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On the Browder essential spectrum of a linear relation

By TERESA ÁLVAREZ (Oviedo)

Abstract. For a closed linear relation on a Banach space the concepts of Browder

and Browder essential spectrum are introduced and studied. If a densely defined closed

linear relation T has a trivial singular chain, then T is Browder if and only if T = B+K,

where B is a bijective linear relation, and K belongs to set K(X) of everywhere defined

single valued compact linear operators, and left commutes with T . This is used to prove

that the Browder essential spectrum coincides with the set ∩ {σ(T + K) : K ∈ K(X)

and KT ⊂ TK}.

1. Introduction

We will denote the set of nonnegative integers by N. Let X denote a vector
space over K = R or C. A multivalued linear operator on X or simply a linear
relation on X, T : X → X is a mapping from a subspace D(T ) ⊂ X, called the
domain of T , into the collection of nonempty subsets of X such that T (αx1 +
βx2) = αTx1 + βTx2 for all nonzero α, β scalars and x1, x2 ∈ D(T ). If T maps
the points of its domain to singletons, then T is said to be a single valued linear
operator or simply an operator. We denote the class of linear relations on X

by LR(X).
A linear relation T in X is uniquely determined by its graph, G(T ) which

is defined by G(T ) := {(x, y) ∈ X × X : x ∈ D(T ), y ∈ Tx}. Let T ∈ LR(X).
The inverse of T is the linear relation T−1 given by G(T−1) := {(y, x) : (x, y) ∈
G(T )}. The subspace T−1(0) is denoted by N(T ) and T is called injective if
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N(T ) = {0}, that is, if T−1 is a single valued linear operator. The range of T is
the subspace R(T ) := T (D(T )) and T is called surjective if R(T ) = X. When T

is injective and surjective we say that T is bijective. We write α(T ) := dim N(T );
β(T ) := dim X/R(T ) and the index of T , k(T ), is defined by k(T ) := α(T )−β(T )
provided α(T ) and β(T ) are not both infinite. Let M be a subspace of X such
that M ∩ D(T ) 6= ∅. Then the linear relations T |M and TM are given by
G(T |M ) := {(x, y) ∈ G(T ) : x ∈ M} and G(TM ) := {(x, y) ∈ G(T ) : x, y ∈ M}
respectively.

For T, S ∈ LR(X) and λ ∈ K, the linear relations T + S, T +̂S, λT and TS

are defined by G(T +S) := {(x, y+z) : (x, y) ∈ G(T ), (x, z) ∈ G(S)}, G(T +̂S) :=
{(x + u, y + v) : (x, y) ∈ G(T ), (u, v) ∈ G(S)}, G(λT ) := {(x, λy) : (x, y) ∈ G(T )}
and G(TS) := {(x, y) : ∃z ∈ X, (x, z) ∈ G(S), (z, y) ∈ G(T )} respectively. Since
the composition of linear relations is clearly associative, for all integer n, Tn is
defined as usual with T 0 = I and T 1 = T . The notation T ⊂ S means that
G(T ) ⊂ G(S). We say that T has a trivial singular chain manifold if Rc(T ) = {0}
where Rc(T ) := (∪∞n=1N(Tn)) ∩ (∪∞n=1T

n(0)).
Suppose that X is a normed space and T ∈ LR(X). Let QT denote the

quotient map from X onto X/T (0). Clearly QT T is an operator. We say that T is
closed if its graph is a closed subspace of X×X, continuous if ‖T‖ := ‖QT T‖ < ∞,
open if its inverse is continuous equivalently if its minimum modulus γ(T ) is a
positive number, where γ(T ) := sup{λ ≥ 0 : λd(x,N(T )) ≤ ‖Tx‖, x ∈ D(T )},
Fredholm, denoted T ∈ φ(T ), if it is closed with dim N(T ) < ∞ and R(T ) is a
closed finite codimensional subspace of X.

