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On surjective ring homomorphisms between semi-simple
commutative Banach algebras

By TAKESHI MIURA (Yonezawa), SIN-EI TAKAHASI (Yonezawa),
NORIO NIWA (Neyagawa) and HIROKAZU OKA (Hitachi)

Abstract. Let A and B be semi-simple commutative Banach algebras. We give

a representation of surjective ring homomorphisms from A onto B in terms of com-

plex ring homomorphisms and injective, continuous and closed mapping between the

maximal ideal spaces. As a corollary, we prove that neither the disc algebra A(D̄) nor

the commutative Banach algebra of all bounded holomorphic functions H∞(D) are ring

homomorphic image of any semi-simple commutative regular Banach algebras. Under

additional assumptions on the maximal ideal spaces, we also prove automatic linearity

of ring homomorphisms.

1. Introduction and results

Let A and B be algebras over the complex number field C. We say that a
mapping ρ : A → B is a ring homomorphism provided that

ρ(f + g) = ρ(f) + ρ(g)

ρ(fg) = ρ(f)ρ(g)

for every f, g ∈ A. By definition, ring homomorphisms need not be linear nor
continuous. If, in addition, ρ is homogeneous, that is, ρ(λf) = λρ(f) for every
λ ∈ C and f ∈ A, then ρ is a usual homomorphism.

One might expect that ring homomorphisms are quite similar to homomor-
phisms. In fact, under some additional assumptions, it is known to be true. For
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example, Arnold [1] proved that a ring isomorphism between the Banach al-
gebras of all bounded operators from an infinite dimensional Banach space to
another is automatically linear, or conjugate-linear. Unfortunately, ring homo-
morphisms need not be linear nor conjugate-linear in general. For example, let
us consider a ring homomorphism τ from C to C. For simplicity, we shall call τ a
ring homomorphism on C. It is obvious that the zero mapping τ(z) = 0 (z ∈ C),
the identity τ(z) = z (z ∈ C) and the complex conjugate τ(z) = z (z ∈ C) are
ring homomorphisms on C. We call them trivial ring homomorphisms on C. In
fact, Kestelman [5] proved that there exists a non-trivial ring homomorphism
on C. It follows from a result of Charnow [2] that the cardinal number of the set
of all non-trivial ring automorphisms on C is 2c, where c denotes the cardinality
of continuum. Ring homomorphisms have more surprising feature. Let Ω ⊂ C be
a region and let H(Ω) be the algebra of all holomorphic functions on Ω. In [8] it is
proven that there exists an injective ring homomorphism from H(Ω) to C. Thus
we may regard H(Ω) as a subring of C. Thus the study of ring homomorphic
image is complicated and interesting.

Let D̄ be the closure of the open unit disc D, and let T = D̄ \D. Molnár [9]
considered ring homomorphic image of commutative C∗-algebras. More explicitly,
he proved that the group algebras L1(R), L1(T) and the disc algebra A(D̄) are
not ring homomorphic images of any commutative C∗-algebras. Let 1 ≤ p < ∞,
n a positive integer and let G be a compact abelian group. Takahasi and Hatori

[10] proved that L1(Rn), A(D̄) and Cn([a, b]), the commutative Banach algebra of
all n-times continuously differentiable functions on [a, b], are not ring homomor-
phic image of the Lp-space Lp(G).

The purpose of this paper is to generalize and unify the above results con-
cerning ring homomorphic images. To do this, we will study surjective ring ho-
momorphisms between semi-simple commutative Banach algebras. Kaplansky

[4] studied ring isomorphisms between semi-simple Banach algebras. Although a
part of Theorem 1.1 below can be deduced from [6, Corollary 2.8], just for the
sake of completeness we give a direct proof. In fact, we shall prove that surjective
ring homomorphisms are represented by continuous, injective and closed mapping
between the maximal ideal spaces.

