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Finsleroid–Finsler space of involutive case
and A-special relation

By G. S. ASANOV

Abstract. The involutive case means the framework in which the characteristic

scalar g(x) may vary in the direction assigned by the input 1-form b, such that dg = µb

with a scalar µ(x). Required calculation shows that in the Finsleroid–Finsler space

the involutive case realizes through the A-special relation the picture that instead of the

Landsberg condition Ȧijk = 0 we have the vanishing α̇ijk = 0 with the normalized tensor

αijk = Aijk/‖A‖. Success is predetermined by a reached possibility to write down the

associated spray coefficients in the transparent form that accounts for the dependence

g = g(x). Interesting particular properties of the associated hv-curvature tensor come

to play.

1. Introduction and motivation

Among various possible methods to specify the Finsler space, raising forth
the Landsberg condition Ȧijk = 0 occupies an important geometrical role (see
[1]–[3]). In the Finsleroid–Finsler space, the condition can be realized in a simple
and attractive way [4], [5]. At the same time, the condition requires the Finsleroid
charge g to be a constant. How should we overcome the restriction?

At the first sight, in the Finsler geometry the weak Landsberg condition
Ȧi = 0 is to be considered as being a next-step extension of the proper Landsberg
condition Ȧijk = 0. However, in the Finsleroid–Finsler space both the conditions
are tantamount (because of the particular representation (1.27)).

A scrupulous analysis performed has revealed a remarkable observation that
an attractive method to permit g 6= const is to use the nullification condition
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α̇ijk = 0 with the normalized Cartan tensor αijk. Clearly, the condition is at-
tained when the A-special relation (2.5) holds. Remarkably, the relation occurs
being reachable upon assuming that the scalar g(x) reveals the involutive be-
haviour: dg = µ(x)b (see (3.1)). The last equality can locally be written as
dg = µbi(x)dxi, which means geometrically that the scalar g(x) varies just in the
direction assigned by the vector bi(x).

The Finsleroid–Finsler space can be constructed as follows. Let M be an
N -dimensional C∞ differentiable manifold, TxM denote the tangent space to
M at a point x ∈ M , and y ∈ TxM\0 mean tangent vectors. Suppose we
are given on M a positive-definite Riemannian metric S = S(x, y). Denote by
RN = (M, S) the obtained N -dimensional Riemannian space. Let us also assume
that the manifold M admits a non-vanishing 1-form b = b(x, y) which is unit:
‖b‖ = ‖b‖Riemannian = 1. It is convenient to use the variable

q =
√

S2 − b2. (1.1)

With respect to natural local coordinates in the space RN we have the local
representations ‖b‖ =

√
aijbibj and b = bi(x)yi, together with S =

√
aij(x)yiyj .

The covariant index of the vector bi will be raised by means of the Riemannian
rule bi = aijbj , which inverse reads bi = aijb

j . The reciprocity ainanj = δi
j is

assumed, where δi
j stands for the Kronecker symbol. It is convenient to use the

tensor rij(x) := aij(x) − bi(x)bj(x) to have the representation q =
√

rij(x)yiyj

of the scalar (1.1). The vanishing rijb
j = 0 (coming from ‖b‖ = 1) reduces many

expressions arisen in processes of various calculations.
Let g = g(x) be a scalar specified as follows:

−2 < g(x) < 2. (1.2)

We shall apply the convenient notation

h =

√
1− 1

4
g2, G =

g

h
. (1.3)

The Finsleroid-characteristic quadratic form

B(x, y) := b2 + gbq + q2 ≡ S2 + gb
√

S2 − b2 (1.4)

is of the negative discriminant D{B} = −4h2 < 0 and, therefore, is positively
definite. We use the function

τ = 1 + gw + w2 ≡ B

b2
, (1.5)
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where w = q/b, to produce the function

K = b exp
∫

wdw

τ
. (1.6)

Since the function (1.5) is representable in the form

τ = h2 +
(
w +

g

2

)2

, (1.7)

the integration process in (1.6) is simple, namely, the result is given by the fol-
lowing definition.

