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Distribution of additive and g-additive functions
under some conditions II.

By 1. KATAI (Budapest) and [M. V. SUBBARAO] (Edmonton)

Abstract. Distribution of additive function over the set of integers having fixed
number of prime divisors, and the distribution of g-additive functions over the set of
integers for which the value of the sum of divisors function is fixed are investigated.

81. Introduction

1.1. Notation. N,R,C as usual denote the set of natural, real and complex

numbers, respectively, Ng = N U {0}, P be the set of the primes, p with or

without suffixes always denote prime numbers. The letters ¢, cq,ca,... denote

constants not necessary the same at every occurence. Let ®(y) be the Gaussian
. . . . Yy —u?

distribution function, ®(y) = \/% [P e 2 du.

1.2. g-additive and g-multiplicative functions. Let ¢ > 2 be an integer, the
g-ary expansion of n € Ny is defined as

n=>Y ¢n), (1.1)
j=0

where the digits €;(n) are taken from A, := {0,1,...,¢—1}. Let A, be the set of
g-additive functions, and ﬂq be the set of g-multiplicative functions of modulus
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1: f: Ny — R belongs to A, if f(0) =0 and

fn) =" fe5(n)g’) (n € No). (1.2)
j=0
We say that g : Ng — C belongs to M,, if g(0) = 1,
g(n) = [T 9(e;(ma’)  (n € No) (1.3)
§=0

and |g(n)] =1 (n € Nyp).
Let a(n), Br(n) be defined as

a(”)zzfj(n); Br(n) = Z 1 (h=1,...,9—1). (1.4)
j=0

It is clear that a, 8, € A;. H. DELANGE [1] proved that for every g € M,
the limit

lim é > g(n) = M(g) (1.5)
n<x
exists and M(g) # 0, if
m; :ZEZg(cqj);«éO (j=0,1,2,...) (1.6)
q cEA,
and
> (1 -my) (1.7)

is convergent. If these conditions hold, then
oo

M(g) = [ ms- (18)
j=0

Hence he deduced that for f € A, the values f(n) possess a limit distribution
if and only if both of the series

SN e, (1.9)

§=0 beA,

YD ) (1.10)

j=0 beA,
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are convergent.
Let f € Ag. Assume that it has the limit distribution

Fly) = Jim ~#{n <] f(n) <y} (1.11)

Delange proved that F(y) = P(£ < y), where £ is the sum of the independent
random variables &, &1, ..., where P(¢; = f(ag’)) = 1/q (a € A,). Thus the
characteristic function ¢(7) of F(y) can be written as

= {15}

Let 71,72,...,7q—1 be nonnegative integers, r = (r1,...,7r4—1) and Sy(r) =
{n<g¥|Bin)=rj,j=1,...,q—1}. Let ro ;=N — (r1 + ...+ 14-1). Sn(r)
is empty if 79 < 0. Let M (N | r) := #Sn(r).

In [5] we proved the following Theorems A, B, C.

Theorem A. Let f € A,, and the series (1.9), (1.10) be convergent. Let

V) = (T§N), e rfﬁ’}) be such a sequence for which
(N)
qar; .
-1l <dy (G=l.g-1) (1.13)

where 6y — 0 (N — 0).
Then

Jim e Sy e | S <y =Fw). (11

where F(y) = P(€ < ).

Theorem B. Let g € M, be such a function for which (1.6) holds and (1.7)
is convergent. Let r(™) be a sequence satisfying (1.13). Then

1

im M 7) nES%%’rN) g(n) = M(g). (1.15)

Theorem C. Let g =2, f € As, f(29) = O(1) (j € N),

1 =

. 1 .
HNZNZJC(%% Bzzv 111 : (f(QJ)*UN)Z-
j=0 j=0

T
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Assume that By — oo.
Let py — 0, and k = kN) be such a sequence of integers for which

k
- vz <o (1.16)
holds.
Then
. 1 f(n) —kny }
Jim_ (]Z)#{n<2 ‘ Be <V a(n) (y)s (1.17)

the convergence is uniform in y.

In [6] we continued our work and proved the following Theorems D, E.
Let

k

TNk = Eng = {n <2V | a(n) = k}. (1.18)
Theorem D. Let g € My be such a function for which
> (1-g(2)) (1.19)
j=0
is convergent. Let

Me = [[(1-9 +9@)8 (0<g<). (1.20)

§=0

Let § > 0 be a constant. Then

1
lim max |—— n)—M,.. |=0. 1.21
LT N e ngkg( ) = M, (1.21)
n<gV

Theorem E. Let f € As, such that > f(27), 3 f%(27) are convergent. Let
0,61, .. be independent random variables, P(§, =0)=1—n, P(§, = f(2"))=mn,
0= Z;io &

F,(y) == P(© < y). (1.22)

Then

1
lim  max sup|x#{n € Enp, f(n) <y} —Fx(y)| =0. (1.23)
N=oo 5 <1-6 yek | () N

Here 6 > 0 is an arbitrary small constant.