Theorem 1.1. Let A and B be semi-simple commutative Banach algebras

with maximal ideal spaces MA and MB , respectively. If ρ : A → B is a surjective

ring homomorphism, then there exist a mapping Φ : MB → MA and a partitioning

{M−1,M1, Md} of MB satisfying the following conditions:

(a) Φ is an injective, continuous and closed mapping,
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(b) both M−1 and M1 are clopen, and Md is at most finite, and

(c) for each ϕ ∈ Md, there exists a non-trivial ring automorphism τϕ on C such

that

ρ̂(f)(ϕ) =





f̂(Φ(ϕ)) ϕ ∈ M−1

f̂(Φ(ϕ)) ϕ ∈ M1

τϕ(f̂(Φ(ϕ))) ϕ ∈ Md

(1.1)

for every f ∈ A, where ·̂ denotes the Gelfand transform.

As a corollary from Theorem 1.1, we can prove the following two results,
which generalize some results in [9, Corollary] and [10, Corollary 4]. Corollary 1.3
(b) is also a generalization of [3, Corollary 3.1]. In fact, Hatori, Ishii, the first
and second authors of this paper considered the case where A and B have units.

Corollary 1.2. Let A be a semi-simple regular commutative Banach alge-

bra and let B be a semi-simple commutative Banach algebra. If there exists a

surjective ring homomorphism ρ : A → B, then B is regular.

Corollary 1.3. Let A and B be semi-simple commutative Banach algebras.

Suppose that the maximal ideal space MB of B is infinite and connected.

(a) If the maximal ideal space MA of A is discrete, then there is no surjective

ring homomorphism from A onto B.

(b) If there exists a surjective ring homomorphism ρ : A → B, then ρ is linear

or conjugate-linear.

2. Construction of the mapping Φ

Before proving lemmas, we need a characterization of trivial ring homomor-
phisms on C. The following result is well-known, so we omit a proof (For a proof,
see, for example, [7, Proposition 2.1]).

Proposition 2.1. Let τ be a ring homomorphism on C. Then each of the

following three conditions implies the other two.

(a) τ is trivial.

(b) There exist α0, β0 > 0 such that |z| < α0 implies |τ(z)| ≤ β0.

(c) τ is continuous at 0.

Remark 2.1. By Proposition 2.1, we see that a ring homomorphism τ on C
is non-trivial if and only if the following conditions are satisfied:
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for each α, β > 0, there exists z ∈ C with |z| < α but |τ(z)| > β.

We shall use this fact several times.

Until the end of this section, A and B denote semi-simple commutative Ba-
nach algebras with maximal ideal spaces MA and MB , respectively. We also
denote by ρ a surjective ring homomorphism from A onto B.

Definition 1. For each ϕ of MB , we define the induced mapping ρϕ from A

into C by
ρϕ(f) = ρ̂(f)(ϕ) (f ∈ A),

where ·̂ is the Gelfand transform. Since ρ is surjective, ρϕ is a surjective ring
homomorphism for every ϕ ∈ MB .

Notation. Let Ae be the commutative Banach algebra obtained by adjunction
of a unit element e to A. Here we notice that Ae is well-defined even for unital A.
The maximal ideal space MAe of Ae is the one-point compactification MA∪{x∞}
of MA.

Lemma 2.2. For each ϕ ∈ MB , there exists a unique ring homomorphism

ρ̃ϕ from Ae onto C with ρ̃ϕ|A = ρϕ.

Proof. Take ϕ ∈ MB . Since ρϕ is surjective, there exists a ∈ A with
ρϕ(a) = 1. Define the mapping ρ̃ϕ from Ae to C by

ρ̃ϕ(f + λe) = ρϕ(f) + ρϕ(λa) (f + λe ∈ Ae).