Key Definition. The scalar function K(x, y) given by the formulas

K(x, y) =
√

B(x, y)J(x, y), J(x, y) = e−
1
2 G(x)f(x,y), (1.8)

where
f = − arctan

G

2
+ arctan

L

hb
, if b ≥ 0, (1.9)

and
f = π − arctan

G

2
+ arctan

L

hb
, if b ≤ 0, (1.10)

with
L = q +

g

2
b, (1.11)

is called the Finsleroid–Finsler metric function.

The function K has been normalized such that 0 ≤ f ≤ π and the Finsleroid
length K(x, bi(x)) of the vector bi is equal to the Riemannian length ‖b‖ = 1,
such that

K
(
x, bi(x)

)
= 1. (1.12)

The zero-vector y = 0 is excluded from consideration. The positive (not absolute)
homogeneity holds:

K(x, λy) = λK(x, y), λ > 0, ∀x, ∀y.

Entailed Definitions. The arisen space FFPD
g := {RN ; bi(x); g(x); K(x, y)}

is called the Finsleroid–Finsler space. The space RN is called the associated Rie-
mannian space. Within any tangent space TxM , the Finslerian metric function
K(x, y) given by the formulas (1.8)–(1.11) produces the Finsleroid

FPD
g {x} :=

{
y ∈ FPD

g {x} : y ∈ TxM, K(x, y) ≤ 1
}
. (1.13)

The Finsleroid Indicatrix IPD
g {x} ∈ TxM is the boundary of the Finsleroid:

IPD
g {x} :=

{
y ∈ IPD

g {x} : y ∈ TxM, K(x, y) = 1
}
. (1.14)
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Since at g = 0 the FFPD
g -space is Riemannian, then the body FPD

g=0 {x} is a
unit ball supported by the point x, and IPD

g=0 {x} is a unit sphere.

The scalar g(x) is called the Finsleroid charge. The 1-form b = bi(x)yi is
called the Finsleroid-axis 1-form.

We can evaluate straightforwardly the Finsleroid metric tensor components
gij = (1/2)∂2K2/∂yi∂yj , together with their reciprocals gij (so that gingij = δj

n,

where δj
n is the Kronecker symbol). The determinant of the tensor is found to

read merely
det(gij) = J2N det(aij). (1.15)

The right-hand part of (1.15) is everywhere positive.
The FFPD

g -space is smooth of the class C2, and not of the class C3, on all
of the slit tangent bundle TM \ 0. The FFPD

g -space is smooth of the class C∞

on all of the b-slit tangent bundle

TbM := TM \ 0 \ b \ −b (1.16)

(obtained by deleting out in TM\0 all the directions which point along, or oppose,
the directions given rise to by the 1-form b).

The associated Riemannian space provides us with the Riemannian covariant
derivative ∇ibj := ∂ibj − bkak

ij , where ak
ij := (1/2)akn(∂jani + ∂ianj − ∂naji)

are the respective Christoffel symbols.
By means of attentive (lengthy) evaluations we can find the induced (geo-

desic) spray coefficients
Gk = γk

ijy
iyj , (1.17)

where γk
ij stand for the Finslerian Christoffel symbols constructed from the met-

ric tensor gij , trace each possible cancellation or reduction, and eventually arrive
at the following assertion.

The explicit form of the spray coefficients of the Finsleroid–Finsler space
reads

Gk = g(qakj−gvkbj)yh(∇hbj−∇jbh)+
g

q
vkyhym∇hbm+ak

mnymyn+Ek, (1.18)

where vk = yk − bbk and

Ek = M̄(yg)yk +
1
2
K2(yg)

∂M̄

∂yh
gkh − 1

2
M̄K2ghgkh

= M̄(yg)yk +
2Kq2

gNB
(yg)Ak − 1

2
M̄K2ghgkh (1.19)
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with (yg) = yhgh and gh = ∂g/∂xh. The scalar M̄ is defined by the equality
∂K2/∂g = M̄K2.

In obtaining the coefficients (1.19) we have used the derivatives

∂h

∂g
= −1

4
G,

∂G

∂g
=

1
h3

,
∂
(

G
h

)

∂g
=

1
h4

(
1 +

g2

4

)
, (1.20)

∂f

∂g
= − 1

2h
+

b

B

(
1
4
Gq +

1
2h

b

)
, (1.21)

and

M̄ = − 1
h3

f +
1
2

G

hB
q2 +

1
h2B

bq,
∂M̄

∂yh
=

4q2

gNBK
Ah. (1.22)

Elucidating the structure of the associated Cartan tensor

Aijk :=
K

2
∂gij

∂yk
(1.23)

leads to numerous simple representations (written explicitly in [6]) involving the
vector Ak = gijAijk.

