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On surjective ring homomorphisms between semi-simple
commutative Banach algebras

By TAKESHI MIURA (Yonezawa), SIN-EI TAKAHASI (Yonezawa),
NORIO NIWA (Neyagawa) and HIROKAZU OKA (Hitachi)

Abstract. Let A and B be semi-simple commutative Banach algebras. We give
a representation of surjective ring homomorphisms from A onto B in terms of com-
plex ring homomorphisms and injective, continuous and closed mapping between the
maximal ideal spaces. As a corollary, we prove that neither the disc algebra A(D) nor
the commutative Banach algebra of all bounded holomorphic functions H°°(D) are ring
homomorphic image of any semi-simple commutative regular Banach algebras. Under
additional assumptions on the maximal ideal spaces, we also prove automatic linearity
of ring homomorphisms.

1. Introduction and results

Let A and B be algebras over the complex number field C. We say that a
mapping p : A — B is a ring homomorphism provided that

p(f +9) = p(f) + p(g)
p(fg) = p(f)plg)

for every f,g € A. By definition, ring homomorphisms need not be linear nor
continuous. If, in addition, p is homogeneous, that is, p(Af) = Ap(f) for every
A€ C and f € A, then p is a usual homomorphism.

One might expect that ring homomorphisms are quite similar to homomor-
phisms. In fact, under some additional assumptions, it is known to be true. For
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example, ARNOLD [1] proved that a ring isomorphism between the Banach al-
gebras of all bounded operators from an infinite dimensional Banach space to
another is automatically linear, or conjugate-linear. Unfortunately, ring homo-
morphisms need not be linear nor conjugate-linear in general. For example, let
us consider a ring homomorphism 7 from C to C. For simplicity, we shall call 7 a
ring homomorphism on C. It is obvious that the zero mapping 7(z) =0 (z € C),
the identity 7(z) = z (¢ € C) and the complex conjugate 7(z) =z (z € C) are
ring homomorphisms on C. We call them trivial ring homomorphisms on C. In
fact, KESTELMAN [5] proved that there exists a non-trivial ring homomorphism
on C. It follows from a result of CHARNOW [2] that the cardinal number of the set
of all non-trivial ring automorphisms on C is 2°, where ¢ denotes the cardinality
of continuum. Ring homomorphisms have more surprising feature. Let 2 C C be
a region and let H () be the algebra of all holomorphic functions on Q2. In [8] it is
proven that there exists an injective ring homomorphism from H(Q2) to C. Thus
we may regard H(2) as a subring of C. Thus the study of ring homomorphic
image is complicated and interesting.

Let D be the closure of the open unit disc D, and let T = D\ D. MOLNAR [9]
considered ring homomorphic image of commutative C*-algebras. More explicitly,
he proved that the group algebras L*(R), L!(T) and the disc algebra A(D) are
not ring homomorphic images of any commutative C*-algebras. Let 1 < p < o0,
n a positive integer and let G be a compact abelian group. TAKAHASI and HATORI
[10] proved that L!(R"), A(D) and C"([a, b]), the commutative Banach algebra of
all n-times continuously differentiable functions on [a, b], are not ring homomor-
phic image of the LP-space LP(G).

The purpose of this paper is to generalize and unify the above results con-
cerning ring homomorphic images. To do this, we will study surjective ring ho-
momorphisms between semi-simple commutative Banach algebras. KAPLANSKY
[4] studied ring isomorphisms between semi-simple Banach algebras. Although a
part of Theorem 1.1 below can be deduced from [6, Corollary 2.8], just for the
sake of completeness we give a direct proof. In fact, we shall prove that surjective
ring homomorphisms are represented by continuous, injective and closed mapping
between the maximal ideal spaces.

Theorem 1.1. Let A and B be semi-simple commutative Banach algebras
with maximal ideal spaces M 4 and Mg, respectively. If p : A — B is a surjective
ring homomorphism, then there exist a mapping ® : Mg — M4 and a partitioning
{M_1, My, My} of Mg satisfying the following conditions:

(a) @ is an injective, continuous and closed mapping,
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(b) both M_y and M, are clopen, and My is at most finite, and

(c) for each ¢ € My, there exists a non-trivial ring automorphism 7, on C such
that

) v e M (1.1)

for every f € A, where * denotes the Gelfand transform.