Distribution of additive and g-additive functions under some conditions II. 63

In [6] we mentioned that we would be able to prove

Theorem F. Let f € Ay, f(27) = O(1). Let hy € As be defined by
hy(2) = [(2) = g AN, Ay = S5 1(2), 0% (n) = (L= n)n 35" h(27).
Assume that limy _,o, on(1/2) = oo.
Let 0 < 6 < 1/2 be a constant. Then
1 fin)—£A
#{n € En ‘ f(n) - §Ax < y} — B(y)

lim sup  sup =0.

N= kefs1-s] vek | (}) on ()

Here we shall prove that for the fulfilment of (1.23) the convergence of
S £(29), and of Y f?(27) is necessary. Namely we shall prove the following

Theorem 1. Let f € Ay. Assume that there exists a sequence of integers
kn, B — & (N — 00), 0 < & < 1 such that

lim sup =0

N —o0 yER

# {n € EN,kN? f(n) < y} - G(y)

1
N
(kN)
with a suitable distribution function G(y). Then both of the series (1.9), (1.10)

are convergent and G(y) = F¢(y), Fe(y) is defined in Theorem E.

1.3. Additive functions. We say that f : N — R is additive if f(mn) =
f(m) 4+ f(n) holds for every coprime pairs of integers. We say that g : N — C is
multiplicative, if g(1) = 1, and g(mn) = g(m) - g(n), whenever (m,n) = 1. Let
A, M be the sets of additive, and multiplicative functions, let M = {g € M |
lg(n)] = 1 (n € N)}. For the sake of brevity we shall write 1 = logz, zo =
log Tlyewn

Let Q(n) = number of distinct prime powers of n, N, = {n | Q(n) = k},

Ni(z):=#{n<z, ne N}, Ng(z|D):=#{n<z]|(n,D)=1, ne N}

According to a classical theorem of Erdés and Wintner, if f € A and the
following three series

> @, > @, > 1 (1.24)

o<t P i<t P s

are convergent, then

lim L4 < | f(n) <y} = F(y) (1.25)

exists at every continuity points of F', where F' is a distribution function. They
proved also that the convergence of the series in (1.24) is necessary for the exis-
tence of satisfying (1.25).

In [6] we proved the following two theorems.
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Theorem G. Assume that f € A, the series (1.24) are convergent and
k = k(x) satisfies the inequality

k
——1 1.2
s ’ < Oy, (1.26)
where 6, | 0. Then
1
lim ——#{n <z, neN, f(n)<y}=F(y), (1.27)

e
where F(y) is defined by (1.25).
Theorem H. Let g € M, and assume that

3y 1=9() (1.28)

B p

is convergent. Let k = k(x) be such a sequence for which (1.26) is satisfied. Then

Fo7 X 9 = (L+o,(D)M(s),
nneﬁj\ﬂ/_ﬁk

M(g)=]]err er=01-1/p) <1+g§f)+gg)+...>.

Here we shall prove

Theorem 2. Let g be as in Theorem H satisfying the conditions formulated
there. Let § > 0 be a fixed constant, & , := % Let

My (g) = E[ep(n)a ep(n) = (1 - Z) <1+ gl g(i;)nz +) .

p
We have
1
hm SU-p — gn_MTg :O.
T—=00 5y <26 Ni(x) 7;5 (n) €0 (9)
nE_J\/k

Theorem 3. Let f € A, f(p®) = O(1) if p € P, and « € N. Let A, =
Ypen LB fH(p%) = (p°) = 2A,, B2 = Yo, 2(f*(p))?. Assume that f* is
extended to N so that f* € A. Let B, — o0o. Let &, = %, 0 € (0,1/2) be a
constant. Then

1

f(n)

T k,x

=0.

lim max; max
=00 ¢ L €[5,2—5] YER
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Theorem 4. Assume that the conditions of Theorem 3 hold true. Let §, A
be positive constants, so that 0 < § < 1/2, A > 2+ 6. Then

lim max; Imax
T gy L€[2+40,4] VER

1
Nk(x)#{ngx‘ B

fr(n) }
<y, —®(y)|=0.
+V2
Theorem 5. Let f € A, and assume that the 3 series in (1.24) are con-
vergent. For some n € (0,2) and p € P let §, = {,(n) be the random variable
distributed by P(§, = f(p*)) = (1 — %)(%)a (¢ = 0,1,2,...). Assume that
&p(p € P) are completely independent, ©(n) := >~ &,(n).

Let Fy,(y) .= P(©(n) <y). Let furthermore

1

Fk,T(y) = Nk<$)

#{n<z, neN, f(n) <y}

Let 0 <6 < 1/2.
Then
lim max  sup |Fk — Fe, = 0.
T—00 £ ,€[5,2—6] y€£| k() e W)
Theorem 6. Let g € M, (1.28) is convergent. Assume furthermore that
g(2%) =1 (@ = 1,2,...). Let A > 2+ 6 be constants. In the notations of
Theorem 4 we have

1

lim sup n) — M* _o,
2=00 91 5<¢, <A | Ni(2) Z; 9(n) = M;(g)
neWk

where

M;(g) = [T en(@

p>2

Theorem 7. Let f € A be as in Theorem 7. Assume furthermore that
f(2%)=0(a=1,2,...). Then

xli)n;o 2+6I§n§},i§,4 | Fiearly) = 2 ()] = 0,

where
Fy(y) = P(Zép@) < y)
p>2

Here &0 = LA

2
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Remark. In Theorems 6 and 7 we have to assume something on the values
g(2%) and on f(2%), since for the function v(n) defined by 2*(")||n,

a;lggo ﬁ(x)#{n <z, v(n)<ec, neN,}=0

for every fixed c.