By definition, ρ̃ϕ|A = ρϕ, and so ρ̃ϕ is surjective since so is ρϕ. By the definition
of ρ̃ϕ, it is obvious that ρ̃ϕ is additive. We shall prove that ρ̃ϕ is multiplicative.
Take f + λe, g + µe ∈ Ae. Since ρϕ(a) = 1, we have

ρϕ(λµa) = ρϕ(λµa)ρϕ(a) = ρϕ(λa)ρϕ(µa). (2.1)

Note also that
ρϕ(µf) = ρϕ(µf)ρϕ(a) = ρϕ(f)ρϕ(µa) (2.2)

since ρϕ is multiplicative. By the same reasoning, we have ρϕ(λg) = ρϕ(g)ρϕ(λa).
It follows that

ρ̃ϕ((f + λe)(g + µe)) = ρ̃ϕ(fg + µf + λg + λµe)

= ρϕ(fg + µf + λg) + ρϕ(λµa)

= ρϕ(f)ρϕ(g) + ρϕ(f)ρϕ(µa) + ρϕ(g)ρϕ(λa)

+ ρϕ(λa)ρϕ(µa) (by (2.1) and (2.2))

= {ρϕ(f) + ρϕ(λa)} {ρϕ(g) + ρϕ(µa)}
= ρ̃ϕ(f + λe) ρ̃ϕ(g + µe).
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This proves that ρϕ is multiplicative. We thus conclude that ρ̃ϕ is a surjective
ring homomorphism from Ae onto C with ρ̃ϕ|A = ρϕ.

Finally, we prove the uniqueness of ρ̃ϕ. Let ρϕ
∗ : Ae → C be another ring

homomorphism with ρϕ
∗|A = ρϕ. Note, for each λ ∈ C, that

ρϕ
∗(λe) = ρϕ

∗(λe) ρϕ(a) = ρϕ
∗(λa) = ρϕ(λa)

since ρϕ(a) = 1. For each f + λe ∈ Ae, we have

ρϕ
∗(f + λe) = ρϕ

∗(f) + ρϕ
∗(λe) = ρϕ(f) + ρϕ(λa) = ρ̃ϕ(f + λe),

which proves the uniqueness. This completes the proof. ¤

Lemma 2.3. Let ρ̃ϕ be from Lemma 2.2 for each ϕ ∈ MB . There exists

unique ψ ∈ MAe \ {x∞} with ker ρ̃ϕ = kerψ. For such ψ, we have ker ρϕ =
ker(ψ|A).

Proof. Take ϕ ∈ MB . By Lemma 2.2, there is a unique ring homomorphism
ρ̃ϕ from Ae onto C with ρ̃ϕ|A = ρϕ. We show that the kernel ker ρ̃ϕ is an algebra
ideal. Since ρϕ preserve both additions and multiplications, it is enough to show
that λf ∈ ker ρ̃ϕ whenever λ ∈ C and f ∈ ker ρ̃ϕ. Take λ ∈ C and f ∈ ker ρ̃ϕ.
Since ρ̃ϕ(f) = 0, for a ∈ A with ρ̃ϕ(a) 6= 0, we have

ρ̃ϕ(λf)ρ̃ϕ(a) = ρ̃ϕ(f)ρ̃ϕ(λa) = 0.

It follows that ρ̃ϕ(λf) = 0 since ρ̃ϕ(a) 6= 0. Thus λf ∈ ker ρ̃ϕ, and so ker ρ̃ϕ is an
algebra ideal of A.

Note that ker ρ̃ϕ is a proper algebra ideal since ρ̃ϕ|A = ρϕ is non-zero. There
exists ψ ∈ MAe with ker ρ̃ϕ ⊂ kerψ. We shall prove that ker ρ̃ϕ = kerψ. Take
u0 ∈ Ae with u0 /∈ ker ρ̃ϕ. Since ρ̃ϕ is surjective, there is v0 ∈ Ae such that
ρ̃ϕ(v0) = 1/ ρ̃ϕ(u0). Then

ρ̃ϕ(u0v0 − e) = ρ̃ϕ(u0)ρ̃ϕ(v0)− ρ̃ϕ(e) = 0,

and so u0v0 − e ∈ ker ρ̃ϕ ⊂ kerψ. Thus we have ψ(u0)ψ(v0) = 1, which implies
u0 /∈ kerψ. This proves kerψ ⊂ ker ρ̃ϕ, and so ker ρ̃ϕ = kerψ.