If X is a complex normed space, then the resolvent set of T is the set ρ(T ) :=
{λ ∈ C : λ − T is injective, open and has dense range }. It is clear from the
Closed Graph Theorem for linear relations [5, III.5.3] that if T is closed and X is
complete then ρ(T ) = {λ ∈ C : λ− T is bijective }. The spectrum of T is the set
σ(T ) := C\ρ(T ).

An underlying motivation for the introduction of multivalued linear operators
into Functional Analysis by J. von Neumann [12] was to aid the investigation of
differential equations governed by non densely defined operators. The conjugate
of such operators are linear relations. Linear relations are more convenient be-
cause one can always define the inverse, the closure and the completion of a linear
relation. Interesting works on multivalued linear operators include the treatise
on partial differential relations by Gromov [9], the application of multivalued
methods to solution of differential equations by Favini and Yagi [6], the devel-
opment of fixed point theory for linear relations to the existence of mild solutions
of quasi-linear differential inclusions of evolution and also to many problems of
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fuzzy theory (see, for example [1], [8], [11] and [14]) and several papers on semi-
Fredholm linear relations and other classes related to them (see, for example [2],
[3] and [4]).

This paper deals with the Browder linear relations in a Banach space. The
results obtained in this paper are mainly based on recent developments of San-

dovici, de Snoo and Winkler [15]. We start the Section 2 recalling a lemma
due to Cross [5] related to linear combinations and compositions of linear rela-
tions and we present some definitions and propositions concerning the ascent and
descent of a linear relation in a vector space that we shall need to obtain the main
theorems. These definitions and propositions, together with their proofs, can be
found in [15].

Section 3 contains the main results. We recall that if T is a bounded operator
in a Banach space X it follows from [17, 3.1 and 3.3] that T is Browder if and
only if T can be written in the form T = A + K, where A is an isomorphism
and K belongs to the set K(X) of everywhere defined single valued compact
linear operators, and commutes with T . Also, it is well known (see, for example
[13]) that if X is a complex Banach space then the Browder essential spectrum
of T , σB(T ), is a closed subset of C and σB(T ) = ∩{σ(T + K) : KT = TK

and K ∈ K(X)}. In the next Section 3 we will show that results of the type
mentioned above can be extended to closed multivalued linear operators under
certain conditions.

2. Algebraic properties of a linear relation in a vector space

Throughout this section T will be denote a linear relation in a vector space X.
We will make use of the following lemma concerning the laws governing the

operations of addition and scalar multiplication in LR(X) combined with the op-
erations of composition and inversion, in particular the right and left distributive
laws.

Lemma 1 ([5, I.4.2]). Let R,S, T ∈ LR(X). Then

(i) λ(ST ) = (λS)T = S(λT ), λ ∈ K\{0}.
(ii) If S ⊂ T then SR ⊂ TR.

(iii) (R + S)T ⊂ RT + ST with equality if T is single valued.

(iv) TR + TS ⊂ T (R + S) with equality if D(T ) is the whole space.

Two examples which show that equality may not hold in Lemma 1 (iii) and
(iv) have been constructed by Cross [5, I.4.3].
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Definition 2. The ascent and descent of T are defined by

a(T ) := min{p ∈ N : N(T p) = N(T (p+1))}
d(T ) := min{q ∈ N : R(T q) = R(T (q+1))}

respectively, whenever these minima exist. If no such numbers exist the ascent
and descent of T are defined to be ∞.

In [15], the authors proved that many of the entirely algebraic results concern-
ing the ascent, descent, nullity and defect of operators in vector spaces remain
valid in the context of linear relations under the additional condition that the
linear relation has a trivial singular chain manifold. Some algebraic properties
described in [15] that we shall need to obtain the main theorems of Section 3 are
recalled.

Lemma 3. (i) Let η ∈ K \{0}. Then N((η − T )n) ⊂ R(Tm) for all non-

negative integers n, m.