In the proof of some of the theorems we use the following analogue of the
Turan—Kubilius inequality.

Theorem 8. Let f € A, A, = Zpﬁz%’ B2(n) = Dpe< i fz(fia)"m.
Assume that f(p®) =0 if p® > z'/* or if p € P and a > V2.

Let 6 > 0 be a constant, & , = % Then

Z (f(n) - gk,:vAa:)Q < Céi(gk,w)a (1'29)

TLENk

Nk(l’)

if & € [0,2 — 8. Here c is an absolute constant.

Theorem 9. Let f be as in Theorem 8. Assume that f(2%) =0
(e =1,2,...). Let § and A > 2+ be constants. Then, for (2+§)zy < k < Ax,,

1 2 H2
AT Z<j (f(n) — 24,)% < cB2(2), (1.30)
nEWk

where ¢ is a constant that may depend on § and A.

Remark. In Theorem 9

B 2 (o
B - Yy L
p>2
P <V

§2. Some lemmas and proof of Theorem 1

Let f € As, and

Qr.n (D) := sgg#{n € Eng, f(n) € y,y+ DJ}.
Y
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Lemma 1. Let D > 0 be fixed. If limsup, |f(2’)] = oo, then

Qr,n(D)
5§kr/nN§1—6 (]I\C’) =0 (N = 00)

PRrROOF. By changing the sign of f, if needed, we may assume that
lim sup f(27) = .

Let [; < Iz < ... be such a sequence of integers for which: 2D < f(2!1),
f(2ha) > 27(20).

Let N be a large integer, T' be defined such that i < N —1 < lpiq. Let

U={lilo,....01r}, V={01,....N—1N\U.

Let
a1(n) =Y edn), as(n) = e(n),
seV teU
En = {n€5k7N, az(n)=h}, h=0,1,...,T.
Then
T
Eni =] &n
h=0

Assume that h > 1. Then

Eh — U g}(talvn-vah)’

a1,a2;...,ah

where aq,as,...,ap run over all strictly monotonic sequences of length h from
the set U,

S}Eal"”’a") ={n e n; €q,(n) =1
ifr=1,...,h; 5b(n) =0ifbe U\{al,...,ah}}.

Ifne 5,(1‘“ ”"’ah), then n = m + p,, where

h
ph=> 2%, m= > &2, (6€{0,1}).
v=1 j:ONfl
JEV

It is clear that |f(p§ll)) - f(p§L2))| > Dif pi1) £ i,
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Let y and h be fixed. Then, for a fixed m, no more than one p; may exist
for which f(pn +m) € [y,y + D].
Thus

#nesn s e+l < ().

This inequality holds for h = 0 as well.
We have N_T
(hn) (N = T)IE!(N — k)!

() Nk —=h)NN =T —(k—h)!"

It is clear that, if {l, } satisfies the conditions stated above, then these con-
ditions hold for every infinite subsequence of it. Therefore we may assume that

T?/N — 0 as N — oo, whence we can deduce that

(k) K (N — k)T
and so

Qi (D) VAN A N
SRR <A +on()D ] (= 1——

(Zl\sf) h=0 N N

A A
Schax{(l—N) ’(N) }gcT(1—6)T—>O as T — oo.
The proof of Lemma 1 is complete. O

. 1
hy(2):=f(2) — G An,  Av=)f(), B =) M)
j=0 j=0
Assume that limsupy_, ., B% = co. Then
D

lim max Qk+() =0.

N—oo kefs2-5  (3)
PROOF. The assertion is clear from Theorem F. O

PrOOF OF THEOREM 1. Assume that the conditions hold. Then
en N(D) > ¢(N) with ¢ > 0, if &x € 5,1 —6). Thus f(27) = O(1), and B% is
Q N ( ) (kN ’ N N
bounded. One can prove simply that
1 kn (N - k?N)
w5 Y. M) = N WBJQ\H (2.1)
(kN) n<2N

nEEN k
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whence

#{n S 51\[’;61\, | |hN( )| > A} < 252), (22)

1
N
(i)
where ¢(d) is a constant, and A is an arbitrary positive number. If f has a limit
distribution on &y g, , then

limsup - #{n € Ex g | 1F(m)] > A} < (A), (2.3)
N—oo (kN>

where ¢(A) — 0 as A — oo.

From (2.2), (2.3) we obtain that |hxy(n) — f(n)] < 2A holds for at least
(1—2e(A) - cié)) (k];[v) integers n € En ky, whence we obtain that Ay = O(1).
Thus 3" f2(27) < oo holds.

Let M < N, Ayn =An — A

Let 0 < n < 1, &(n) be independent random variables,

P(&m) =-nf(2)=1-n, P(&n) =1-n)f2)) =n,
On(n) =& ) + &) + ...+ Eu—1(n).