Since ρ̃ϕ|A = ρϕ, we have

ker ρϕ = ker(ρ̃ϕ|A) = (ker ρ̃ϕ) ∩A = (kerψ) ∩A = ker(ψ|A).

In particular, ψ|A is non-zero. Thus ψ ∈ MAe \ {x∞}. ¤
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Definition 2. By Lemma 2.3, for each ϕ ∈ MB , there exists a unique element
Φ(ϕ) ∈ MAe \{x∞} with ker ρ̃ϕ = kerΦ(ϕ). We may regard Φ as a mapping from
MB to MAe

\ {x∞}.
Definition 3. For each ϕ ∈ MB , we consider the mapping τϕ : C→ C defined

by
τϕ(λ) = ρ̃ϕ(λe) (λ ∈ C),

where ρ̃ϕ is from Lemma 2.2.

Lemma 2.4. For each ϕ ∈ MB , let τϕ be from Definition 3. Then τϕ is a

ring automorphism on C with

ρϕ(f) = τϕ(f̂(Φ(ϕ))) (2.3)

for every f ∈ A. If, in addition, ρϕ(f) 6= 0, then

τϕ(λ) =
ρϕ(λf)
ρϕ(f)

(2.4)

for every λ ∈ C.

Proof. Take ϕ ∈ MB . By the definition of Φ, we have, for each f ∈ A,

f − f̂(Φ(ϕ))e ∈ kerΦ(ϕ) = ker ρ̃ϕ,

and so
0 = ρ̃ϕ(f)− ρ̃ϕ(f̂(Φ(ϕ))e) = ρϕ(f)− τϕ(f̂(Φ(ϕ))).

This proves ρϕ(f) = τϕ(f̂(Φ(ϕ))) for every f ∈ A.
Next, we show that τϕ is a ring automorphism. By the definition of τϕ, it

is obvious that τϕ is a non-zero ring homomorphism. We see that τϕ is injective:
for if there were λ1, λ2 ∈ C with λ1 6= λ2 and τϕ(λ1) = τϕ(λ2), then we would
have

τϕ(λ) = τϕ(λ1 − λ2)τϕ

(
λ

λ1 − λ2

)
= 0

for all λ ∈ C, since τϕ(λ1−λ2) = τϕ(λ1)−τϕ(λ2) = 0. This is a contradiction since
τϕ is non-zero. We need to prove the surjectivity of τϕ. Since ρϕ is surjective, for
each λ ∈ C, there is a ∈ A with ρϕ(a) = λ. By (2.3), we have τϕ(â(Φ(ϕ))) = λ,
and so τϕ is surjective. Thus τϕ is a ring automorphism.

Finally, for each λ ∈ C and f ∈ A with ρϕ(f) 6= 0, we have

ρϕ(λf) = ρ̃ϕ(λf) = ρ̃ϕ(λe) ρ̃ϕ(f) = τϕ(λ)ρϕ(f).

This proves (2.4), and so the proof is complete. ¤
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Lemma 2.5. Let Φ be the mapping from Definition 2. Then Φ is injective.

