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On the Browder essential spectrum of a linear relation

By TERESA ALVAREZ (Oviedo)

Abstract. For a closed linear relation on a Banach space the concepts of Browder
and Browder essential spectrum are introduced and studied. If a densely defined closed
linear relation 7" has a trivial singular chain, then T is Browder if and only if T' = B+ K,
where B is a bijective linear relation, and K belongs to set X(X) of everywhere defined
single valued compact linear operators, and left commutes with 7. This is used to prove
that the Browder essential spectrum coincides with the set N{c(T + K) : K € K(X)
and KT C TK}.

1. Introduction

We will denote the set of nonnegative integers by N. Let X denote a vector
space over K = R or C. A multivalued linear operator on X or simply a linear
relation on X, T : X — X is a mapping from a subspace D(T) C X, called the
domain of T, into the collection of nonempty subsets of X such that T'(az; +
Bxa) = aTxy + BTz for all nonzero «, (3 scalars and 1, x2 € D(T). If T maps
the points of its domain to singletons, then T is said to be a single valued linear
operator or simply an operator. We denote the class of linear relations on X
by LR(X).

A linear relation T in X is uniquely determined by its graph, G(T') which
is defined by G(T') := {(z,y) €e X x X : 2 € D(T), y € Tz}. Let T € LR(X).
The inverse of T is the linear relation T~! given by G(T~1) := {(y,x) : (z,y) €
G(T)}. The subspace T~1(0) is denoted by N(T) and T is called injective if
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N(T) = {0}, that is, if 77! is a single valued linear operator. The range of T is
the subspace R(T) := T(D(T')) and T is called surjective if R(T) = X. When T
is injective and surjective we say that T is bijective. We write «(T) := dim N(T);
B(T) := dim X/R(T') and the index of T', k(T), is defined by k(T') := «(T) — 8(T)
provided «(T") and S(T) are not both infinite. Let M be a subspace of X such
that M N D(T) # (. Then the linear relations T |5y and Ty are given by
G(T |pm) ={(z,y) € GT) : x € M} and G(Twy) := {(x,y) € G(T) : z,y € M}
respectively.

For T,S € LR(X) and A € K, the linear relations T + S, T+S, AT and T'S
are defined by G(T+S5) := {(x,y+2) : (z,y) € G(T), (z,2) € G(S)}, G(TFS) :=
{z+uy+v):(z,9) € GT),(u,v) € GS)}, GAT) :={(z, \y) : (z,y) € G(T)}
and G(TS) := {(z,y) : Iz € X, (x,2) € G(5),(z,y) € G(T)} respectively. Since
the composition of linear relations is clearly associative, for all integer n, T is
defined as usual with 7° = I and T' = T. The notation T C S means that
G(T) C G(S). We say that T has a trivial singular chain manifold if R.(T) = {0}
where R.(T) := (U2 N(T™)) N (U, T™(0)).

Suppose that X is a normed space and T € LR(X). Let Qr denote the
quotient map from X onto X/T'(0). Clearly Q1T is an operator. We say that T is

closed if its graph is a closed subspace of X x X, continuous if |T|| := ||Q7rT|| < oo,
open if its inverse is continuous equivalently if its minimum modulus v(T') is a
positive number, where v(7T') := sup{\A > 0 : Ad(z, N(T)) < ||Tz|,z € D(T)},
Fredholm, denoted T' € ¢(T), if it is closed with dim N(T) < oo and R(T) is a
closed finite codimensional subspace of X.

If X is a complex normed space, then the resolvent set of T is the set p(T) :=
{A € C: A\ —T is injective, open and has dense range }. It is clear from the
Closed Graph Theorem for linear relations [5, I11.5.3] that if T" is closed and X is
complete then p(T) = {\ € C: A — T is bijective }. The spectrum of T is the set
o(T) := C\p(T).

An underlying motivation for the introduction of multivalued linear operators
into Functional Analysis by J. VON NEUMANN [12] was to aid the investigation of
differential equations governed by non densely defined operators. The conjugate
of such operators are linear relations. Linear relations are more convenient be-
cause one can always define the inverse, the closure and the completion of a linear
relation. Interesting works on multivalued linear operators include the treatise
on partial differential relations by GRoMoOV [9], the application of multivalued
methods to solution of differential equations by FAVINI and YAcI [6], the devel-
opment of fixed point theory for linear relations to the existence of mild solutions
of quasi-linear differential inclusions of evolution and also to many problems of
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fuzzy theory (see, for example [1], [8], [11] and [14]) and several papers on semi-
Fredholm linear relations and other classes related to them (see, for example [2],
[3] and [4]).