As a corollary from Theorem 1.1, we can prove the following two results,
which generalize some results in [9, Corollary] and [10, Corollary 4]. Corollary 1.3
(b) is also a generalization of [3, Corollary 3.1]. In fact, HATORI, IsHII, the first
and second authors of this paper considered the case where A and B have units.

Corollary 1.2. Let A be a semi-simple regular commutative Banach alge-
bra and let B be a semi-simple commutative Banach algebra. If there exists a
surjective ring homomorphism p : A — B, then B is regular.

Corollary 1.3. Let A and B be semi-simple commutative Banach algebras.
Suppose that the maximal ideal space Mp of B is infinite and connected.

(a) If the maximal ideal space M4 of A is discrete, then there is no surjective
ring homomorphism from A onto B.

(b) If there exists a surjective ring homomorphism p : A — B, then p is linear
or conjugate-linear.

2. Construction of the mapping ®

Before proving lemmas, we need a characterization of trivial ring homomor-
phisms on C. The following result is well-known, so we omit a proof (For a proof,
see, for example, [7, Proposition 2.1]).

Proposition 2.1. Let 7 be a ring homomorphism on C. Then each of the
following three conditions implies the other two.

(a) 7 is trivial.
(b) There exist ag, Sp > 0 such that |z| < ag implies |7(z)| < Bo.

(c) T is continuous at 0.

Remark 2.1. By Proposition 2.1, we see that a ring homomorphism 7 on C
is non-trivial if and only if the following conditions are satisfied:
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for each «, 5 > 0, there exists z € C with |z| < o but |7(2)| > 8.
We shall use this fact several times.
Until the end of this section, A and B denote semi-simple commutative Ba-

nach algebras with maximal ideal spaces M4 and Mp, respectively. We also
denote by p a surjective ring homomorphism from A onto B.

Definition 1. For each ¢ of Mp, we define the induced mapping p, from A
into C by -
po(f) =p()p) (feA),
where * is the Gelfand transform. Since p is surjective, p, is a surjective ring

homomorphism for every ¢ € Mp.

Notation. Let A, be the commutative Banach algebra obtained by adjunction
of a unit element e to A. Here we notice that A, is well-defined even for unital A.
The maximal ideal space M4, of A, is the one-point compactification M4 U{z}
of MA.

Lemma 2.2. For each ¢ € Mp, there exists a unique ring homomorphism
p, from A, onto C with p,|a = pe,.

ProoF. Take ¢ € Mp. Since p, is surjective, there exists a € A with
pp(a) = 1. Define the mapping p, from A, to C by

Pof +2e) = po(f) +pp(ha) (f+Ae € A).

By definition, p,|a = p,, and so p, is surjective since so is p,,. By the definition
of pg, it is obvious that p, is additive. We shall prove that p, is multiplicative.
Take f + Ae, g + pe € A.. Since p,(a) = 1, we have

Pe(Ana) = po(Aua)py(a) = pp(Aa)py(pa). (2.1)
Note also that
Po(1f) = po(1f)pe(a) = pe(f)pe(pa) (2.2)

since p,, is multiplicative. By the same reasoning, we have p,(Ag) = p,(g9)pp(Aa).
It follows that

Po((f +Ae)(g+ pe)) = po(fg+ uf + Ag+ Aue)
= po(fg+pnf +Ag) + py(Aua)

= po(£)pe(9) + po(f)pe(pa) + pe(9)pe(Aa)

+ pp(Aa)py (pa) (by (2.1) and (2.2))
= {pe(f) + pp(Aa)} {pe(9) + pp(pa)}

= P (f + Ae) pip (g + pe).
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This proves that p, is multiplicative. We thus conclude that p, is a surjective
ring homomorphism from A, onto C with pg|a = po,.

