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Restricted stability and shadowing

By JACEK TABOR (Kraków) and JÓZEF TABOR (Rzeszów)

Abstract. We prove a shadowing result for non-surjective mappings. As a corol-

lary we obtain stability of the Cauchy functional equation in the case when in the target

space the multiplication by 2 is only an injection.

Although there is no stability in the classical sense, we prove that there is stability

on the respective subset of the domain.

1. Introduction

The essence of Hyers method consists in defining the unknown exact solution
a to the given equation with the use of the approximate solution f by the formula

a(x) :=
f(2nx)

2n
.

As this idea is crucial in many stability results, authors have long considered the
question what happens in the case when there is no global unique divisibility by 2
in the target space. It occurs that it is enough to assume that the division by 2
is locally uniquely performable [2], [3], [8].

We have observed in [8] that the abstract Hyers method is strictly related
to the dynamical systems stability notion called shadowing. This abstract way of
looking at Hyers method enables to generalize some well-known classical stability
results.
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In the present paper we apply the similar approach to investigation of the
stability of the Cauchy equation in the case when in the target space we have no
local 2-divisibility. As illustrates the following example, this usually causes lack
of stability.

Example 1.1. Let F : [0,∞) → [1,∞) be defined by the formula

F (x) =
1
3
x + 1.

Then
|F (x + y)− F (x)− F (y)| ≤ 1 for x, y ∈ [0,∞),

but clearly there is no additive function A : [0,∞) → [1,∞) satisfying the in-
equality

sup
x∈[0,∞)

|F (x)−A(x)| < ∞.

The same holds for the function G : Z→ Z defined by G(k) := bk/2c.
However, F and G can be approximated by additive functions on subsemi-

groups of the domain: |F (x) − 1
3x| ≤ 1 for x ∈ [3,∞) and |G(k) − 1

2k| = 0 for
k ∈ 2Z.

Our aim in this paper is to show that the situation described above is typical.

2. Shadowing

In this section we assume that (X, d) is a complete metric space. By N we
denote the set of nonnegative integers. One of the basic well-known shadowing
results can be formulated as follows [5]:

Theorem. Let δ > 0, M > 1 be arbitrary and let φ : X → X be a continuous

surjection such that

d(φ(x), φ(y)) ≥ Md(x, y) for x, y ∈ X.

Then for every sequence (xk)k∈N ⊂ X satisfying the condition

d(xk+1, φ(xk)) ≤ δ for k ∈ N,

there exists a unique u ∈ X such that

d(xk, φk(u)) ≤ δ

M − 1
for k ∈ N.
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As shows the following example, the assumption that φ is surjective is essen-
tial.

Example 2.1. Let X = [1,∞) and let φ(x) = 2x, M = 2. We put

xk = max(1, 2k−1) for k ∈ N.

Then d(xk+1, φ(xk)) ≤ 1 for k ∈ N, but clearly there is no u ∈ [1,∞) such that

sup
k∈N

d(xk, φk(u)) < ∞.

If such u would exist, then 0 = limk→∞ 1
2k |2ku− xk| = |u− 1

2 |, but 1
2 6∈ [1,∞).

Our main result (which we later use as a basic tool) generalizes the Theorem
quoted at the beginning of this section and shows that under some additional
assumptions surjectivity condition may be omitted. The essential (necessary) ad-
ditional assumption, (2), means that the given pseudoorbit is close to the images
of X under the respective iterates of φ.

Theorem 2.1. Let φ : X → X be a mapping with a closed graph. We

assume that we are given M > 0 such that

d(φ(x), φ(y)) ≥ Md(x, y) for x, y ∈ G.