Proof. Take ϕ0, ϕ1 ∈ MB with ϕ0 6= ϕ1. There is b ∈ B with b̂(ϕ0) = 0
and b̂(ϕ1) = 1 since B is semi-simple. Choose a ∈ A so that ρ(a) = b; this is
possible since ρ is surjective. Then ρϕ0(a) = b̂(ϕ0) = 0 and ρϕ1(a) = b̂(ϕ1) = 1.
By Lemma 2.4, we have

τϕ0(â(Φ(ϕ0)) = 0 and τϕ1(â(Φ(ϕ1)) = 1,

where τϕ (ϕ ∈ MB) is the mapping from Definition 3. Note that τϕ(0) = 0
and τϕ(1) = 1 for every non-trivial ring homomorphism. Since τϕ is injective
by Lemma 2.4, we have â0(Φ(ϕ0)) = 0 and â0(Φ(ϕ1)) = 1. We thus conclude
Φ(ϕ0) 6= Φ(ϕ1), and so Φ is injective. ¤

Definition 4. We define the subsets M−1,M1 and Md of MB by

M−1 = {ϕ ∈ MB : τϕ(λ) = λ̄ (λ ∈ C)},
M1 = {ϕ ∈ MB : τϕ(λ) = λ (λ ∈ C)} and

Md = {ϕ ∈ MB : τϕ is non-trivial }.

By definition, {M−1,M1,Md} is a partitioning of MB , that is, M−1,M1 and Md

are mutually disjoint subsets of MB with M−1 ∪M1 ∪Md = MB .

From Lemma 2.6 to 2.8, {M−1,M1, Md} will denote the partitioning of MB

from Definition 4.

Lemma 2.6. Both M−1 and M1 are closed subsets of MB .

Proof. We show that cl(Mk) ⊂ Mk for k = ±1, where cl(Mk) denotes the
closure of Mk in MB . Take ϕ ∈ cl(Mk) and let {ϕα} be a net in Mk converging
to ϕ. Choose a ∈ A so that ρ̂(a)(ϕ) = ρϕ(a) 6= 0. Since ρ̂(a) is continuous on
MB , ρϕα(a) = ρ̂(a)(ϕα) converges to ρϕ(a) 6= 0. So, without loss of generality we
may assume ρϕα(a) 6= 0 for every α. It follows from (2.4) that

τϕα(λ) =
ρϕα(λa)
ρϕα(a)

→ ρϕ(λa)
ρϕ(a)

= τϕ(λ). (2.5)

Since ϕα ∈ Mk, (2.5) implies that τϕ(λ) = λ̄ if k = −1, and τϕ(λ) = λ if k = 1.
Thus ϕ ∈ Mk for k = ±1, and the proof is complete. ¤

Lemma 2.7. Md is an open and at most finite subset of MB .
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Proof. By Lemma 2.6, Md = MB \ (M−1 ∪ M1) is open. Assume to the
contrary that Md contains a countable subset {ϕn}∞n=1 with ϕi 6= ϕj (i 6= j). Set,
for each n ∈ N, the set of all natural numbers, ψn = Φ(ϕn). By Lemma 2.5, Φ is
injective, and so ψi 6= ψj (i 6= j). Since ϕn ∈ Md, the ring homomorphism τϕn

from Definition 3 is non-trivial. For simplicity, we will write τn instead of τϕn
.

By (2.3), we have
ρϕn(f) = τn(f̂(Φ(ϕn))) = τn(f̂(ψn)) (2.6)

for each f ∈ A.
Take a1 ∈ A with â1(ψ1) = 1. Since τ1 is non-trivial, there exists λ1 ∈ C

with |λ1| < (2 ‖a1‖)−1 and |τ1(λ1)| > 2 (cf. Remark 2.1). Set f1 = λ1a1 ∈ A.
Then

‖f1‖ < 2−1 and |τ1(f̂1(ψ1))| > 2.

By induction, we shall prove that, for each n ∈ N with n ≥ 2, there exists fn ∈ A

such that

‖fn‖ < 2−n, |τn(f̂n(ψn))| > 2n +

∣∣∣∣∣τn

(
n−1∑

k=1

f̂k(ψn)

)∣∣∣∣∣

and that
f̂n(ψ1) = f̂n(ψ2) = · · · = f̂n(ψn−1) = 0.

Take a2 ∈ A with â2(ψ1) = 0 and â2(ψ2) = 1. Since τ2 is non-trivial, there exists
λ2 ∈ C such that

|λ2| < 1
22 ‖a2‖ and |τ2(λ2)| > 22 + |τ1(f̂1(ψ1))|.