Finally, we prove the uniqueness of p,. Let p,* : A — C be another ring
homomorphism with p,*|4 = p,. Note, for each A € C, that

py"(Ae) = py" (Ae) pola) = p,* (Aa) = py(Aa)

since p,(a) = 1. For each f + Xe € A, we have

Pap*(f"‘ )\e) = pap*(f) +p¢*()\e) = pap(f) +P<p()‘a) = :Es;(f + Ae)v

which proves the uniqueness. This completes the proof. (I

Lemma 2.3. Let p, be from Lemma 2.2 for each ¢ € Mp. There exists
unique ¢ € My, \ {xs} with kerp, = kerv. For such v, we have kerp, =

ker(v)]4).

ProoF. Take ¢ € Mp. By Lemma 2.2, there is a unique ring homomorphism
pe from A, onto C with p,|a = p,. We show that the kernel ker p,, is an algebra
ideal. Since p, preserve both additions and multiplications, it is enough to show
that Af € ker p, whenever A € C and f € kerp,. Take A € C and f € kerp,.
Since py(f) =0, for a € A with pg(a) # 0, we have

P2(\NFa(a) = 52(f)Pa(Aa) = 0.

It follows that p,(Af) = 0 since py(a) # 0. Thus Af € ker p,, and so ker p,, is an
algebra ideal of A.

Note that ker p,, is a proper algebra ideal since pg,|a = py, is non-zero. There
exists ¢ € Ma, with ker p, C kert. We shall prove that ker p, = ker. Take
uy € A, with ug ¢ kerp,. Since p, is surjective, there is v9 € A. such that
52(0) = 1/ pa (o). Then

Po(uovo — €) = py(uo)py(vo) — pule) =0,

and so ugvg — e € ker p, C kert. Thus we have 9)(ug)9(vo) = 1, which implies
ug ¢ kerp. This proves ker ) C ker p,, and so ker p, = ker .
Since p,|a = p,, we have

ker p, = ker(p,|a) = (ker p,) N A = (keryp) N A = ker(¢|4).

In particular, 1|4 is non-zero. Thus ¢ € M4, \ {Zo}- O
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Definition 2. By Lemma 2.3, for each ¢ € Mp, there exists a unique element
O(p) € Ma, \ {0} with ker p, = ker &(¢). We may regard ¢ as a mapping from
MB to ]\414e \ {.Z‘OO}

Definition 3. For each ¢ € Mp, we consider the mapping 7, : C — C defined
by
To(A) = po(Ae) (A€ C),

where p,, is from Lemma 2.2.

Lemma 2.4. For each ¢ € Mg, let 7, be from Definition 3. Then 7, Is a
ring automorphism on C with

po(f) = o (F(2())) (2.3)
for every f € A. If, in addition, p,(f) # 0, then

To(A) = pp“":?ff)) (2.4)

for every \ € C.
ProOOF. Take ¢ € Mp. By the definition of ®, we have, for each f € A,

f- f(CI)(gp))e € ker ®(¢) = ker p,,

and so

0= 05 (f) = P (f(2(9))e) = po(f) = T (f(2())).

This proves p,(f) = 7,(f(®(p))) for every f € A.
Next, we show that 7, is a ring automorphism. By the definition of 7, it

is obvious that 7, is a non-zero ring homomorphism. We see that 7, is injective:
for if there were A, Ay € C with Ay # Ay and 7,(\1) = 7,(A2), then we would
have

o) = 7o =y (52 ) =0

for all A € C, since 7,(A1 —A2) = 7,(A1) —7,(A2) = 0. This is a contradiction since
T, is non-zero. We need to prove the surjectivity of 7,. Since p,, is surjective, for
each A € C, there is a € A with p,(a) = X. By (2.3), we have 7,(a(®(p))) = A,
and so 7, is surjective. Thus 7, is a ring automorphism.

Finally, for each A € C and f € A with p,(f) # 0, we have

pe(Af) = pe(Af) = pp(Xe) po(f) = To(N)pe(f)-

This proves (2.4), and so the proof is complete. O
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Lemma 2.5. Let ® be the mapping from Definition 2. Then ® is injective.