Since Y f2(2%) < oo, therefore P(0,/(n) < z) converges weakly to a distribution
function as M — oo.
Let

Gup(y) = P(Oum(n) <y) — Gy(y) = P(Os(n) <y).
Let 7 € R, g(n) = ™™, gys(n) = [IM5" g(e;(n)27),

N-1
=D hiei(n)-2)
j=M

Repeating the simple computation used in [5], we can deduce that

N—1
1 .
D> (M) —nrAuN)? < a(0) > hA(27)
(kN) TLGé‘NﬁkN j=M
N—1 N—1
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with suitable constants ¢;(4), j = 1,2, 3.
We have

g(n) = grr(n)e™ ™ = g (n)e™AMN L gar(n) (eihmn) - €inTAM’”> ;

whence |g(n) — gas(n)e™™Am.N | < |h%,(n) — nT Ay, and in the notations

orrn(r) = ] (nel7@=mIC) 4 (1 — ye=imnf @),

<ca(®)7] [ F2(29).
J>M
Arguing as in [5], we can deduce that

(;tN) > gM(n)(1+oN(1))Aﬁ:<<1§> +J@.g(2j)>

we obtain that

LN 1
My oy n () — € R AN N Z g (n)

ik
= (L+on(1)e™ ¥ Moy &,

@rr i (7] < o (V) + s (@),

N

Let ¢, (1) = limy o M, ky (7). From the condition we know that v, exists.
)N
Furthermore imy o0 ¢, kx (T) = ¢n,,(7) obviously holds (due to kWN — 7).
)TN
Finally, we shall prove that lim Ay exists.
Assume indirectly that a = liminf Ay, 8 = limsup Ay, a # 8, N, / o,

R, — 00, Ay, — a (v — o0), R, — 0 (1t — 00). Then

N kR,
iYL TAN 7
_ N v ) _ R
kr, (T) — €™ P i, (1) —e Bu
HOTRy, ? Ny "Ry

< Omin(NU,RM)(l) + c6(6)en|T|.
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It is clear that ¢y, » is continuous uniformly in A € [§,1 — 4], and

limas oo arx(7) is continuous as well. Hence we obtain that |e?®™ — 7| = 0.
This holds only if o = .
The proof is completed. O

83. Some useful lemmas

The following two lemmas can be found in [7], pages 59 and 60.

Lemma 3 (Wintner, Fréchet—Shohat). Let F,(z) (n = 1,2,...) be a se-
quence of distribution functions. For each non-negative integer k let

ap = lim A, (2)

—o0
exist.

Then there is a subsequence I, (z), (n1 < na < ...), which converges weakly
to a limiting distribution F(z) for which

ak:/ AR (z) (k=0,1,2,...).

—0o0
Moreover, if the set of moments ay, determine F(z) uniquely, then as n — oo the
distributions F, (z) converge weakly to F(z).

Lemma 4. In the notations of Lemma 3 let the series
o~ (it)’
o) =Y ar'Th
1=0 ’
converge absolutely in a disc of complex t-values |t| < 7, 7 > 0.
Then the «y, determine the distribution function F(u) uniquely. Moreover,
the characteristic function ¢(t) of this distribution had the above representation
in the disc |t| < T, and can be analytically continued into the strip |Im(t)| < 7.

Remark. The proof of Lemma 3 can be found in [3], while the proof of
Lemma 4 is given in [7], (Vol. I, page 60).

Remark. The characteristic function ¢(t) = e=¥"/2 of the standard normal
distribution can be written as

= (i) (2!

(I =0,1,2,...). The expansion is absolute convergent on the whole complex
plane.
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Lemma 5 (Newton—Girard formulas). Let B be a finite set of primes, M =

#B,v: B — R,
LY wim) sn=>_ ¥"(p
p1<---<pi peEB
pLEB
Then
Ei14+s=0

2F5 + F1s1+s3=0

rE.+FE._1s1+ ...+ E1sp—1+s. =0 (r=1,2,...M).

We shall use some of the results from the book of TENENBAUM [4] (Part II.,
Chapter II. 6).
Let

u(z) = ﬁ 1;[ (1 - ;>_1 (1-1/p)°

be defined in |z| < 2. Since v(z) is analytic in the open set |z| < 2, therefore

9=y

m=0

V(m) v(m)(0) c

ml ‘ =@ s

with any § > 0 and a suitable constant ¢ = ¢(9).

Let
B V(m)(o)
Tl
o1y
Qok(y) = Z*bk 1yt
1=0

For some polynomial P(z) € R[z], P(z) = Y, wal, let ||P|(z) = Y |w|z.
We have

Qoe(y +A) — Qox( Z (“) A,

;41

and so

k—1 1 k—1 1
> el = 5 Z Ty ™
u:l p=1 ,U/
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— k—1
S LI BIRE ] VS SR
= t+1

It is clear that d; < ﬁ with a suitable constant c.
We formulate the above assertion as

Lemma 6. We have
=
Z—,HQ(“) Zdty di < 3

with a suitable constant c.

Let -
Ni(z) = —Qo.x(z2).
T

Lemma 7. Let ¢ satisfy 0 < § < 1. Then, forx > 3,1 <k < (2 —0)xz

Nila) = Ni(o) + 05 (2283() ).

