with universal polynomials (Tn)n≥3. Moreover, from (24) it follows that the

mappings S : (λn)n≥2 7→ (pn)n≥2 and T : (pn)n≥2 7→ (λn)n≥2 defined by (25) and

(26) respectively, are one-to-one and onto and S represents the inverse mapping

to T .

2. Now take a sequence of functions (fn)n∈N such that f1(x) = ex,

fn(x) = (e2x − ex)

(
pn

n−2∑

l=0

elx + vn(ex; p2, . . . , pn−1)

)
, n ≥ 2,

with arbitrarily fixed sequence (pn)n≥2 and define a sequence (λ∗
n)n≥2 by (26).

Then the sequence of functions (fn)n∈N given by f1(x) = ex,

fn(x) = n!ex
(
λ∗

n(e(n−1)x − 1) + Pn(ex; λ∗
2, . . . , λ

∗
n−1)

)
, n ≥ 2,

is a solution of the system of equations (8), that is there exists a sequence of

scalars (p∗n)n≥2 with such that for every n ≥ 2

fn(x) = (e2x − ex)

(
p∗n

n−2∑

l=0

elx + vn(ex; p∗2, . . . , p
∗
n−1)

)
.
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Clearly

p∗n = n!λ∗
n + Sn(λ∗

2, . . . , λ
∗
n−1). (27)

Since (λ∗
n)n≥2 = T ((pn)n≥2), and S is the inverse mapping of T , also

pn = n!λ∗
n + Sn

(
λ∗

2, . . . , λ
∗
n−1

)
(28)

Consequently, since S is one-to-one, we get pn = p∗n from (27) and (28) for n ≥ 2.

Then fn = fn, which means that fn is a solution of the system of equations (8).

We have thus proved

Proposition 2. Let G = K. There exists a sequence of polynomials (vn)n≥2

(the one from Theorem 3) such that the general solution (fn)n∈N with f1(x) = ex

of the system of equations (8) is given by

fn(x) = (e2x − ex)

(
pn

n−2∑

l=0

elx + vn(ex; p2, . . . , pn−1)

)
for n ≥ 2, (29)

where (pn)n≥2 is an arbitrary sequence of scalars.

Using the above result, we prove useful polynomial identities for the sequences

of polynomials (Vn), Vn(X ; p2, . . . , pn) = pn

∑n−2
l=0 X l + vn(X ; p2, . . . , pn−1).

Proposition 3. Let (Vn)n≥1 be given by (9). Then for every n ≥ 2 we have

((XY )2 − XY )Vn(XY ; p2, . . . , pn) = X(Y 2 − Y )Vn(Y ; p2, . . . , pn)

+
n−1∑

k=2

(X2−X)Vk(X ; p2, . . . , pk)
∑

un∈Un,k

Aun
Y u1

n−k+1∏

j=2

((Y 2−Y )Vj(Y ; p2, . . . , pj))
uj

+ Y n(X2 − X)Vn (X ; p2, . . . , pn) . (30)

Proof. From Proposition 2 it follows that there exists a sequence of poly-

nomials (vn)n≥2, such that a sequence of functions (fn) such that f1(x) = ex and

fn are given by (29) satisfies the system of equations (8) with arbitrary constants

pn. This means that for each n ≥ 2 and every x, y ∈ K we have (cf. (9))

((ex+y)2 − ex+y)Vn(ex+y; p2, . . . , pn) = ex((ey)2 − ey)Vn(ey; p2, . . . , pn)

+
n−1∑

k=2

((ex)2 − ex)Vk(ex; p2, . . . , pk)
∑

un∈Un,k

Aun
(ey)u1

×

n−k+1∏

j=2

(((ey)2− ey)Vj(e
y; p2, . . . , pj))

uj +(ey)n((ex)2− ex)Vn(ex; p2, . . . , pn)

which implies the polynomial identity (30). �
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We present now a complete answer to our problem to find the general form

of homomorphisms from the abelian group (G, +) to the differential group L1
∞.