This paper deals with the Browder linear relations in a Banach space. The
results obtained in this paper are mainly based on recent developments of SAN-
DOVICI, DE SNOO and WINKLER [15]. We start the Section 2 recalling a lemma
due to Cross [5] related to linear combinations and compositions of linear rela-
tions and we present some definitions and propositions concerning the ascent and
descent of a linear relation in a vector space that we shall need to obtain the main
theorems. These definitions and propositions, together with their proofs, can be
found in [15].

Section 3 contains the main results. We recall that if T is a bounded operator
in a Banach space X it follows from [17, 3.1 and 3.3] that T is Browder if and
only if T can be written in the form T' = A 4+ K, where A is an isomorphism
and K belongs to the set K(X) of everywhere defined single valued compact
linear operators, and commutes with 7". Also, it is well known (see, for example
[13]) that if X is a complex Banach space then the Browder essential spectrum
of T, og(T), is a closed subset of C and og(T) = N{o(T' + K) : KT = TK
and K € K(X)}. In the next Section 3 we will show that results of the type
mentioned above can be extended to closed multivalued linear operators under
certain conditions.

2. Algebraic properties of a linear relation in a vector space

Throughout this section 7" will be denote a linear relation in a vector space X.
We will make use of the following lemma concerning the laws governing the
operations of addition and scalar multiplication in LR(X) combined with the op-
erations of composition and inversion, in particular the right and left distributive
laws.
Lemma 1 ([5, 1.4.2]). Let R,S,T € LR(X). Then
(i) AM(ST) = (A\S)T = S(A\T), A € K\{0}.
(ii) If S C T then SR C TR.
(i) (R4 S)T C RT + ST with equality if T is single valued.
(iv) TR+ TS C T(R+ S) with equality if D(T') is the whole space.
Two examples which show that equality may not hold in Lemma 1 (iii) and
(iv) have been constructed by Cross [5, 1.4.3].
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Definition 2. The ascent and descent of T" are defined by

a(T) := min{p € N: N(T?) = N(TP+D)}

d(T) := min{q € N : R(T9) = R(T\7+Y)}

respectively, whenever these minima exist. If no such numbers exist the ascent
and descent of T" are defined to be oo.

In [15], the authors proved that many of the entirely algebraic results concern-
ing the ascent, descent, nullity and defect of operators in vector spaces remain
valid in the context of linear relations under the additional condition that the
linear relation has a trivial singular chain manifold. Some algebraic properties
described in [15] that we shall need to obtain the main theorems of Section 3 are
recalled.

Lemma 3. (i) Let n € K \{0}. Then N((n —T)") C R(T™) for all non-
negative integers n, m.

(ii) Let n € N. If a(T') < 00 is a(T™) < na(T) and if S(T) < oo then B(T™) <
nB(T).

Proposition 4. (i) Let n,m € N and assume that R.(T) = {0}. Then
the linear relation ¢ from N(T™+™)/N(T™) to R(T™) N N(T™) defined by
Y[z] := T™x is bijective and single valued.

(ii) If N(T) N R(T?) = {0} for some p € N, then a(T) < p and R.(T) = {0}.
Conversely if R.(T) = {0} and a(T) < p for some nonnegative integer p,
then N(T™) N R(T?) = {0} for all positive integer m.

(iii) If R(T) = {0}, a(T) = B(T) < 00 and p = a(T) < oo, then a(T) = d(T)
and X = R(T?) @ N(T?).

Definition 5. Assume that M and N are two complementary subspaces of X.
The linear relation T is said to be completely reduced by the pair (M, N), denoted
T = Ty ® T, if it can decomposed as T = Ty +Tn and G(Tw) NG(Tn) =
{(0,0)}.

In the case of operators the concept of complete reducibility goes back at
least to TAYLOR (see, [16]) whose definition is slightly different but coincides
with Definition 5 if T is a single valued linear operator.