T

(See TENENBAUM [4] Theorem 5 in p. 205.)
Let 1 < D < zf=, where 0 < e, <0,1. Let np := lole, O©p :=log(l —np),

(k—1)
1 Q6 k(y) k—1 %0,k (y)
= 1+0p-———+...+ 06 — . 3.1
Y0 () L —np { P Qox(y) P Qoxly) 3.1)
After easy computation we have
N (2) = By, o) (32)
K\ D D VkD(T2). .

84. Proof of Theorem 3

Assume that the conditions of Theorem 3 are satisfied.
Let h be completely additive, J, = [K,,x%*],

ifpeJ,

0 itpg o,
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where €, | 0, K, T 0o so slowly that

: f*(n)
lim  sup #{ne./\/k, n<z, | hin)— >ep =0 (4.1)
Tr—00 %6[5,2—5] Nk(l‘) Bw
for each € > 0.
1
lim  sup ——#{neNy|n<z, Ip>K,, p*|n}=0. (4.2)

Tk [5,2-) Ny ()

Let p < K, count those n € N}, for which p® | n. The size of those n is no
more than

k—a—1 atl
X cx x 01(275/2) +
Moo \Gm : < N, 4.

' <p“> Sprn (-l-a)l = e k(@), (4.3)

assuming e.g. that p® < x;. Hence we obtain that
Z fr(”)
B,

p%|In
p<Kg

sup 1#{n € Ny,

£ el5,2-5) Vi(@)

>5}—>O(:I:—>oo)

if K, 1 oo sufficiently slowly. Since the number of prime divisors p in (2=, z] of
n is less than i therefore (4.1) clearly holds.

(4.2) can be proved easily. We use (4.3) if K, < p < zy with a = 2, and for
p > x1 we use the obvious

inequality.
Thus (4.2) is true.
We have

*2 loglog K, 1
f=(p)  loglog oL
p B3 B3

1 f*(p) _logl/e,
n2 Z P < B2
T p<K, zer <p<wm z

and so

2 loglog K, + log 1
Zhl()p)zl—l—HI, H,| < 288 ”;; ogl/es (4.4)

Assuming that K, and 1/e, are increasing sufficiently slowly, we can and
will assume that H, — 0 (x — 00).
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To prove the theorem it is enough to show that for every r =1,2,...,

1 "(n)
sup g — —pr| =0 as x — oo,
Eepz-g | V(@) = B
'né/\/k

and then apply the Frechet—Shohat theorem.
Let us consider the sum

Uk, () == L > h(n). (4.5)

Since h is completely additive, therefore

" c(rily, ...l
Uk,r(l")zz Z (Nk(x))

s=1 l1+...+ls=r

S e i N ()

P1,P2;--3Ps 1---Ps
where star indicates that we sum over all those s tuples pi,...,ps of primes for
which p; # p;, if i # j. Here c(r;ly,...,15) = ﬁ
Let
1 * x
Vir(z [l ls) = 55— h(pr) ... B (p N*—S<>’ 4.7
bl = gy 2 M0 W eaN () ()
- “Le(rsly, .., ls) - NE_ ()
Uk r(x) = = Vir liy .oy ls). 4.8
k() ; AT (@ | ) (4.8)

From Lemma 7 we can deduce simply that Uy, ,.(z) — Uy (z) — 0 (z — o)
uniformly as & € [6,2 — 6]. We estimate Vj(z | I1,...,15) by using (3.1), (3.2)
with D = p; ...ps. We can write 95 p(y) as a convergent power series of 7p.

We try to estimate

« Wl (p)(logp)t R (ps) - (log ps)te
E(llytl;127t2; 'lsts) = Z (pl)( ngl) (p ) (ng ) . (49)

R i T
plxll psxl

P15---3Ps

Let

k(1) == e (=12, t=0,1,...). (4.10)
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From (4.4) we have

cloglog K, +log1/e,
k(2,0) =1+ H,, |H,| < [ . (4.11)
We have
1 1 N 1 1 A,
w0 =5 X5 (10 -5 ) = 5 5 5 (10 - 22
a:pe‘]zp 2 :cp<m2p 2
1 1 . 1 1 Ay
-5 > (rw-2) (10~ 22)
zp<Bwp 2 ww51§p<ajp 2
= Zl o ZI o Zg :
Since z2 — >, 1/p = O(1), therefore
1 A A 1
N 1 == — 1 =0 .
p<zx2 p<x2
Furthermore
B loglog K, B log1/e,
So=o(MER). Sa=o()
Consequently
loglog K, + log1/e,
K(1,0)] < c(loglog K +log1/es)
B,
with a suitable constant c.
It is known that | ) | s
3 (logp)® _ (ogy)
p<y P 5
for s > 1.
Let A, be defined by
c(loglog K +log1/ey) r r
= — > — . .
A, B, + i |x(1,0)] + X (4.12)

It is known that

3 (loip)s e (logs y)*

)

p<y
for s > 1.
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Hence, by using the Cauchy—Schwarz inequality,

2 1/2 2t t
k(1,t) < (Z h(p)> (;% 3 aDgp)) < &z (4.13)

pEJy p p<zex p

~+

Forl>2,t>1

lk(l,t)| < celr(l,0), (4.14)

Ik(l,0)] < c <;)l_2. (4.15)

x

Assume first that there exists at least one (I;,%;) = (1,0). Assume that ([;,¢;) =
(1,0)if j=1,...,h and (I;,t;) # (1,0) if j > h. We have

E(lhtl; .. .;ls,ts)

* 2 hl”u 1 ut” * h(py h
_ ¥ (H (p).(ogp>>{z <p><ph>}

ty
Dhtlseees v=h+1 Py x1 Plse-sDh P Ph
where * means that py11, ..., ps are distinct primes, and ** means that p1,...,pn
are distinct primes, none of them belongs to the set {pp41,...,ps}. First we esti-

mate the inner sum. Let us apply Lemma 5 with B={p | p < %= }\{phr+t1,---,Ps}s

— hp) ; o h(pi)  hipn) _ h
¥(p) = =~ In the notation of Lemma 5 " === =22 = (=1)"AlE),.