(ii) Let n ∈ N. If α(T ) < ∞ is α(Tn) ≤ nα(T ) and if β(T ) < ∞ then β(Tn) ≤
nβ(T ).

Proposition 4. (i) Let n,m ∈ N and assume that Rc(T ) = {0}. Then

the linear relation ψ from N(T (n+m))/N(Tn) to R(Tn) ∩N(Tm) defined by

ψ[x] := Tnx is bijective and single valued.

(ii) If N(T ) ∩ R(T p) = {0} for some p ∈ N, then a(T ) ≤ p and Rc(T ) = {0}.
Conversely if Rc(T ) = {0} and a(T ) ≤ p for some nonnegative integer p,

then N(Tm) ∩R(T p) = {0} for all positive integer m.

(iii) If Rc(T ) = {0}, α(T ) = β(T ) < ∞ and p = a(T ) < ∞, then a(T ) = d(T )
and X = R(T p)⊕N(T p).

Definition 5. Assume that M and N are two complementary subspaces of X.
The linear relation T is said to be completely reduced by the pair (M, N), denoted
T = TM ⊗ TN , if it can decomposed as T = TM +̂TN and G(TM ) ∩ G(TN ) =
{(0, 0)}.

In the case of operators the concept of complete reducibility goes back at
least to Taylor (see, [16]) whose definition is slightly different but coincides
with Definition 5 if T is a single valued linear operator.

If T is completely reduced by the pair (M, N), then it is easy to see that
D(T ) = D(TM ) ⊕ D(TN ); N(T ) = N(TM ) ⊕ N(TN ); R(T ) = R(TM ) ⊕ R(TN )
and T (0) = TM (0)⊕ TN (0).
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Proposition 6. If X = R(T p) ⊕ N(T p) for some nonnegative integer p,

then T is completely reduced by the pair (R(T p), N(T p)).

Proposition 7. Assume that M and N are two complementary subspaces

of X such that T is completely reduced by the pair (M,N). Furthermore, as-

sume that N ⊂ D(T ), dim N < ∞, TN is single valued and TM is a bijec-

tive linear relation. Let P and Q be the projections of X onto M along N

and onto N along M , respectively and define the linear relations A and B by

G(A) := {(x, Py − Qx) : (x, y) ∈ G(T )} and B := (TN + I)Q. Then B is an

everywhere defined single valued linear operator in X with dim R(B) < ∞, A is

bijective, BA ⊂ AB and T = A + B.

3. Browder essential spectrum of a closed linear relation

It is well known that if n ∈ N and T is a bounded Fredholm operator from
a Banach space X into X then Tn is a Fredholm operator with k(Tn) = nk(T ).
The following result gives conditions under which this property remains valid for
closed linear relations and it will be used to obtain a characterisation of Browder
linear relations (Theorem 10 below).

Proposition 8. Let n ∈ N and let T ∈ φ(X) where X is a Banach space.

We have:

(i) Tn ∈ φ(X).

(ii) If T is densely defined and Rc(T ) = {0}, then k(Tn) = nk(T ).

Proof. (i) We first note the following elementary property
(∗) If M and N are subspaces of X such that M is closed and M ⊂ N , then

N is closed in X if and only if N/M is closed in X/M .
Since QT T is a closed single valued with T (0) closed [5, II.5.3] we have

from (∗) that R(QT T ) is closed and since N(QT T ) = N(T ) ([5, II.3.4]) is finite
dimensional it follows from [7, IV.2.9] that QT TR(T ) is closed and thus applying
again (∗) we obtain that R(T 2) is closed. Also T 2 is a closed linear relation by
virtue of [5, II.5.1 and III.5.3] and since dimN(T 2) and dim X/R(T 2) are both
finite (Lemma 3 (ii)), is T 2 ∈ φ(X). Now continuing in this way we deduce that
Tn ∈ φ(X).