Having been evaluated from the Finsleroid–Finsler metric function K, the
norm ‖A‖ =

√
AkAk proves to be independent of vectors y, namely we obtain

‖A‖ =
N

2
|g(x)|. (1.24)

It is convenient to construct the normalized Cartan tensor

αijk :=
1
‖A‖Aijk (1.25)

and the vector
αk :=

1
‖A‖Ak (1.26)

which is of the unit length: αhαh = 1. With using the angular Finslerian metric
tensor hij = gij − (1/K2)yiyj , where yi = K∂K/∂yi, we have

αijk =
1
N

(hijαk + hikαj + hjkαi − αiαjαk) (1.27)

everywhere in the Finsleroid–Finsler space.
In our analysis, an important role is played by the tensor

Hij = hij − αiαj , (1.28)
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which obviously possesses the nullification properties

Hijy
j = 0, HijA

j = 0. (1.29)

The respective h-curvature tensor Ri
k can be constructed from the above

spray coefficients according to the general rule, that is,

K2Ri
k = 2

∂Ḡi

∂xk
− yj ∂Ḡi

k

∂xj
− Ḡi

nḠn
k + 2ḠnḠi

nk (1.30)

(see [2]), where

Ḡi =
1
2
Gi, Ḡi

k =
1
2

∂Gi

∂yk
, Ḡi

nk =
1
2

∂Gi
k

∂yn
, (1.31)

and an
i
km stands for the Riemannian curvature tensor of the associated Riemann-

ian space.
In Section 2 we indicate the interesting implications of the A-special relation,

including the simplification of the skew-part of the hv-curvature tensor in which
the indicatrix curvature tensor comes to play. It is the part that enters the current
which is the right-hand side of the covariant conservation law (2.22).

In Section 3 the involutive case is formulated. The case entails the A-special
relation under the b-parallel condition.

In Conclusions several important ideas motivated our approach are empha-
sized.

2. A-special relation

By means of the over-dot we conveniently denote the action of the operator
|mlm, such that

Ȧi = Ai|mlm, Ȧijk = Aijk|mlm, α̇i = αi|mlm, α̇ijk = αijk|mlm, (2.1)

with |m meaning the horizontal covariant derivative; li = yi/K. The dotted
tensor Ȧijk is identical to that used in [2], that is, Ȧijk is the horizontal covariant
derivative of the Cartan tensor Aijk along the distinguished (horizontal) direction
li ∂

∂xi . Let us set forth the nullification

α̇ijk = 0. (2.2)
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Whenever the representation (1.27) is valid, the condition (2.2) is equivalent to
the vanishing

α̇i = 0 (2.3)
of the normalized vector (1.26).

Denoting

γk =
1

2AhAh
(AmAm)|k, γ =

1
2AhAh

(AmAm)|klk, (2.4)

and assuming that the A-special relation

Ai|k = γkAi + ηHik (2.5)

holds, where η is a scalar, we are obviously entitled to write the equality

αi|k =
1
‖A‖ηHik. (2.6)

Since Hikyk = 0 (see (1.29)), from (2.5) we directly conclude that

Ȧi = γAi, (2.7)

which is obviously tantamount to (2.3). From the representation (1.27) of the
tensor αijk we obtain

Aijk|l = γlAijk + η
1
N

(
HijHkl + HikHjl + HjkHil

)
, (2.8)

which entails
Ȧijk = γAijk. (2.9)

Also, (2.3) entails the nullification

Ḣjk = 0 (2.10)

(consider the definition (1.28) of the tensor Hjk and take into account that hjk|l=0
in any Finsler space), where Ḣjk = Hjk|mlm.