If T is completely reduced by the pair (M, N), then it is easy to see that
D(T) = D(Tys) ® D(Tw); N(T) = N(Tas) & N(Tw); R(T) = R(Tas) & R(Tw)
and T(0) = T (0) ® Tn(0).
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Proposition 6. If X = R(T?) ® N(T?) for some nonnegative integer p,
then T is completely reduced by the pair (R(T?), N(T?)).

Proposition 7. Assume that M and N are two complementary subspaces
of X such that T is completely reduced by the pair (M, N). Furthermore, as-
sume that N C D(T), dimN < oo, Tx is single valued and Ty is a bijec-
tive linear relation. Let P and ) be the projections of X onto M along N
and onto N along M, respectively and define the linear relations A and B by
G(A) == {(z,Py — Qx) : (z,y) € G(T)} and B := (Ty + I)Q. Then B is an
everywhere defined single valued linear operator in X with dim R(B) < oo, A is
bijective, BA C AB and T = A + B.

3. Browder essential spectrum of a closed linear relation

It is well known that if n € N and T is a bounded Fredholm operator from
a Banach space X into X then T™ is a Fredholm operator with k(T™) = nk(T).
The following result gives conditions under which this property remains valid for
closed linear relations and it will be used to obtain a characterisation of Browder
linear relations (Theorem 10 below).

Proposition 8. Let n € N and let T € ¢(X) where X is a Banach space.

We have:
(i) T" € (X).
(ii) If T is densely defined and R.(T) = {0}, then k(T™) = nk(T).

PROOF. (i) We first note the following elementary property

() If M and N are subspaces of X such that M is closed and M C N, then
N is closed in X if and only if N/M is closed in X/M.

Since Q7T is a closed single valued with T'(0) closed [5, I1.5.3] we have
from (%) that R(QrT) is closed and since N(QrT) = N(T') ([5, 11.3.4]) is finite
dimensional it follows from [7, IV.2.9] that Q7T R(T) is closed and thus applying
again (x) we obtain that R(T?) is closed. Also T2 is a closed linear relation by
virtue of [5, I1.5.1 and I11.5.3] and since dim N(7?) and dim X/R(T?) are both
finite (Lemma 3 (ii)), is 7% € ¢(X). Now continuing in this way we deduce that
T € ¢(X).

(ii) By Proposition 4 (i), the linear relation v from N(T?)/N(T) to R(T) N
N(T') defined by [z] := Tx is a bijective single valued linear operator. Hence,
put Ny := R(T)NN(T),

o(T?) = o(T) + dim Ny. (1)
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Let Ny be a subspace of N(T') such that N(T) = Ny @ N3. Then
a(T) = dim Ny + dim Ns. (2)

Now for y € T'x N No, we have y € N1 N Ny = {0}. Hence R(T') N N» = {0}.
Since B(T) and dim N3 are both finite, R(T') and R(T") & N2 are closed and
as by hypothesis D(T') is dense in X it follows from [7, IV. 2.8] that

X =R(T)® N2 @ N3 (3)
where N3 is some finite dimensional subspace of D(T") so that
D(T) = (R(T)ND(T)) ® N2 ® N3; B(T) = dim Ny + dim N3 (4)

and T is injective on Nj.

Let y € R(T). Then by (4) there exist 1 € R(T) N D(T), 3 € Na, 23 € N3
for which y € Tz +Tzo+Tx3 C R(T?*)+TT(0)+T N3 = R(T?)+T(0)+T N5 C
R(T?) + TN3. Now, let z € R(T?) N TN3. We have z € T'm and z € T'n where
m € R(T) and n € N3. Then 0 € T(m —n), so that m—n € N(T) C R(T) ® Na.
Therefore n € (R(T) @ N2) N N3 = {0} (by (4)). In consequence

R(T) = R(T?) + TN3, T(0)= R(T?) N Ns. (5)

Also, dim N3 = dim T'N3 by the injectivity of T' on N3 and [5, 1.6.4]. This
fact combined with (5) yield

B(T) + dim N3 = 3(T?). (6)

Now, adding (1), (2), (4) and (6) gives k(T?) = 2k(T) and proceeding in this
way we obtain the desired assertion (ii). O

In the sequel X will denote a Banach space and T will always denote an
element of CR(X), the set of all closed linear relations on X.