(ii) By Proposition 4 (i), the linear relation ψ from N(T 2)/N(T ) to R(T ) ∩
N(T ) defined by ψ[x] := Tx is a bijective single valued linear operator. Hence,
put N1 := R(T ) ∩N(T ),

α(T 2) = α(T ) + dim N1. (1)
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Let N2 be a subspace of N(T ) such that N(T ) = N1 ⊕N2. Then

α(T ) = dim N1 + dim N2. (2)

Now for y ∈ Tx ∩N2, we have y ∈ N1 ∩N2 = {0}. Hence R(T ) ∩N2 = {0}.
Since β(T ) and dimN2 are both finite, R(T ) and R(T )⊕N2 are closed and

as by hypothesis D(T ) is dense in X it follows from [7, IV. 2.8] that

X = R(T )⊕N2 ⊕N3 (3)

where N3 is some finite dimensional subspace of D(T ) so that

D(T ) = (R(T ) ∩D(T ))⊕N2 ⊕N3; β(T ) = dim N2 + dim N3 (4)

and T is injective on N3.
Let y ∈ R(T ). Then by (4) there exist x1 ∈ R(T ) ∩D(T ), x2 ∈ N2, x3 ∈ N3

for which y ∈ Tx1+Tx2+Tx3 ⊂ R(T 2)+TT−1(0)+TN3 = R(T 2)+T (0)+TN3 ⊂
R(T 2) + TN3. Now, let z ∈ R(T 2) ∩ TN3. We have z ∈ Tm and z ∈ Tn where
m ∈ R(T ) and n ∈ N3. Then 0 ∈ T (m−n), so that m−n ∈ N(T ) ⊂ R(T )⊕N2.
Therefore n ∈ (R(T )⊕N2) ∩N3 = {0} (by (4)). In consequence

R(T ) = R(T 2) + TN3, T (0) = R(T 2) ∩N3. (5)

Also, dim N3 = dim TN3 by the injectivity of T on N3 and [5, I.6.4]. This
fact combined with (5) yield

β(T ) + dim N3 = β(T 2). (6)

Now, adding (1), (2), (4) and (6) gives k(T 2) = 2k(T ) and proceeding in this
way we obtain the desired assertion (ii). ¤

In the sequel X will denote a Banach space and T will always denote an
element of CR(X), the set of all closed linear relations on X.

If T is a single valued Browder operator on a Banach space (that is, T is
Fredholm of finite ascent and descent) it follows from a classical result of [10,
38.5] that T has index zero. However, this property is not valid in the context of
linear relations (see, [15]). These observations suggest the following notion.

Definition 9. We say that a linear relation T on X is Browder, denoted
T ∈ BCR(X), if T is Fredholm of index zero and has finite ascent and descent.
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Theorem 10. Let T ∈ CR(X) have a trivial singular chain manifold. Con-

sider the following properties:

(i) T ∈ BCR(X).

(ii) There exist linear relations A, B such that T = A + B with A a bijection,

B ∈ K(X) and BT ⊂ TB.

Then (i) implies (ii). If T is densely defined, then (i) and (ii) are equivalent.

Proof. (i) ⇒ (ii) Assume that T is Browder. According Proposition 4
(iii), there is a nonnegative integer p such that p := a(T ) = d(T ) and X =
R(T p) ⊕ N(T p). Then by Proposition 6 T is completely reduced by the pair
(R(T p), N(T p)), that is, T = TR(T p) ⊕ TN(T p). Also R(T p) and N(T p) are both
closed subspaces with dim N(T p) < ∞ (Proposition 8 (i)), TR(T p) is bijective since
p = d(T ) implies that R(T p) = R(TR(T p)) and N(TR(T p)) = N(T )∩R(T p) = {0}
(Proposition 4 (ii)) and TN(T p) is single valued since if y ∈ N(TN(T p)(0) then
clearly y ∈ TR(T p)(0)⊕ TN(T p)(0) = T (0) ⊂ R(T p). Hence y ∈ N(T p) ∩R(T p) =
{0} (Proposition 4 (ii)).