Theorem 5. Let (G, +) be an abelian group which admits generalized ex-

ponential functions mapping G into K \ {0} having infinitely many values. There

exists a sequence of polynomials (vn)n≥2 (the one from Theorem 3) such that the

general solution (fn)n∈N of the system of equations (8) (that is the homomor-

phism Φ∞ = (fj)j∈|1,∞| from G to L1
∞) with a generalized exponential function

f1 taking infinitely many values is given by

fn = (f2
1 − f1)

(
pn

n−2∑

l=0

f l
1 + vn(f1; p2, . . . , pn−1)

)
for n ≥ 2, (31)

where f1 is an arbitrary nontrivial exponential function and (pn)n≥2 is an arbi-

trary sequence of scalars.

Proof. In the first step we will show that if f1 is a generalized exponential

function (not necessarily taking infinitely many values) then the sequence (fn)n∈N

of functions with

fn = (f2
1 − f1)Vn(f1, p2, . . . , pn) for n ≥ 2,

where (Vn)n≥2 is the sequence of universal polynomials from Theorem 3 and

(pn)n≥2 is a sequence of constants, is a solution of the system of equations (8).

Indeed, for each n ≥ 2 and for every x, y ∈ G, using (30) we obtain

fn(x + y) = (f1(x + y)2 − f1(x + y))Vn(f1(x + y); p2, . . . , pn)

=
(
(f1(x)f1(y))2 − f1(x)f1(y)

)
Vn(f1(x)f1(y); p2, . . . , pn)

= f1(x)(f1(y)2 − f1(y))Vn(f1(y); p2, . . . , pn)

+

n−1∑

k=2

(f1(x)2 − f1(x))Vk(f1(x); p2, . . . , pk)

×
∑

un∈Un,k

Aun
f1(y)u1

n−k+1∏

j=2

(f1(y)2 − f1(y))Vj(f1(y); p2, . . . , pj)
uj

+ f1(y)n(f1(x)2 − f1(x))Vn(f1(x); p2, . . . , pn)

= f1(x)fn(y) +

n−1∑

k=2

fk(x)
∑

un∈Un,k

Aun

n−1∏

j=1

fj(y)uj + fn(x)f1(y)n

which means that every equation of the system (8) is satisfied with an arbi-

trary generalized exponential function f1 and an arbitrary sequence of constants

(pn)n≥2.
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Now assume that f1 takes infinitely many values. Consider once more the

second equation of the system (8) that is

f2(x + y) = f1(x) f2(y) + f1(y)2f2(x) for x, y ∈ G.

As we have seen in the proof of Theorem 3, f2(x) = p2(f1(x)2 − f1(x)) with

p2 := f2(y0)
f1(y0)2−f1(y0)

. Thus f2 = (f2
1 − f1)(p2 · 1 + 0).

Now, assume that for some n ∈ |3, s| and for a solution (fn)n∈|2,s| of the

system (8) there exist constants p2, . . . , pn−1 ∈ K such that

fj = (f2
1 − f1)

(
pj

j−2∑

l=0

f l
1 + vj(f1; p2, . . . , pj−1)

)
, j ∈ |2, n− 1|, (32)

where the polynomials vn for v ≥ 2 are given by (9). Consider the n-th equation

of the system (8), that is

fn(x + y) = f1(x)fn(y)

+

n−1∑

k=2

fk(x)
∑

un∈Un,k

Aun

n−1∏

j=1

fj(y)uj + fn(x)f1(y)n for x, y ∈ G. (33)

We know from the first step of the proof that every function

f̂n = (f2
1 − f1)

(
qn

n−2∑

l=0

f l
1 + vn(f1; p2, . . . , pn−1)

)
,

with arbitrary qn satisfies the equation (33). Therefore the function f ′
n given by

f ′
n = (f2

1 − f1)vn(f1; p2, . . . , pn−1)

is a particular solution of (33). Furthermore, let fn, f ′
n be solutions of (33). Note

that the sum
∑n−1

k=2 fk(x)
∑

un∈Un,k
Aun

∏n−1
j=1 fj(y)uj contains only functions fj

with j ∈ |1, n − 1|. Then the function F := fn − f ′
n satisfies the equation

F (x + y) = f1(x)F (y) + f1(y)nF (x) for x, y ∈ G.