If T is a single valued Browder operator on a Banach space (that is, T is
Fredholm of finite ascent and descent) it follows from a classical result of [10,
38.5] that T has index zero. However, this property is not valid in the context of
linear relations (see, [15]). These observations suggest the following notion.

Definition 9. We say that a linear relation T on X is Browder, denoted
T € BCR(X), if T is Fredholm of index zero and has finite ascent and descent.
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Theorem 10. Let T € CR(X) have a trivial singular chain manifold. Con-
sider the following properties:

(i) T € BCR(X).
(ii) There exist linear relations A, B such that T = A+ B with A a bijection,
B e K(X) and BT C TB.

Then (i) implies (ii). If T is densely defined, then (i) and (ii) are equivalent.

PRrROOF. (i) = (ii) Assume that T is Browder. According Proposition 4
(iii), there is a nonnegative integer p such that p := a(T) = d(T) and X =
R(TP?) @ N(T?). Then by Proposition 6 T is completely reduced by the pair
(R(TP),N(TP)), that is, T' = Tr(rr) ®© Tn(rr). Also R(T?) and N(T?) are both
closed subspaces with dim N (7%) < oo (Proposition 8 (i)), Tr(r») is bijective since
p = d(T) implies that R(T?) = R(Tr(r»y) and N(Tgr)) = N(T)NR(T?) = {0}
(Proposition 4 (ii)) and Tn(r») is single valued since if y € N(Tn(r»)(0) then
clearly y € Tr(rr)(0) © Tn(r»)(0) = T(0) C R(TP). Hence y € N(T?) N R(T?) =
{0} (Proposition 4 (ii)).

In this situation, we can apply Proposition 7 to obtain two linear relations
A and B, with A bijective, B bounded finite rank operator such that BA C AB
and T = A + B. Furthermore, BT = B(A+ B) = BA + BB (Lemma 1 (iv))
C AB+ BA = (A+ B)B (Lemma 1 (iii)) = TB. Therefore (ii) holds, as desired.

(ii)= (i) Suppose T = A + B with T, A and B as in the hypothesis of (ii).
Then

T is a Fredholm linear relation of index zero. (7)

Follows immediately from [4], [9].
BA C AB; TA C AT and BT"™ Cc T"B for all positive integer n. (8)

Indeed, BA= B(T'— B) = BT — BB (Lemma 1 (i) and (iv)) C TB— BB =
(T — B)B (Lemma 1 (i) and (iii)) = AB. This fact implies that TA C AT since
TA=(A+B)AC AA+ BA (Lemma 1 (iii)) ¢ AA+ AB C A(A+ B) (Lemma 1
(iv)) = AT. We prove that BT™ C T™B by induction. For n = 1 is trivial.
Assume the property to be valid for n. Then BT("*Y) = BT"T < T"BT (by the
induction hypothesis and Lemma 1 (ii)) ¢ 7+ B. Hence (8) holds.

R(T™) C AR(T™) for all positive integer n. (9)

The proof will be given by induction. First consider the case n = 1. Since
Ix C AA™! (as A is surjective) is T = TIx C TAA™! and thus R(T) C
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R(TAA™Y) =TAR(A™Y) =TAD(A) = TAD(T) C ATD(T) (by (8)) = AR(T).
Assume that the property is satisfied for n. Then R(T™+V) = TR(T") C
TAR(T™) C ATR(T™) (by (8)) = AR(T"*+1)). Hence (9) holds.

We observe that since A is closed by virtue of [5, I1.5.16] and it is bijective
by hypothesis, the Closed Graph Theorem for linear relations [5, I1I1.5.3] assures
that A is open, so that, there is a positive number v for which ~||z|| < ||Ax]||,z €
D(A) = D(T). Assume that x € D(A) and z € R(T™). Then z € AR(T™)
(by (9)) and hence there exists y € R(T™) with z € Ay. Thus we have that
2d(z, RT™) < Allz -yl < [A@—y)] = [QsA -yl = |QrAz — Qrz]
(the last equality is obtained upon noting that z € Ay & Ay = z + A(0) ([5,
1.2.8]) and T'(0) = A(0) ) and since this holds for all z € R(T™), we obtain that

There is v > 0 such that vd(z, R(T")) < d(QrAz,QrR(T"))

10
for all x € D(T). (10)