Set f2 = λ2a2 ∈ A. Then f̂2(ψ1) = 0 and f̂2(ψ2) = λ2. It follows that

‖f2‖ < 2−2, f̂2(ψ1) = 0 and |τ2(f̂2(ψ2))| > 22 + |τ1(f̂1(ψ1))|.

Suppose that there are fk ∈ A (k = 2, · · · , n− 1) with

‖fk‖ < 2−k, f̂k(ψ1) = · · · = f̂k(ψk−1) = 0 and

|τk(f̂k(ψk))| > 2k +

∣∣∣∣∣∣
τk




k−1∑

j=1

f̂j(ψk)




∣∣∣∣∣∣
.

Choose an ∈ A so that ân(ψn) = 1 and

ân(ψ1) = · · · = ân(ψn−1) = 0.
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In fact, take bi ∈ A, for each i (1 ≤ i ≤ n − 1), with b̂i(ψi) = 0 and b̂i(ψn) = 1.
Then Πn−1

i=1 bi ∈ A is the desired element. Since τn is non-trivial, there is λn ∈ C
with

|λn| < 1
2n ‖an‖ and |τn(λn)| > 2n +

∣∣∣∣∣∣
τn




n−1∑

j=1

f̂j(ψn)




∣∣∣∣∣∣
.

Set fn = λnan ∈ A. Then

‖fn‖ < 2−n, f̂n(ψ1) = · · · = f̂n(ψn−1) = 0.

Since ân(ψn) = 1, we have f̂n(ψn) = λn, and so

|τn(f̂n(ψn))| > 2n +

∣∣∣∣∣∣
τn




n−1∑

j=1

f̂j(ψn)




∣∣∣∣∣∣
(2.7)

as desired.
Since ‖fn‖ < 2−n, the series

∑∞
n=1 fn converges to an element, say f0 ∈ A.

We have, for each n ∈ N, f̂0(ψn) =
∑n

k=1 f̂k(ψn) since f̂k(ψn) = 0 for each
k = n + 1, n + 2, · · · . By (2.6), we have, for each n ∈ N,

|ρϕn(f0)| = |τn(f̂0(ψn))| =
∣∣∣∣∣τn

(
n∑

k=1

f̂k(ψn)

)∣∣∣∣∣

=

∣∣∣∣∣
n∑

k=1

τn

(
f̂k(ψn)

)∣∣∣∣∣ ≥ |τn(f̂n(ψn))| −
∣∣∣∣∣τn

(
n−1∑

k=1

f̂k(ψn)

)∣∣∣∣∣ ,

and so, by (2.7),
|ρ̂(f0)(ϕn)| = |ρϕn(f0)| > 2n.

Since ρ̂(f0) is bounded on MB , we now reach a contradiction. We thus proved
that Md is at most finite subset of MB . ¤

Lemma 2.8. The mapping Φ : MB → MAe \ {x∞} is continuous.

Proof. Let ϕ0 ∈ MB and let {ϕα} ⊂ MB be a net converging to ϕ0.
We prove that Φ(ϕα) converges to Φ(ϕ0). If ϕ0 ∈ Md, then {ϕ0} is open by
Lemma 2.6 and 2.7. So, we may assume that ϕα = ϕ0 for each α. Thus Φ(ϕα) =
Φ(ϕ0), and so Φ(ϕα) converges to Φ(ϕ0).