In this situation, we can apply Proposition 7 to obtain two linear relations
A and B, with A bijective, B bounded finite rank operator such that BA ⊂ AB

and T = A + B. Furthermore, BT = B(A + B) = BA + BB (Lemma 1 (iv))
⊂ AB + BA = (A + B)B (Lemma 1 (iii)) = TB. Therefore (ii) holds, as desired.

(ii)⇒ (i) Suppose T = A + B with T , A and B as in the hypothesis of (ii).
Then

T is a Fredholm linear relation of index zero. (7)

Follows immediately from [4], [9].

BA ⊂ AB; TA ⊂ AT and BTn ⊂ TnB for all positive integer n. (8)

Indeed, BA = B(T −B) = BT −BB (Lemma 1 (i) and (iv)) ⊂ TB−BB =
(T − B)B (Lemma 1 (i) and (iii)) = AB. This fact implies that TA ⊂ AT since
TA = (A+B)A ⊂ AA+BA (Lemma 1 (iii)) ⊂ AA+AB ⊂ A(A+B) (Lemma 1
(iv)) = AT . We prove that BTn ⊂ TnB by induction. For n = 1 is trivial.
Assume the property to be valid for n. Then BT (n+1) = BTnT ⊂ TnBT (by the
induction hypothesis and Lemma 1 (ii)) ⊂ T (n+1)B. Hence (8) holds.

R(Tn) ⊂ AR(Tn) for all positive integer n. (9)

The proof will be given by induction. First consider the case n = 1. Since
IX ⊂ AA−1 (as A is surjective) is T = TIX ⊂ TAA−1 and thus R(T ) ⊂
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R(TAA−1) = TAR(A−1) = TAD(A) = TAD(T ) ⊂ ATD(T ) (by (8)) = AR(T ).
Assume that the property is satisfied for n. Then R(T (n+1)) = TR(Tn) ⊂
TAR(Tn) ⊂ ATR(Tn) (by (8)) = AR(T (n+1)). Hence (9) holds.

We observe that since A is closed by virtue of [5, II.5.16] and it is bijective
by hypothesis, the Closed Graph Theorem for linear relations [5, III.5.3] assures
that A is open, so that, there is a positive number γ for which γ‖x‖ ≤ ‖Ax‖, x ∈
D(A) = D(T ). Assume that x ∈ D(A) and z ∈ R(Tn). Then z ∈ AR(Tn)
(by (9)) and hence there exists y ∈ R(Tn) with z ∈ Ay. Thus we have that
γd(x,R(Tn)) ≤ γ‖x− y‖ ≤ ‖A(x− y)‖ := ‖QAA(x− y)‖ = ‖QT Ax−QT z‖
(the last equality is obtained upon noting that z ∈ Ay ⇔ Ay = z + A(0) ([5,
I.2.8]) and T (0) = A(0) ) and since this holds for all z ∈ R(Tn), we obtain that

There is γ > 0 such that γd(x,R(Tn)) ≤ d(QT Ax,QT R(Tn))

for all x ∈ D(T ).
(10)

Assume that T had infinite descent. Then there would be a bounded sequence
(xn) in R(Tn) for which 1 ≤ d(xn, R(T (n+1))). Assume m > n > 0. Then
Txn ⊂ TR(Tn) = R(T (n+1)); Bxm ∈ BR(Tm) = R(BTm) ⊂ R(TmB) (by (8))
⊂ R(Tm) ⊂ R(T (n+1)) and Bxn − Bxm + A(0) = Bxn − Bxm + Axn − Axn,
so that QT Bxn − QT Bxm = −QT Axn + QT Txn − QT Bxm. These properties
combined with (10) yield

γ ≤ γd(xn, R(T (n+1)))