PROOF. Take @g, 1 € Mp with ¢o # ¢1. There is b € B with b(po) = 0
and b(g;) = 1 since B is semi-simple. Choose a € A so that p(a) = b; this is
possible since p is surjective. Then p,,(a) = b(w) = 0 and Py (@) = b(py) = 1.
By Lemma 2.4, we have

Too ((P(p0)) =0 and 74, (a(®(p1)) = 1,

where 7, (¢ € Mp) is the mapping from Definition 3. Note that 7,(0) = 0
and 7,(1) = 1 for every non-trivial ring homomorphism. Since 7, is injective
by Lemma 2.4, we have do(®(pp)) = 0 and do(®(p1)) = 1. We thus conclude
D(pg) # D(p1), and so P is injective. O

Definition 4. We define the subsets M_q, M7 and My of Mp by

M_4 = {(p € Mp: Tgo(/\) = ()\ S C)},
My ={peMp:7,(A) =X (A€ C)} and
M; = {p € Mg : 7, is non-trivial }.
By definition, {M_1, My, My} is a partitioning of Mp, that is, M_1, M7 and M,
are mutually disjoint subsets of Mg with M_; U M; U My = Mp.

From Lemma 2.6 to 2.8, {M_;, My, My} will denote the partitioning of Mp
from Definition 4.

Lemma 2.6. Both M_; and M; are closed subsets of Mpg.

PROOF. We show that cl(My) C My, for k = £1, where cl(M}) denotes the
closure of My, in Mp. Take ¢ € cl(My) and let {p,} be a net in M}, converging
to ¢. Choose a € A so that Ra\)(go) = p,(a) # 0. Since /Xa\) is continuous on
Mg, py, (a) = ,0/(;)@0@) converges to p,(a) # 0. So, without loss of generality we
may assume p,, (a) # 0 for every a. It follows from (2.4) that

_pe00)  pplha)
TN =" T @

=7,(\). (2.5)

Since ¢, € My, (2.5) implies that 7,(A\) = A if k = —1, and 7,(\) = A if k = 1.
Thus ¢ € My, for k = +1, and the proof is complete. O

Lemma 2.7. M, is an open and at most finite subset of Mp.
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PrOOF. By Lemma 2.6, My = Mp \ (M_; U M;) is open. Assume to the
contrary that My contains a countable subset {¢, }22, with ¢; # ¢, (i # j). Set,
for each n € N, the set of all natural numbers, ¥, = ®(¢,). By Lemma 2.5, ¥ is
injective, and so ¢; # 1; (i # j). Since ¢, € My, the ring homomorphism 7,
from Definition 3 is non-trivial. For simplicity, we will write 7,, instead of 7, .
By (2.3), we have

pon () = Ta(F(@(pn))) = 7 (F () (2.6)

for each f € A.

Take a1 € A with ay(v;) = 1. Since 7y is non-trivial, there exists A\; € C
with [Ai] < (2|lai|])™! and |71 (A1) > 2 (cf. Remark 2.1). Set fi = Aa; € A.
Then

£ <27 and |7 (fi(1)] > 2.

By induction, we shall prove that, for each n € N with n > 2, there exists f, € A
such that

I full <277 |7a(Fu(@n))] > 27 +

k=1
and that
fn(l/)l) = fn(’(/)Q) == fn('(/)n—l) =0.

Take as € A with da(1)1) = 0 and da(¢2) = 1. Since 7 is non-trivial, there exists
Ao € C such that

A < and  |72(A2)| > 2% + |m1 (fu(¥))]-

1
2% |laz||
Set fo = Asas € A. Then fg(t/)l) =0 and fg(’l/)g) = Xo. It follows that

If2ll <272, fo(wr) =0 and |ra(fa(vh2)) > 2% + 71 (fi(¢1))]-

Suppose that there are fr € A (k=2,--- ,n— 1) with

ka” < 2—k’ fk(wl) == fk(l/ikfﬂ =0 and
R k=1
I (fe ()] > 25 + |7 | D fi ()
j=1

Choose a,, € A so that @, (¢,) =1 and

aAnw)l) == aAn(l[Jn—l) =0.
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In fact, take b; € A, for each i (1 <i < n — 1), with b;(1;) = 0 and b;(¢,) = 1.
Then H?:_llbl- € A is the desired element. Since 7, is non-trivial, there is A\, € C
with

n—1
and |1,(A\n)| > 2" + | ngWn)

Al < et 3
Set f, = Apa, € A. Then
fall <277 fal@) =+ = fu(tn1) =0.
Since @, (1) = 1, we have f,(¥n) = An, and so
Tn(Fa(n))l > 2% + |70 | D fi(¥n) (2.7)

j=1

as desired.