Next, we consider the case where ϕ0 ∈ Mk for k = ±1. By Lemma 2.6
and 2.7, Mk is clopen of MB . Thus we may assume {ϕα} ⊂ Mk for each α.
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By the definition of Mk for k = ±1, τϕα
is the complex conjugate for each

α when k = −1, and τϕα is the identity for each α when k = 1. Note that
ρϕα

(f) converges to ρϕ0(f) for each f ∈ A since ρ̂(f) is continuous on MB . It
follows from (2.3) thatf̂(Φ(ϕα)) converges to f̂(Φ(ϕ0)) for every f ∈ A. Thus
û(Φ(ϕα)) → û(Φ(ϕ0)) for each u ∈ Ae. By the definition of the Gelfand topology,
we conclude that Φ(ϕα) converges to Φ(ϕ0). ¤

3. Proofs and application

Proof of Theorem 1.1. Let Φ and {M−1, M1,Md} be from Definitions 2
and 4, respectively. Then Φ is an injective and continuous mapping by Lemmas 2.5
and 2.8. It follows from Lemmas 2.6 and 2.7 that M−1 and M1 are clopen, and
Md is at most finite. Let τϕ be from Definition 3 for each ϕ ∈ Md. By (2.3) and
Definition 4, ρ is of the form (1.1).

It remains to be proved that Φ is a closed mapping. We define a mapping
Φ̃ : MBe → MAe by

Φ̃(ϕ) =

{
Φ(ϕ) ϕ ∈ MB

x∞ ϕ = y∞

where {x∞} = MAe \MA and {y∞} = MBe \MB . Here we notice that for each
f ∈ A ⊂ Ae, f̂ , as a function on MAe , is 0 at x∞. The same remark holds for
b ∈ B ⊂ Be and y∞. We observe that Φ̃ is continuous: by definition, it is enough
to prove the continuity of Φ̃ at y∞. Let {ϕα} ⊂ MBe be a net converging to y∞.
By Lemma 2.7, MBe \Md is an open neighborhood of y∞, and so we may assume
{ϕα} ⊂ MBe \Md. Take f ∈ A. By the definition of Φ̃, we have

f̂(Φ̃(ϕα)) =





f̂(Φ(ϕα)) ϕα ∈ MB \Md

f̂(x∞) = 0 ϕα = y∞.
(3.1)

On the other hand, since ϕα /∈ Md, it follows from (2.3) that

|ρ̂(f)(ϕα)| = |ρϕα(f)| =



|f̂(Φ(ϕα))| ϕα ∈ MB \Md

|ρ̂(f)(y∞)| = 0 ϕα = y∞.

By (3.1), we have, for each α,

|f̂(Φ̃(ϕα))| = |ρ̂(f)(ϕα)|. (3.2)
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Since ρ̂(f) is continuous on MBe
, ρ̂(f)(ϕα) converges to ρ̂(f)(y∞) = 0. It follows

from (3.2) that f̂(Φ̃(ϕα)) converges to 0 = f̂(Φ̃(y∞)). Since f ∈ A was arbitrary,
we see that û(Φ̃(ϕα)) converges to û(Φ̃(y∞)) for every u ∈ Ae. By the definition
of the Gelfand topology, Φ̃(ϕα) converges to Φ̃(y∞). We thus conclude that
Φ̃ : MBe

→ MAe
is continuous.

Take a closed subset F of MB . Then F ∪ {y∞} ⊂ MBe is compact. Since Φ̃
is continuous on MBe , Φ̃(F ∪ {y∞}) = Φ(F ) ∪ {x∞} is compact in MAe , and so
Φ(F ) ⊂ MAe

\{x∞} is closed in MA. This proves that Φ is a closed mapping. ¤

Recall that a commutative Banach algebra A is regular if and only if for each
pair F , ψ0 of closed subset F ⊂ MA and ψ0 ∈ MA \ F , there exists f ∈ A with
f̂(ψ0) = 1 and f̂(ψ) = 0 for every ψ ∈ F .