Let (xk)k∈N ⊂ X be a sequence satisfying

∞∑

k=0

1
Mk

d(xk+1, φ(xk)) < ∞. (1)

If

lim inf
k→∞

1
Mk

d(xk, φk(X)) = 0, (2)

then there exists a unique element u ∈ X such that

lim
k→∞

1
Mk

d(xk, φk(u)) = 0. (3)

Morever, then

d(xk, φk(u)) ≤ 1
M−k+1

∞∑

i=k

1
M i

d(xi+1, φ(xi)) for k ∈ N. (4)
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Proof. Let (xk)k∈N ⊂ X be a sequence satisfying (1) and (2).
We first prove that

d(φk(v), xk) ≤ 1
M l−k

d(φl(v), xl) +
l−1∑

i=k

1
M i−k+1

d(xi+1, φ(xi)) (5)

for v ∈ X and l, k ∈ N, l > k.
Clearly

d(φk(v), xk) ≤ 1
M

d(φk+1(v), φ(xk)) ≤ 1
M

d(φk+1(v), xk+1) +
1
M

d(xk+1, φ(xk))

for v ∈ X, k ∈ N. Applying the above inequality inductively we obtain (5).
Due to (2) we can find a sequence (uk)k∈N ⊂ X and an increasing sequence

of positive integers (Nk)k∈N such that

lim
k→∞

1
MNk

d(φNk(uk), xNk
) = 0. (6)

Now we prove that (φn(uk))k∈N is a Cauchy sequence for arbitrarily fixed n ∈ N.
For k, l ∈ N, l > k > n we obtain by (5)

d(φn(uk), φn(ul)) ≤ 1
MNk−n

d(φNk(uk), φNk(ul))

≤ 1
MNk−n

[
d(φNk(uk), xNk

) + d(xNk
, φNk(ul))

] ≤ 1
MNk−n

d(φNk(uk), xNk
)

+
1

MNk−n

[
1

MNl−Nk
φNl(ul), xNl

) +
Nl−1∑

i=Nk

1
M i−Nk+1

d(xi+1, φ(xi))

]

≤ 1
M−n

[
1

MNk
d(φNk(uk), xNk

) +
1

MNl
d(φNl(ul), xNl

)
]

+
1

M1−n

∞∑

i=Nk

1
M i

d(xi+1, φ(xi)).

By (6) and (1) we obtain that the above sum tends to zero as k, l → ∞. Thus
(φn(uk))k∈N is a Cauchy sequence (for any n), and consequently it is convergent.
We put

ũn := lim
k→∞

φn(uk), u := ũ0.

Since φ has a closed graph, we obtain that

ũn+1 = lim
k→∞

φn+1(uk) = φ(ũn) for n ∈ N.
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Hence ũn = φn(u).
Now we have by (5) and (6)

d(xk, φk(u)) = lim
l→∞

d(xk, φk(ul))

≤ lim
l→∞

(
1

MNl−k
d(xNl

, φNl(ul)) +
Nl−1∑

i=k

1
M i−k+1

d(xi+1, φ(xi))

)

≤ 1
M−k+1

∞∑

i=k

1
M i

d(xi+1, φ(xi)),

which implies (4), and consequently (3).
It remains to prove uniqueness of u. Suppose that v also satisfies (3). Then

for k ∈ N we have

d(u, v) ≤ 1
Mk

d(φk(u), φk(v)) ≤ 1
Mk

d(φk(u), xk) +
1

Mk
d(xk, φk(v)).

Letting k → ∞, we obtain that by (3) the right hand side tends to zero. Thus
u = v. ¤

3. Stability of the Cauchy functional equation

As we have shown in [8], shadowing results can be usually easily “translated”
to stability of the linear-type functional equations. In this section we show such an
application for the stability of the Cauchy functional equation in metric groupoids.

For the convenience of the reader we recall some basic facts concerning
groupoids [1], [6], [7].

Definition 3.1. A set G with a binary operation ◦ is called square-symmetric
groupoid (shortly square groupoid) if

(x ◦ y) ◦ (x ◦ y) = (x ◦ x) ◦ (y ◦ y) for x, y ∈ G.

Clearly every commutative semigroup is a square groupoid.
In a square groupoid we define inductively the powers x2n

of x by

x20
= x, x2n+1

= x2n ◦ x2n

.