The hv-curvature tensor

Pjikl := −(
Aijl|k −Ajkl|i + Akil|j

)
+ Aij

uȦukl −Ajk
uȦuil + Aki

uȦujl (2.11)

(this representation is tantamount to the definition (3.4.11) on p. 56 of the book
[2]) gets essentially reduced upon plugging (2.8) and (2.9), namely it reads

Pjikl = −(
Aijlγk −Ajklγi + Akilγj

)− η
1
N

(
HijHkl + HikHjl + HjkHil

)

+ γ(Aij
uAukl −Ajk

uAuil + Aki
uAujl). (2.12)
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Let us consider the skew-part

P [ji]
kl :=

1
2
(P ji

kl − P ij
kl). (2.13)

From (2.12) it follows that

P[ji]kl = Ajklγi −Akilγj + γ(Aki
uAujl −Ajk

uAuil). (2.14)

The curvature of indicatrix is well-known to be described by the tensor

R̂i
j
mn :=

1
K2

(Ah
j
mAi

h
n −Ah

j
nAi

h
m). (2.15)

By comparing (2.15) with (2.14) we may write

P[ji]kl = Ajklγi −Akilγj + γK2R̂jikl. (2.16)

In the Finsleroid–Finsler space, the tensor (2.15) possesses the representation

K2R̂ijmn =
1

N2
(AkAk)

(
hinhmj − himhnj

)
. (2.17)

Thus the following assertion is valid.

Theorem 2.1. If the A-special relation (2.5) holds together with the rep-

resentation (1.27) of the normalized Cartan tensor, then the skew-part of the

hv-curvature tensor is constructed according to (2.16).

In any Finsler space, the identity

gjl
(
Rj

i
il|t + Rj

i
lt|i + Rj

i
ti|l

)
= P li

iuRu
lt + P li

luRu
ti + P li

tuRu
il (2.18)

(see the formula (3.5.3) on p. 58 of the book [2]) holds and the tensor Ru
il is

skew-symmetric with respect to the subscripts. We can write the identity as

gjl
(
Rj

i
il|t + Rj

i
lt|i + Rj

i
ti|l

)
= 2P [li]

iuRu
lt − P [li]

tuRu
li, (2.19)

so that the covariant divergence of the tensor

ρij :=
1
2
(Ri

m
mj + Rm

ijm)− 1
2
gijR

mn
nm (2.20)

is given by

ρi
j|i = −P [lm]

muRu
lj +

1
2
P [lm]

juRu
lm (2.21)
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which can be written as
ρi

j|i = Jj (2.22)

with

Jj = P [lm]
ku

(
−Ru

ljδ
k

m +
1
2
Ru

lmδk
j

)
. (2.23)

Owing to yj |i = 0, contracting (2.23) by yj makes us conclude from (2.22) that
in terms of the vector

ρi := ρi
jy

j (2.24)

and the scalar
Υ := Jjy

j (2.25)

the equality
ρi|i = Υ (2.26)

holds. Taking into account the identities hm
kyk =0, Ru

lj l
j =Ru

l, and Ru
ly

l = 0,
together with P [lm]

kuyk = 0, from (2.23) and (2.25) we conclude that

Υ = −P [lm]
muRu

l. (2.27)

In the Finsleroid–Finsler space under study, we should use here the above
theorem, obtaining simply

Υ = (γlAu − γmAm
lu)Rul − 1

4
(N − 2)g2γKRu

u. (2.28)

3. Finsleroid–Finsler space upon involution

Let us set forth the involution condition

dg = µb, µ = µ(x) (3.1)

(in terms of local coordinates the first equality reads gi = µbi with gi = ∂g/∂xi),
and formulate the following definition.

Definition. The arisen space

IFFPD
g := {FFPD

g with dg = µ(x)b} (3.2)

is called the involutive Finsleroid–Finsler space, and µ(x) is called the involution
scalar.
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In the space (3.2), the quantities defined in (2.4) become simply γk = gk/g

and γ = gklk/g, so that the A-special relation (2.5) takes on the form

Ai|k =
1
g
gkAi + ηHik. (3.3)

We say that the space FFPD
g is b-parallel, if the 1-form b is parallel in the

sense of the associated Riemannian space, which reads ∇b = 0 (that is, ∇ibj = 0
with respect to local coordinates).

It proves that the following theorem is valid.

Theorem 3.1. In the b-parallel involutive space IFFPD
g the A-special rela-

tion (3.3) holds.