Since |Ey| = |Zp€l3 @| < Ag (see (4.12)), from the Newton-Girard formulas
(by using induction on h e.g.) we obtain that |Ep| < cA,, where ¢ is a constant
that may depend on r at most.

Thus

E(li,t1;. . 5ls,ts) < cAgk(lpg1,thet) - -« K(ls, ts).
By the inequalities (4.13), (4.14), (4.15) we have
1\ b2
E(li,t1;. .5l ts) < cpAy glpttts ZEQ (Bm> , (4.16)

c1 is a constant which may depend on 7.
Similarly, if (I;,¢;) # (1,0) holds for every j, then

l;—2
1 J
E(l17t17 (R 7l87t8) < Clgtxl+...+ts H (B) . (417)

1;>2
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We can observe that the right hand side of (4.16), (4.17) tends to zero except the
case, when for every j, ({;,t;) = (2,0). This can be happen only if » = 2R is
even. Observe that

Z* W(p1)  h*(pr)

E(2,0;...,2,0) = ,
propr Pl PR
and hence we can deduce easily that
E(2,0;...52,0) = (2,00 + 0,(1) = 1+ 0,(1). (4.18)

Let us go back to (4.7). See furthermore (3.1):

« ph ... hls (ps
Vkﬂm(l‘ | l1, .. .,ls) = Z (pl) (p )Tk—s("]pl“.ps),

P1-.-Ps
where
1
Ties(W) = 1= W{1 Flog(l— W) - Si +log2(1 — W)Sa + ...
+1og" T (1= W) - Sy }
S' L ((J],l)cfsfl(xQ)
! Qo,k—s—1($2)
Let .
+ h''(p1)...h(ps)' (logpi...p
VO (1, .. 1) = s s
e ety X L (0
Then .
T !
Vk(}r)(]]|l1,...,ls): Z mE(ll,tl;...’l37t5).
t14...+ts=T

In the case T = 0 it was already proved that Vk(?r)(x | 11,...,1s) = 0z(1),
except the case when Iy =l = ... =1, =2, s = R, r = 2R, when V;g)R(a: | 2,
S 2) =14 0,(1).

Let now T > 1. From (4.16), (4.17) we obtain that

VD (@ | .. ly) < eel (4.19)

Let u(w) = po + p1w + ... be a power series with nonnegative coefficients,
and assume that it converges in the disc |w| < 1.
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Since
* hll ...hls 5 10 - s s
3 A e () = e )
P1...Ds ! = ’
P1yeees Ps =0

from (4.19) we obtain that the left hand side of (4.20) is less than
< Z preel = cu(e,).
T=0

j Gog(1=w)) 4

—w

Since the coefficients of the Taylor expansion of - and of (—1)
positive, and they converge for |w| < 1, therefore

\Z* B 1) hlp) (bgpl 2 p) ] < cu(es)

D1---Ds 1
holds, if
—1V log? (1 —
u(w):( )" log’( w), j=1,...,k—s—1,
1—w
and if w
u(w):m,

ly,...,ls arbitrary, and in the case u(w) = 1, (I1,...,1s) # (2,...,2) the left hand
side tends to 0.

Consequently, by Lemma 6 Vi (x| l1,...,ls) = 0 (x — o0) if (I1,...,1s) #
(2,...,2), while for s = R, r = 2R,

Vk,QR(x | 27---32) =1 +Om(1)'

We are almost ready. We have to observe only that

N,j_s(:ng)7k(k—1)...k—(s—1)7 o o
e - = (14 0, ()L,

The proof is complete.

§5. Proof of Theorem 4

Theorem 10. Let 0 < §, A > 2+ § be constants. Then for all
k€ [(24 6)xe, Axs] we have
crry

Ni(z) = T {1+OA($;62/5)}.
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See [4].
To prove the theorem we can use the argument of the proof of Theorem 5.
Instead of (3.1), (3.2) we can use the formula

* [T IR log D
Nk(x)ZQT7 Ny (D):DNk(ff)(l_ 1 )

We omit the details.

§6. Proof of Theorem 8

If (1.29) holds for fi, fo € A, then it holds for f = f; + fo. Let v < 1/4 be
a small positive constant, fi(p®) = f(p%) if p* < z7, and fi(p®) = 0 if p* > a7,
and let f2(p®) = f(p*) — f1(p?).