One can easily check that

(x ◦ y)2
n

= x2n ◦ y2n

for x, y ∈ G,n ∈ N. (7)
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We will use the following denotation

A2n

= {a2n

: a ∈ A} for A ⊂ G,n ∈ N.

For our considerations we will need the notion of metric groupoid.

Definition 3.2. Let (X, ◦) be a groupoid and d a metric in X. We say that
X is a metric groupoid if there exists K > 0 such that

d(x ◦ y, u ◦ v) ≤ K(d(x, u) + d(y, v)) for x, y, u, v ∈ X.

In other words a groupoid is metric if the function X×X 3 (x, y) 7→ x◦y ∈ X

is Lipschitz (in X ×X we take the product metric).
We conclude this section with a quite general example of a metric groupoid.

Example 3.1. Let X be a Banach space and let A,B : X → X be commuting
Lipschitz affine functions. We define the binary operation in X by the formula

x ◦ y = Ax + By for x, y ∈ X.

Then one can easily verify that X is a complete metric square groupoid.

The following theorem is the main result of the paper.

Theorem 3.1. Let (G, ◦) be a square groupoid and (X, ◦, d) a complete

metric square groupoid. We assume that we are given Ψ : G × G → R+ and

constants 0 < MΨ < M such that

d(x2, y2) ≥ Md(x, y) for x, y ∈ X, (8)

Ψ(g2, h2) ≤ MΨΨ(g, h) for g, h ∈ G. (9)

Let F : G → X be such that

d(F (g ◦ h), F (g) ◦ F (h)) ≤ Ψ(g, h) for g, h ∈ G. (10)

We denote

GS := {g ∈ G : lim inf
k→∞

1
Mk

d(F (g2k

), X2k

) = 0}.

Then GS is a subgroupoid of G and there exists a unique additive function A :
GS → X such that

d(F (g), A(g)) ≤ 1
M −MΨ

Ψ(g, g) for g ∈ GS . (11)
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Proof. We define the mapping φ : X → X by the formula

φ(x) = x2.
Then clearly by (8)

d(φ(x), φ(y)) ≥ Md(x, y) for x, y ∈ X.

Since the groupoid X is metric, the mapping φ is continuous, and consequently
has a closed graph.

We are going to construct the desired additive mapping A with the use of
Theorem 2.1. Let g ∈GS be fixed and let us consider the sequence (xk(g))k∈N⊂X

defined by the formula
xk(g) := F (g2k

) for k ∈ N.

By the definition of GS we obtain that

lim inf
k→∞

1
Mk

d(xk(g), φk(X)) = 0.

On the other hand, by (9) and (10)

d(xk+1(g), φ(xk(g))) = d(F (g2k+1
), (F (g2k

))2) ≤ Ψ(g2k

, g2k

) ≤ Mk
ΨΨ(g, g).

Thus

∞∑

k=0

1
Mk

d(xk+1(g), φ(xk(g))) ≤
∞∑

k=0

(
MΨ

M
)k ·Ψ(g, g) =

1
1− MΨ

M

·Ψ(g, g) < ∞.

This means that we can apply Theorem 2.1 and obtain existence of a unique
element u(g) such that

lim
k→∞

1
Mk

d(xk(g), φk(u(g))) = 0. (12)

Moreover, by (4)

d(x0(g), u(g)) ≤ 1
M

Ψ(g, g)
1− MΨ

M

=
1

M −MΨ
Ψ(g, g).

We define the function A by the formula A(g) := u(g). By the above in-
equality we obtain that (11) holds. It remains to prove that A is additive. Let
g, h ∈ G be arbitrary. We use, without mentioning it explicitly, the equalities (7).
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By (12) we obtain that

lim
k→∞

1
Mk

d(F (g2k

), A(g)2
k

) = 0, lim
k→∞

1
Mk

d(F (h2k

), A(h)2
k

) = 0,

lim
k→∞

1
Mk

d(F ((g ◦ h)2
k

), A(g ◦ h)2
k

) = 0.