Since || fn|l < 27™, the series >, f, converges to an element, say fo € A.
We have, for each n € N, fo(ib,) = Sory fre(tn) since fi(¥n) = 0 for each
k=n+1,n+2,---. By (2.6), we have, for each n € N,

k=1
Tn ( Ak(wn)> ' )
1

k=1

190, (o)l = I (fo(wn))| =

E
I

and so, by (2.7),

—

lp(fo)(n)| = |pe, (fo)| > 2"

Since p(fo) is bounded on Mp, we now reach a contradiction. We thus proved
that My is at most finite subset of Mp. O

Lemma 2.8. The mapping ® : Mp — M4_ \ {z} is continuous.

PROOF. Let ¢g € Mp and let {vo} C Mp be a net converging to ¢g.
We prove that ®(p,) converges to ®(pg). If wo € My, then {po} is open by
Lemma 2.6 and 2.7. So, we may assume that ¢, = g for each a. Thus ®(p,,) =
D(pg), and so P(p,) converges to P(py).

Next, we consider the case where ¢y € M for K = +1. By Lemma 2.6
and 2.7, My, is clopen of Mp. Thus we may assume {¢,} C M} for each «.
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By the definition of M for & = +£1, 7, is the complex conjugate for each
a when k = —1, and 7, is the identity for each o when £ = 1. Note that
Po. (f) converges to p,,(f) for each f € A since p/(\f) is continuous on Mp. It
follows from (2.3) thatf(®(¢,)) converges to f(®(¢g)) for every f € A. Thus
W(P(pqa)) — w(P(pg)) for each u € A.. By the definition of the Gelfand topology,
we conclude that ®(¢,,) converges to ®(yg). O

3. Proofs and application

PROOF OF THEOREM 1.1. Let ® and {M_y, M7, My} be from Definitions 2
and 4, respectively. Then & is an injective and continuous mapping by Lemmas 2.5
and 2.8. It follows from Lemmas 2.6 and 2.7 that M_; and M; are clopen, and
M, is at most finite. Let 7, be from Definition 3 for each ¢ € My. By (2.3) and
Definition 4, p is of the form (1.1).

It remains to be proved that ® is a closed mapping. We define a mapping
d:M B, — Ma, by

B(o) {w) ¢ € Mp

Loo ¥ =Yoo

where {#oc} = Ma, \ M4 and {yo} = Mp, \ Mp. Here we notice that for each
feACA, f, as a function on My, , is 0 at 2. The same remark holds for
be B C B, and ys. We observe that ® is continuous: by definition, it is enough
to prove the continuity of P at Yoo Let {pn} C Mp, be a net converging to yYoo-
By Lemma 2.7, Mp_ \ My is an open neighborhood of y.,, and so we may assume
{Ya} C Mp_ \ My. Take f € A. By the definition of ®, we have

f(&)((pa)) _ fA(q)(Spa)) Pa € MB \Md (31)
f(xoo)zo Pa = Yoo-

On the other hand, since o ¢ My, it follows from (2.3) that

o( f) f ® «a o MB M,
10(f)(pa)l = |ppa ()] = |f/(\(“’ M Yo € Mp \ My
|p(f)(yoo)| =0 Pa = Yoo-

By (3.1), we have, for each a,

1£(@(pa))] = [(f)(a)l- (3.2)
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o~ e~ —

Since p(f) is continuous on Mp_, p(f)(¢a) converges to p(f)(yoo) = 0. It follows
from (3.2) that f(®(¢a)) converges to 0 = f(®(yso)). Since f € A was arbitrary,
we see that (P (pq)) converges to i(P®(yso)) for every u € A,. By the definition
of the Gelfand topology, ®(p.) converges to ®(y). We thus conclude that
P Mp, — M4, is continuous.