We have

(e 5] (e5) z
S= Y B < 3 1A 10 Near-o ()
nn€<-/\£.k P1#D2 p1 P2

1R Vo ()

From the conditions of the theorem fo(p;*) = f(p;") = 0 if p;* > /4 or if

o > /X2,

Assume that p* < 2% and «; < /72. Then

T cNR(T) Lt
Nk—al—ag (p(flp(g)@) S p?lp;‘? ]?,la: Oz2’ (61)

(c is an absolute constant) and we deduce that

2
1 S<c< Z |f21();z )|5z‘3@> B2 ().

Y <pr<zxl/4
Since "

where in the right hand side 27 < p* < z'/4, o < /@2, thus p = 2 cannot occur.
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Therefore

é'Oé
Z kaz is bounded by an absolute constant, and so

p*,p>2
s < e )
c z).
Nk(l’) — z \Sk,
bt 12(0) 1)
2\p p
z7<p<zl/*
Since ) 5
n) —U,)%* < ——8 +2|U,|%,
W@ 2 (R = U < g+ 20
nG_J\fk
and
1] = k
sl £ )
J;7<p<;c1/4p T2

therefore (1.29) holds for fs.
Let now f3 be defined on prime powers p° such that f3(p®) = fi(p®) —
fip*1) (e =1,2,...). Then, with the classical meaning of summation,

n)=> fs(p”)

pBin
Let
=> fsp),  fs(n) =D fs(07)
" it

Let us estimate first

= Z f5(n)2— Z f3(p?1)f3(p32)Nk—a1—a2 (f(}zg)

a
o P1 P2
< 1 2
nﬂé\:ﬁk 1’;1;;22
x
+ Z f3(p("1)fB(pa2)Nk—max(al,ozz) (pmax(w> = 52 + S3.

1,02

Since f3(py*) = 0, if pi* > a7, or if a; = 1, or oy > /T2, from (6.1) we
deduce that

e () e S S S LA

a>2 a1=2 as=2 p



82 I. Kétai and [M. V. Subbarao

The first sum on the right hand side is less than ¢B2 (& ). To estimate the
second sum we start from

nLfa () fs(p™2)] < 205 (01)6r + 5 (05)

and deduce that it is less than

4By (Era) +4 ) > |f3(p3)I? > 711/p < AB2(&0) + 8B2(1).

a2:2 P paz
Thus
%2 < B2 (6a) + B2,
Ni(z) ’

Finally we prove that

Ti= Y (faln) — &y AL)® < cB2Ny(2),
n<z

nE/\/’k

* fa(p)
Ar = =, (6.2)
pgm; p
Let py =3, .» 1/p

Let fa(p) = fa(p) = 5=, fa(n) = ¥, fa(p). Then fi(n) = fa(n) — LA if
n ENk.

Let
T=Y" fin)? (6.3)
n<z
nE_./\/k
We shall prove that
- f(p)
T < cNp(z) ) = (6.4)
p<z p
Hence (6.2) easily follows.
We have
~ x x x . x
T= > fulp1)fa(p2)Ne—» <> +> fi(p)Ni () :
P1#P2 P1p2 P p

From Lemma 7 we obtain that

T = Tl + Tg + error, where
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Ti= Y falpr) fa(p2) Ny, <x) :

P1,p2 pip2

et (v (2) - (2)

where the error is clearly less than ¢Ny_o(2) > @.

Let
Z f4 logp

p<z
It is clear that Ey = 0, and

2o\ [« ogp)?)"” RO SR
|El|g(z i ) (z = ) gz<z i ) ..

p<z?

if x > xg, and [ > 0. Thus

Z fa(p1) fa(p2) (logp1p2 ‘ E (?) < 4(27)%. (6.5)
popz P! b2
We have
f4 f4 (p2)
Nk 2 Z 2 1/’16—271?1172(372)7

P1,p2
where ¥,_9 p,p, is defined in (3.1). By using Lemma 6 and (6.5), furthermore

that Th < Epe > f4(p)Nk( ), we get (6.4).
Since f2(p) < 2f2(p) + 2@, therefore

f42(p 2 |A 2
<2B; +2—2—, A* < -B2,
s A0 >
and so -
Zf4(?) Sch.
p

Finally fi(n) — &k, AL = f4(n) + (ﬁ — &,2z) A, and so
2

T <o+ | = | |43 Nu(a),
Furthermore |A%|? < B%p,, and so
kook k .
E R e <o (M2l gz )
P ) PxT2

Thus (6.2) holds true.
The proof of the theorem is complete.
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87. Proof of Theorem 9

We can argue similarly as in §6. Since now Nj(z) = Nj(z)(1+Oa (x;52/5))
(Lemma 8), Nj (%) = %Z(m) - lz)gm? N} (x), we obtain our theorem easier than
that of Theorem 10.

We omit the details.