This functional equation for F is similar to (10) for f2, which is the special

case with n = 2. By the same argumentation as used for (10), we get F (x) =

pn(f1(x)n − f1(x)) with some pn ∈ K. Thus two arbitrary solutions fn, f ′
n of

the equation (33) differ by such a function F with some pn ∈ K. This means
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that an arbitrary solution of (33) is the sum of a particular solution of (33) and

a function F with some pn ∈ K. Finally, every solution of the equation (33) must

be of the form

fn(x) = f ′
n(x) + F (x) = (f2

1 − f1)vn(f1; p2, . . . , pn−1) + pn(f1(x)n − f1(x))

= (f1(x)2 − f1(x))

(
pn

n−2∑

l=0

f1(x)l + vn(f1(x); p2, . . . , pn−1)

)

We have thus proved inductively that every solution (fn)n∈|1,s| of the system of

equations (8) with a generalized exponential function f1 taking infinitely many

values is given by (32) with some sequence of constants (pn)n∈|2,s|. By the first

step of the proof we know, that this is, in fact, the general solution of (8). �

Remark 4. Let us note once more that for an arbitrary abelian group (G, +),

a sequence of functions (fn)n∈N with an arbitrary exponential function f1 and

with fn given by (31) satisfies the system of equations (8). However, we do not

know whether there exists another solution of this system when f1 6= 1 and takes

only finitely many values.

Now let us consider the case where s is a finite number. From Theorem 3 it

follows that there exists a sequence of polynomials (vn)n∈|2,s| not depending on s

(cf. Remark 1) such that if a sequence of functions (fn)n∈|2,s| with a generalized

exponential function f1 with |f1| 6= 1 is a solution of the system of equations (8)

for a finite s, then there exists a sequence of constants (pn)n∈|2,s| such that

fn = (f2
1 − f1)

(
pn

n−2∑

l=0

f l
1 + vn(f1; p2, . . . , pn−1)

)
(34)

holds for n ∈ |2, s|. Conversely, consider the infinite sequence of polynomials

(vn)n∈N given by (9). Then the sequence of functions (fn)n∈N with arbitrary

exponential function f1, arbitrary sequence (pn)n≥2 and such that fn are given

by (34) for n ∈ |2,∞|, satisfies the system (8) for s = ∞. Thus the sequence

(fn)n∈|2,s| with arbitrary exponential function f1 and such that is given by (34) for

n ∈ |2, s|, satisfies the system (8) for a finite s with arbitrary sequence (pn)n∈|2,s|.

We have thus proved

Corollary 4. Let (G, +) be an abelian group which admits a generalized

exponential function from G into K \ {0} with infinite image. There exists a se-

quence of polynomials (vn)n∈|2,s| (the one from Theorem 3) such that the general
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solution (fn)n∈|2,s| of the system of equations (8) with a generalized exponential

function f1 which takes infinitely many values, is given by

fn = (f2
1 − f1)

(
pn

n−2∑

l=0

f l
1 + vn(f1; p2, . . . , pn−1)

)
for n ∈ |2, s|,

where f1 is an arbitrary nontrivial exponential function and (pn)n∈|2,s| is an

arbitrary sequence of scalars.

At the end we prove that the general solution of the system of equations (15)

can be written (as we have in advance mentioned) in the form

cn(t) = λn (c1(t)
n − c1(t)) + c1(t)Pn(c1(t); λ2, . . . , λn−1), n ≥ 2 (35)

with arbitrary exponential function c1 and arbitrary sequence (λn)n≥2, where Pn

are the polynomials from Theorem 4.

Theorem 6. Let (G, +) be an abelian group which admits a generalized

exponential function from G into K \ {0} with infinite image. There exists a

sequence of polynomials (Pn)n≥2 defined by (19) such that for every solution

(cn)n∈N of the system of functional equations (15) (that is for each solution

F (t, X) =
∑∞

k=1 ck(t)Xk of the translation equation (2)) with a generalized ex-

ponential function c1 taking infinitely many values, there exist a sequence of

constants (λn)n≥2 such that (35) holds. Conversely, for each exponential func-

tion c1 and for each sequence (λn)n≥2 the sequence (cn)n∈N defined by (35) is a

solution of the system (15).