Take a closed subset F' of Mp. Then F U {ys} C Mp, is compact. Since ®
is continuous on Mp_, ®(F U {ys}) = ®(F) U {xs} is compact in M, , and so
O(F) C My, \ {2} is closed in M 4. This proves that ® is a closed mapping. O

Recall that a commutative Banach algebra A is regular if and only if for each
pair F, ¢y of closed subset F' C M4 and 1y € M4 \ F, there exists f € A with

f(tho) =1 and f(¢) = 0 for every ¢ € F.

PROOF OF COROLLARY 1.2. Take ¢y € Mp and closed F' C Mp with ¢q ¢ F.
Let ® be an injective and closed mapping from Theorem 1.1. Then ®(F) C
Ma, \ {zoo} is closed with ®(pg) ¢ ®(F'). Since A is regular, there exists fo € A
with fo(®(¢)) = 1 and fo(®(p)) = 0 for every ¢ € F. Recall that if T, is a
non-trivial ring homomorphism, then 7,(r) = r for every r € Q and ¢ € Mp.

By (2.3), we have p(fo)(¢0) = pe,(fo) =1 and p(fo)() = py(fo) = 0 for every
¢ € F, and so B is regular. (]

PROOF OF COROLLARY 1.3. (a) Assume to the contrary that there is a sur-
jective ring homomorphism p : A — B. Let ® be from Theorem 1.1. Then Mp is
homeomorphic to ®(Mpg) C M. By hypothesis, My is discrete, and so is Mp.
Now we reach a contradiction since Mg is infinite and connected.

(b) Let {M_1, My, My} be from Theorem 1.1. Then M_;, M; are clopen, and
My is at most finite. Since Mp is assumed to be infinite and connected, it follows
that Mg = M_,, or Mg = M;. So, by Theorem 1.1, there exists an injective,

—

continuous and closed mapping ® : Mz — M with p(f)(¢) = f(®(p)) for every

feAand g € Mg, or p(f)(p) = f(®(y)) for every f € A and ¢ € Mp. Since B
is semi-simple, we have that p is conjugate-linear, or linear, respectively. (Il

Ezxample 1. Let D and D be the open unit disc and the closure of D, respec-
tively. Let A(D) be the disc algebra, that is, the uniform algebra of all complex-
valued continuous functions on D, which are holomorphic in D. Let H°(ID) be the
commutative Banach algebra of all bounded holomorphic functions on ID. Neither
A(D) nor H*(D) are regular. By Corollary 1.2, both A(D) and H°*(ID) can not
be the ring homomorphic images of any semi-simple regular commutative Banach
algebra A. The case where A = Cy(X) was proved by MOLNAR [9, Corollary].
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Ezample 2. Let n € N and let C™([a, b]) be the set of all n-times continuously
differentiable complex-valued functions on a closed interval [a, b]. Then C™(]a, b])
is a semi-simple commutative Banach algebra with respect to the pointwise op-
erations and the norm || f||, = 32—, [|f®]|_ /! for f € C™([a,b]).

If p is a surjective ring homomorphism from C™([a,b]) onto itself, then p is
of the form

p(f)(z) = f(@(z)) (f€C"(a,b]), x € [a,b]), (3-3)
or

p(f)(x) = f(@(z)) (f € C([a,b]), © € [a,b]). (3-4)

Here, ® € C™([a, b)) is injective and closed. For if p is a surjective ring homomor-
phism from C™([a,b]) onto itself, then by the Proof of Corollary 1.3 (b), there
exists an injective, continuous and closed mapping ® from [a, ] into itself such
that p is of the form (3.3), or (3.4). If we take f = Id, the identity function, then
we have ® € C"([a,b]).

Ezxample 3. Let 1 < p < oo and let G be a compact abelian group. Then
the LP-space LP(G) is a commutative Banach algebra with respect to convolution
as a multiplication. The maximal ideal space of LP(G) is the dual group G of
G for each 1 < p < oo. Let B be a semi-simple commutative Banach algebra
with infinite and connected maximal ideal space. By Corollary 1.3 (a), B can
not be the ring homomorphic image of LP(G) since @G is discrete. The case where
B = L'(R"), A(D), C™([a, b]) was obtained by [10, Corollary 4].
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