≤ d(QT Axn, QT R(T (n+1))) ≤ ‖QT Bxn −QT Bxm‖
(11)

which contradicts the compactness of QT B, so T must have finite descent.
Let q := d(T ) < ∞ and suppose that T is densely defined. Then as T is a

Fredholm linear relation with index zero (by (7)) it follows from Proposition 8 (ii)
that k(T q) = 0 and consequently q = a(T ). Therefore the result is proved. ¤

In the rest of this section we assume that X is a complex Banach space.
The class BCR(X) motivates the corresponding Browder essential spectrum

defined as follows:

Definition 11. The Browder essential spectrum of T ∈ CR(X) is the set

σB(T ) := {λ ∈ C : λ− T /∈ BCR(X)}
(As it is usual, we write λ− T := λIX − T , λ ∈ C).
It is very well known that the Browder essential spectrum of a bounded

operator is a closed subset of the complex plane. The following result indicates
that again the additional condition “T has a trivial singular chain manifold”
permits to prove the validity of the above property in our general situation.
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Theorem 12. Let T ∈ CR(X) such that Rc(T ) = {0}. Then the Browder

essential spectrum of T is a closed subset of C.

Proof. Let λ ∈ C\σB(T ). We shall assume without loss of generality that
λ = 0. Thus T is Fredholm of index zero and there is p ∈ N such that p = a(T ) =
d(T ) (Proposition 4 (iii)).

We first prove that

X = R(η − T ) + R(T p), η ∈ C\{0} (¯)

This assertion is obtained upon noting that X = R(T p) ⊕ N(T p) (Proposi-
tion 4 (iii)) and N(T p) = N((η − (η − T ))p) ⊂ R(η − T ) (Lemma 3 (i)).

Now, for η 6= 0 we define To := T |R(T p) and ηo := ηI |R(T p). Then since
T is closed and R(T p) is closed (Proposition 8 (i)), To is a closed linear relation.
Moreover, To is injective (as N(To) = N(T )∩R(T p) = {0} by Proposition 4 (ii)),
R(To) = R(T p) (as d(T ) = p < ∞) and thus by the Closed Graph Theorem for
linear relations [5, III.5.4], To is open, that is, γ(To) > 0.

Let 0 <| η |< γ(To). We have that α(ηo−To) ≤ α(To) ([5, III.7.4]) and since
N(ηo−To) = N(η−T )∩R(T p) with N(η−T ) ⊂ R(T p) (Lemma 3 (i)), it follows
that a(η − T ) = α(η − T ) = 0. Also, as R(T p) = (η − T )R(T p) ⊂ R(η − T ), the
property (¯) yields immediately to X = R(η−T ), that is, d(η−T ) = β(η−T ) = 0.
Consequently, σB(T ) is closed, as desired. ¤

Remark 13. We note that there exists a closed densely defined operator T

(so that Rc(T ) = {0}) such that σ(T ) = ∅ (see, [5, VI.2.7]) and hence such that
σB(T ) = ∅.

Theorem 14. Let T ∈ CR(X) be densely defined such that Rc(T ) = {0}.
Then

σB(T ) = ∩{σ(T + K) : K ∈ K(X) and KT ⊂ TK}.
Proof. We observe that by [15, 7.1]

For all scalar η, Rc(η − T ) = {0} if and only if Rc(T ) = {0}. (†)
Let λ /∈ ∩{σ(T + K) : K ∈ K(X) and KT ⊂ TK}. Then there exists

K ∈ K(X) and KT ⊂ TK for which λ ∈ ρ(T +K). Thus λ− (T +K) is bijective,
λ− T = λ− (T + K) + K is clearly a closed densely defined linear relation such
that K(λ− T ) ⊂ (λ− T )K and Rc(λ− T ) = {0} and thus by Theorem 10 (ii) ⇒
(i) we deduce that λ− T is a Browder linear relation.

The other inclusion follows immediately from (†) together Theorem 10
(i) ⇒ (ii). ¤
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