Applying the first two of the equalities above and the fact that X is a metric
groupoid (with constant K > 0), we obtain that

lim
k→∞

1
Mk

d(F ((g ◦ h)2
k

), (A(g) ◦A(h))k)

≤ lim
k→∞

1
Mk

(
d(F (g2k ◦ h2k

), F (g2k

) ◦ F (h2k

))

+ d(F (g2k

) ◦ F (h2k

), (A(g) ◦A(h))k)
)

≤ lim
k→∞

(
Mk

Ψ

Mk
Ψ(g, h) +

K

Mk
(d(F (g2k

), A(g2k

)) + d(F (h2k

), A(h2k

))
)

= 0.

Summing up, we have obtained that

lim
k→∞

1
Mk

d(xk(g ◦h), (A(g ◦h))k) = 0, lim
k→∞

1
Mk

d(xk(g ◦h), (A(g)◦A(h))k) = 0.

By the uniqueness part of Theorem 2.1 we obtain that A(g◦h) = A(g)◦A(h). ¤

Let us just mention that taking Φ as respective functions one can obtain
generalization of some of the results of Th. Rassias [4, Th. 2.1, 2.2].

Remark 3.1. Theorem 3.1 has a constructive character. Let, as in Theo-
rem 3.1, f be an approximately additive function. To construct A(g), for g ∈ GS

we proceed in the following way: we take an arbitrary sequence (uk(g)) ⊂ X such
that lim infk→∞ 1

Mk d(f(x2k

), φk(uk(g))) = 0 and put A(g) := limk→∞ uk(g).

The most commonly met situation is when Ψ is a constant function. Let
us now reformulate our theorem in this case, which corresponds to the classical
Hyers Theorem.

Corollary 3.1. Let G, X be square groupoids. We assume that we have a

complete metric d in X and M > 1 such that X is a metric groupoid and

d(x2, y2) ≥ Md(x, y) for x, y ∈ X.

Let ε > 0 and F : G → X be such that

d(F (g ◦ h), F (g) ◦ F (h)) ≤ ε for g, h ∈ G.
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Then GS :=
{
g ∈ G : lim infk→∞ 1

Mk d(F (g2k

), X2k

) = 0
}

is a subgroupoid of G

and there exists a unique additive function A : GS → X such that

d(F (g), A(g)) ≤ ε

M − 1
for g ∈ GS .

The crucial role in the above result plays the assumption that M > 1. So
the question arises what happens if this is not the case. The following example
shows that we have no stability if M = 1.

Example 3.2. Let G = X = [0, 1] with the standard metric. In G and X we
consider the operations

g1 ⊕ g2 = min(g1 + g2, 1) for g1, g2 ∈ G,

x1 ∨ x2 = max(x1, x2) for x1, x2 ∈ X.

Clearly, (G,⊕) and (X,∨) are commutative groupoids. Moreover, X is a metric
groupoid. We have x2 = x ∨ x = x for x ∈ X, which implies that X satisfies (8)
with M = 1.

Given n ∈ N we define the function Fn : G → X by the formula

Fn(g) = g1/n for g ∈ G.

One can easily check that

d(Fn(g1 ⊕ g2), Fn(g1) ∨ Fn(g2)) ≤ 21/n − 1 → 0.

Let 0 < ε < 1/2 be fixed. We show that for an arbitrarily chosen n ∈ N there is
no homomorphism A : G → X such that

d(Fn(g), A(g)) ≤ ε for g ∈ G.

For an indirect proof, suppose that such a homomorphism exists. Then

A(1) = A(1/k ⊕ · · · ⊕ 1/k) = A(1/k) ∨ · · · ∨A(1/k) = A(1/k) for k ∈ N, k ≥ 1.

Consequently

1− (1/k)1/n = d(Fn(1/k), Fn(1)) ≤ d(Fn(1/k), A(1/k))

+ d(A(1/k), A(1)) + d(A(1), Fn(1)) ≤ 2ε.

Letting k →∞ we obtain that 2ε ≥ 1, a contradiction.
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