§8. Proof of Theorem 5

Assume that the conditions of the theorem hold. Let B be such a sequence
of primes for which 37 s 1/p < co. Let p(Y) := > pp>y 1/p. Then p(Y) — 0 as
peEB

Y — 0.
Count
Sy :=#{n <z |n € Ng,p|n for some p>Y, pc B}
Then
x x
SY < Z Nkfl (p) + Z ™ (;) <
Y<p<ac17‘;f v<gde
peEB VENL_1
<N Y LT 0T sy,
= ket _, p(logz —logp) a1 ‘
Y <p<a!lo® vzt
peEB vENL_1
1 3 1 o
x
< Nj_ -—p(Y e 1
< Nioala) - 5o(¥) + (k_l)!< 2 /p> ,
p<zdz
whence

k—1
Sy Sﬁ xg—logl/ég;) Sﬁ

1 1
Np(z) = xy Ep(y) 3 ( T2 T 0y

(k=1 1

p(Y)+3e =2 %85,

The second sum is small if ¢, is small, the first sum is small if %1/) is small, i.e.
if Y is large.
Thus, by choosing §, = /p(Y) for example, we obtain that
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From the convergence of the three series it is obvious that there is a sequence
pp | 0 such that for the set Bi = {p | [f(p)| > pp}, >_,ep, 1/p < o0. Let By be
fixed. Let By = {p® | p € P, o > 2}, and let

Sy :=#{n <z |n €N p*|n for some p* € By, p* > Y}

This is clear:

SY < Z Nkfa (x) + % < CNk(‘r) Z (k) i + 61'3/4,
pa>Y

p()z

p>3

The first sum on the right hand side is < W, the second sum after

-3 Y 11/10
z2
is bounded by an absolute constant.

Thus

S*
limsup sup Y <e(Y),
T—=00  kg[5,2—4] Ni()

where e(Y) - 0 as Y — oo.

Let Y =Y, be tending to infinity slowly. For some n < zlet n = A(n)-B(n),
where A(n) = [[p~n p®, and B(n) = (- Consider the set of integers n € Ni

p<Y

up to z. Let us drop those n for which p | n for some p € By, p > Y and those for
which p® | n for some p* € By, p® > Y. The number of the dropped elements is
< €1(Y)Ng(x), where €1(Y) — 0 uniformly as x% €[9,2—4]. Let f* € A defined
on prime powers p® as follows:

0 if aa>2
0 ifa=1, p<Y,ifp>/x, orif pe By
flp) fta=1 pe (Y, Vz]

[ (%) =

From Theorem 8 we have

1 . F®\? f2(p)
PRE M (MOETES SEC) IETED DEES-C MR

vepv L
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1
limsup sup ——#{n<z|neNg, [f(n)]>A}
o &paels.2-6 Ne(z) (8.2)

S EQ(Y), EQ(Y) — 0

valid for every A > 0.

Let My be the set of those m, the largest prime power factor of which is not
larger than Y, and if p®||m, a > 2, then p® < Y. From the estimation of S5 we
obtain that

1
Ntnsalne Nk, A(n) & My}

#{n<xz|neN, An)¢ My} <e(Y),

1
limsup  sup
T—00 %6[5,2*5] Nk(m)

where £3(Y) — 0 as Y — cc.
Let Dy i = {n € N, A(n) = m} (m € My), and let h(n) := f(A(n)).
Thus h(n) is constant on D,, i, and from (8.2) we obtain that

#{n <z neN|f(n) = f(An))] > A} < &a(Y).

limsup  sup
=00 kels,—26) Ni(z)

Now we compute the density of the set D, j.
Let Nix(D) = {n € N}, | n € D}. Starting from the generating function

1 Q(n)
M=-T(-2) X5

ptD P° pD

for Ni(x|D) =3 n<s 1 we have
(n,D)=1
’I’LENk

Ni(z, D) = Z:U'(d)Nk—Q(d) (%) .
4D

Let Ky =[],y p.
From the convergence of the series in (1.24) we obtain that

f*(p) f(p) f(p)
R
Y <p<x Y<p<vz
[f(p)l<1 pr<|f(p)|<1
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tends to zero as * — oo. The right hand side of (8.1) tends to zero as well.
Applying these relations, from (8.1) we obtain

Consequently
T T
#(Dm, k) = Ni—qm) (E | KY) = Z Ni—a(m)-a(d) (@) p(d),
d|Ky
and so m)

#(Dm k:) k;v’r: ( gk 1}2)

_ 7 = 1 + Oy 1 . 1 - ’ 8'3
W~ e T (-5 (83)

uniformly as ﬁ €[6,1—0], m € My even if Y =Y, — oo slowly. Hence the
assertion easily follows.

89. Proof of Theorem 2

This can be carried over by a simple application of Theorem 7 and of (8.3).

Let f(p*) = argg(p®) € [—m, 7], f be extended so that f € A. Then
g(n) = et/ ), ]

From the convergence of > 1%@ we obtain that ) %, > fT@ are con-
vergent. For some n € N define gy(n) := g(A(n)). First we observe that
ﬁ(w) > n<z l9(n) =gy (n)| < e1(Y), uniformly in ;TkQ € 4,2 —4], where e1(Y) — 0
if Y — oco. Furthermore

Q(m)

> gY(m)W=(1+om(l)) > g(m)% 11 (1_%)_

meMy meMy p|Ky p

The right hand side clearly tends to Mg, ,,(g) defined in Theorem 4.

Since )
limgﬂsup Sl;p No@) Z lg(n)| = 0asY — oo,
n<z
nGNk
A(n)¢My

our theorem immediately follows.

§10. Proof of Theorem 6 and 7

The proof is completely analogous to that of Theorem 2 and 5. So we omit it.
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