Proof of Corollary 1.2. Take ϕ0 ∈MB and closed F ⊂MB with ϕ0 /∈F .
Let Φ be an injective and closed mapping from Theorem 1.1. Then Φ(F ) ⊂
MAe \ {x∞} is closed with Φ(ϕ0) /∈ Φ(F ). Since A is regular, there exists f0 ∈ A

with f̂0(Φ(ϕ0)) = 1 and f̂0(Φ(ϕ)) = 0 for every ϕ ∈ F . Recall that if τϕ is a
non-trivial ring homomorphism, then τϕ(r) = r for every r ∈ Q and ϕ ∈ MB .
By (2.3), we have ρ̂(f0)(ϕ0) = ρϕ0(f0) = 1 and ρ̂(f0)(ϕ) = ρϕ(f0) = 0 for every
ϕ ∈ F , and so B is regular. ¤

Proof of Corollary 1.3. (a) Assume to the contrary that there is a sur-
jective ring homomorphism ρ : A → B. Let Φ be from Theorem 1.1. Then MB is
homeomorphic to Φ(MB) ⊂ MA. By hypothesis, MA is discrete, and so is MB .
Now we reach a contradiction since MB is infinite and connected.

(b) Let {M−1, M1,Md} be from Theorem 1.1. Then M−1,M1 are clopen, and
Md is at most finite. Since MB is assumed to be infinite and connected, it follows
that MB = M−1, or MB = M1. So, by Theorem 1.1, there exists an injective,
continuous and closed mapping Φ : MB → MA with ρ̂(f)(ϕ) = f̂(Φ(ϕ)) for every
f ∈ A and ϕ ∈ MB , or ρ̂(f)(ϕ) = f̂(Φ(ϕ)) for every f ∈ A and ϕ ∈ MB . Since B

is semi-simple, we have that ρ is conjugate-linear, or linear, respectively. ¤

Example 1. Let D and D̄ be the open unit disc and the closure of D, respec-
tively. Let A(D̄) be the disc algebra, that is, the uniform algebra of all complex-
valued continuous functions on D̄, which are holomorphic in D. Let H∞(D) be the
commutative Banach algebra of all bounded holomorphic functions on D. Neither
A(D̄) nor H∞(D) are regular. By Corollary 1.2, both A(D̄) and H∞(D) can not
be the ring homomorphic images of any semi-simple regular commutative Banach
algebra A. The case where A = C0(X) was proved by Molnár [9, Corollary].
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Example 2. Let n ∈ N and let Cn([a, b]) be the set of all n-times continuously
differentiable complex-valued functions on a closed interval [a, b]. Then Cn([a, b])
is a semi-simple commutative Banach algebra with respect to the pointwise op-
erations and the norm ‖f‖n =

∑n
k=0

∥∥f (k)
∥∥
∞ /k! for f ∈ Cn([a, b]).

If ρ is a surjective ring homomorphism from Cn([a, b]) onto itself, then ρ is
of the form

ρ(f)(x) = f(Φ(x)) (f ∈ Cn([a, b]), x ∈ [a, b]), (3.3)

or
ρ(f)(x) = f(Φ(x)) (f ∈ Cn([a, b]), x ∈ [a, b]). (3.4)

Here, Φ ∈ Cn([a, b]) is injective and closed. For if ρ is a surjective ring homomor-
phism from Cn([a, b]) onto itself, then by the Proof of Corollary 1.3 (b), there
exists an injective, continuous and closed mapping Φ from [a, b] into itself such
that ρ is of the form (3.3), or (3.4). If we take f = Id, the identity function, then
we have Φ ∈ Cn([a, b]).

Example 3. Let 1 ≤ p ≤ ∞ and let G be a compact abelian group. Then
the Lp-space Lp(G) is a commutative Banach algebra with respect to convolution
as a multiplication. The maximal ideal space of Lp(G) is the dual group Ĝ of
G for each 1 ≤ p ≤ ∞. Let B be a semi-simple commutative Banach algebra
with infinite and connected maximal ideal space. By Corollary 1.3 (a), B can
not be the ring homomorphic image of Lp(G) since Ĝ is discrete. The case where
B = L1(Rn), A(D̄), Cn([a, b]) was obtained by [10, Corollary 4].
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