Assume that T had infinite descent. Then there would be a bounded sequence
(z,) in R(T™) for which 1 < d(zn, R(T™Y)). Assume m > n > 0. Then
Tz, C TR(T") = R(T""*V); Bx,, € BR(T™) = R(BT™) C R(T™B) (by (8))
c R(T™) ¢ R(T"*Y) and Bz, — Bz, + A(0) = Bz, — Bx,, + Az, — Ax,,
so that QrBx, — QrBx,, = —QrAx, + QrTx, — QrBz,,. These properties
combined with (10) yield

v < vd(wn, R(TT™Y))
< d(QrAzy,, QrR(T"Y)) < |Qr By — QrBay||

which contradicts the compactness of Q7 B, so T must have finite descent.

Let ¢ := d(T) < oo and suppose that T is densely defined. Then as T is a
Fredholm linear relation with index zero (by (7)) it follows from Proposition 8 (ii)
that k(7T7) = 0 and consequently ¢ = a(T'). Therefore the result is proved. O

(11)

In the rest of this section we assume that X is a complex Banach space.
The class BCR(X) motivates the corresponding Browder essential spectrum
defined as follows:

Definition 11. The Browder essential spectrum of T' € CR(X) is the set
op(T):={Ae€C: A\-T ¢ BCR(X)}

(As it is usual, we write A =T := A x — T, X € C).

It is very well known that the Browder essential spectrum of a bounded
operator is a closed subset of the complex plane. The following result indicates
that again the additional condition “I" has a trivial singular chain manifold”
permits to prove the validity of the above property in our general situation.



On the Browder essential spectrum of a linear relation 153

Theorem 12. Let T € CR(X) such that R.(T) = {0}. Then the Browder
essential spectrum of T is a closed subset of C.

PROOF. Let A € C\og(T). We shall assume without loss of generality that
A = 0. Thus T is Fredholm of index zero and there is p € N such that p = a(T") =
d(T) (Proposition 4 (iii)).

We first prove that

X =R(n—T)+ R(T"), neC\{0} (©)

This assertion is obtained upon noting that X = R(T?) & N(T?) (Proposi-
tion 4 (iii)) and N(T?) = N((n— (n—T))?) C R(n —T) (Lemma 3 (i)).

Now, for n # 0 we define T, := T |g(r»y and 1, := 1l |g(rr). Then since
T is closed and R(T?) is closed (Proposition 8 (i)), T, is a closed linear relation.
Moreover, Ty, is injective (as N(T,) = N(T)NR(T?) = {0} by Proposition 4 (ii)),
R(T,) = R(T?) (as d(T') = p < o0) and thus by the Closed Graph Theorem for
linear relations [5, IT1.5.4], T, is open, that is, v(T,) > 0.

Let 0 <| n |< v(T,). We have that a(n, —T,) < a(Ty) ([5, I11.7.4]) and since
N(no—T,) = N(n—T)NR(T?) with N(n—T) C R(T?) (Lemma 3 (i)), it follows
that a(n —T) = a(n—T) = 0. Also, as R(T?) = (n —T)R(T?) C R(n —T), the
property (®) yields immediately to X = R(n—T), that is, d(n—T) = 5(n—T) = 0.
Consequently, op(T) is closed, as desired. O

Remark 13. We note that there exists a closed densely defined operator T'
(so that R.(T) = {0}) such that o(T) = 0 (see, [5, VI.2.7]) and hence such that
0B (T) = @

Theorem 14. Let T € CR(X) be densely defined such that R.(T) = {0}.
Then

o5(T) = N{o(T + K) : K € K(X) and KT ¢ TK}.
PRrROOF. We observe that by [15, 7.1]
For all scalar , R.(n —T) = {0} if and only if R.(T") = {0}. (1)

Let A ¢ N{o(T+ K) : K € K(X) and KT C TK}. Then there exists
K € K(X) and KT C TK for which A € p(T+ K). Thus A — (T'+ K) is bijective,
A—T=X—(T+ K)+ K is clearly a closed densely defined linear relation such
that K(A—T) C (A—=T)K and R.(A\—T) = {0} and thus by Theorem 10 (ii) =
(i) we deduce that A — T is a Browder linear relation.

The other inclusion follows immediately from (1) together Theorem 10

(i) = (ii). O
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