Proof. Assume that a sequence (cn)n∈N is a solution of the system of equa-

tions (15) with a generalized exponential function c1 which takes infinitely many

values. From Proposition 1 we know, that the sequence (fn)n∈N := (n!cn)n∈N is a

solution of the system of equations (8). Then f1 = c1 is a generalized exponential

function which takes infinitely many values and from Theorem 5 it follows

fn = (f2
1 − f1)

(
pn

n−2∑

l=0

f l
1 + vn(f1; p2, . . . , pn−1)

)
for n ≥ 2

with some constants p2, . . . , pn. Consider a sequence (fn)n∈N given by

f1(t) = et, t ∈ K,

fn(t) = (e2t − et)

(
pn

n−2∑

l=0

elt + vn(et; p2, . . . , pn−1)

)
, t ∈ K, n ≥ 2.
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Then clearly the sequence (fn)n≥p+2 is a regular solution of the system of equa-

tions (8) with G = K. If we denote fn = Wn(f1; p2, . . . , pn) with suitable poly-

nomials (Wn)n≥2, then also fn(t) = Wn (et; p2, . . . , pn).

Since (fn)n≥p+2 is a regular solution of (8), it follows from Proposition 1

that the sequence (cn)n≥p+2 :=
( fn

n!

)
n≥p+2

is a regular solution of the system

of equations (15) with G = K. We have clearly c1(t) = et for t ∈ K. Using

Theorem 4 we find constants λ2, . . . , λn such that

cn(t) = λn

(
ent − et

)
+ etPn

(
et; λ2, . . . , λn−1

)
, n ≥ 2.

Similarly as above we can write cn(t) = L (et; λ2, . . . , λn). Thus we have the

polynomial relation

n!L(X ; λ2, . . . , λn) = Wn(X ; p2, . . . , pn)

with suitable constants λ2, . . . , λn, p2, . . . , p2. Consequently, for n ≥ 2,

cn(t) =
fn(t)

n!
=

Wn(f1(t); p2 . . . , pn)

n!
= L(f1(t); λ2, . . . , λn)

= L(c1(t); λ2, . . . , λn) = λn(c1(t)
n − c1(t)) + c1(t)Pn(c1(t); λ2, . . . , λn−1),

which finishes the proof. �

7. Note on extensibility of homomorphisms

One of the authors posed the following question (see [13], p. 309): “When

does a homomorphism Φs of (R, +) into Lr
s (the group of truncated formal power

series transformations in r variables) have an extension Φs from (R, +) into Lr
s+1?”

For r = 1 the term “extensibility of homomorphisms” one should understand as

follows. Given a homomorphism Φs = (fj)j∈|1,s| of the group (R, +) into L1
s, does

there exist a function fs+1 such that Φs = (fj)j∈|1,s+1| is a homomorphism from

(R, +) into L1
s+1? If such a function exists, we call Φs an extension of Φs, and

the homomorphism Φs extensible.

Instead of the problem of extensibility of homomorphisms which we for-

mulated in the introduction, we may consider more generally the notion of l-

extensibility, where l is a positive integer or l = ∞.

Definition 4. Let (G, +) ba a group and let s be a positive integer. We call a

homomorphism Φs = (fn)n∈|1,s| of the group (G, +) into L1
s l-extensible, if there

are functions fn with n ∈ |s + 1, s + l| such that the function Φs := (fn)n∈|1,s+l|

is a homomorphism from (G, +) into L1
s+l.
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Theorem 7. Let (G, +) be an abelian group which admits a generalized

exponential function from G into K \ {0} taking infinitely many values and let l

be a natural number or l = ∞. Every homomorphism Φs = (fn)n∈|1,s| with a

generalized exponential function f1 taking infinitely many values is l-extensible.

Proof. Let us fix a homomorphism Φs = (fn)n∈|1,s| with a nontrivial ex-

ponential function f1, which takes infinitely many values. From Theorem 5 it

follows that there exists a sequence of polynomials (vn)n∈|2,s|, independent on s,

such that there exists a sequence of constants (pn)n∈|2,s| with

fn = (f2
1 − f1)

(
pn

n−2∑

k=0

fk
1 + vn(f1; p2, . . . , pn−1)

)
(36)

for n ∈ |2, s|. Consider the sequence of polynomials (vn)n∈|2,s+l| given by (9).

Then the sequence of functions (fn)n∈N with arbitrary exponential function f1

and such that fn is given by (36) for n ∈ |2, s + l|, satisfies the system (8) for

s + l with an arbitrary sequence of constants (pn)n∈N. Thus Φs = (fn)n∈|1,s+l| is

an l-extension of Φs. �
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