As a direct consequence of the above theorem,

{∇b = 0 and dg = µb} =⇒ α̇i = 0. (3.4)

From (2.4) and (3.1) we have

γ =
1
K

µ

g
b. (3.5)

With this formula, the tensor (2.16) takes on the explicit representation

P[ji]kl = µ
1
g

(
Ajklbi −Akilbj + bKR̂jikl

)
. (3.6)

To verify the above theorem, we note that the condition (3.1) entails b(bg) =
(yg), (bg) = µ, (yg) = µb, where (bg) = bigi, and obtain the equality

Kgkjgj =
2bw

Ng
(bg)Ak + b(bg)lk, (3.7)

so that the representation (1.19) is simplified to read

Ek =
1
2
M̄(yg)yk − M̂K

1
Ng

w(yg)Ak, (3.8)

where M̂ = M̄ − (2/B)b2w. The simple equality

∂M̄i

∂g
= −4

bq3

B2

2
KNg

Ai (3.9)
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can be obtained from (1.20)–(1.22). The quantity η entered the right-hand part
of (3.3) can be taken from the formula (C.19) of [6], namely, we have explicitly

η =
1

4K
µM̂

Ng

2
B

q
+

1
4K

µM
Ng

2

(
b(2b + gq)

2q
+ q + gb

)
. (3.10)

The scalar (2.28) can now be written in the form

Υ = µ

[
1
g
(blAn − bmAm

ln)Rnl − 1
4
(N − 2)gbRn

n

]
(3.11)

which is proportional to the involution scalar µ.
The respective involutive curvature tensor R̆i

k is constructed according to

K2R̆i
k = 2

∂Ēi

∂xk
− yj ∂Ēi

k

∂xj
− Ēi

nĒn
k + 2ĒnĒi

nk + ynan
i
kmym, (3.12)

where

Ēi =
1
2
Ei, Ēi

k =
1
2

∂Ei

∂yk
, Ēi

nk =
1
2

∂Ei
k

∂yn
, (3.13)

and an
i
km stands for the Riemannian curvature tensor of the associated Rie-

mannian space. Methodologically, the tensor R̆i
k is of a novel geometrical type,

being created by the gradient of the Finsleroid charge and constructed from the
involutive spray coefficients Ek.

4. Conclusions

The Finsleroid–Finsler space involves a characteristic scalar, g(x), such that
the vanishing of the scalar reduces the space to a Riemannian space. Any dimen-
sion N ≥ 2 is admissible. The Finsleroid as being defined according to (1.13) is
rotund, namely it is a body of revolution about the axis assigned by the input
1-form b.

Varying g(x) entails varying the form as well as the curvature of the Finsleroid.
The Landsberg case of the Finsleroid–Finsler space implies strictly g = const, as a
direct consequence of the norm value (1.24). To set a liberty to the scalar g(x), we
must overcome the restrictive case. It proves that a fruitful idea is to substitute
the condition α̇ijk = 0 with the Landsberg condition Ȧijk = 0 proper. Would
one assume ‖A‖ = const, one observes that α̇ijk = 0 implies Ȧijk = 0. In the
Finsleroid–Finsler space under study, g 6= const implies ‖A‖ 6= const (see (1.24)).
The involutive approach realizes an interesting particular way of dependence of g
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on x, enabling at the same time to obtain sufficiently simple representations for
the spray coefficients and entailed tensors.

Examining the conservation law for the fundamental tensor ρij results in the
equalities (2.20)–(2.23). In the Landsberg case, the hv-curvature tensor Pijkl is
well-known to be totally symmetric in all four of its indices (see p. 60 in [2]), such
that the skew-part P [lm]

ku, and whence the current Jj arisen from the right-hand
part of the conservation law (2.22), vanishes identically. Under the A-special
condition, however, the tensor P [lm]

ku is meaningful, being expressed through
the indicatrix curvature tensor in accordance with (2.16), so that the current Jj

is no more the nought. In the involutive case, the scalar µ can be factored out
the expression of the current Jj (see particularly (3.11)), so that we may say that
the involution creates the current in the Finsleroid–Finsler space.

The spray coefficients (1.18) include the part Ek which involves the gradient
of g(x). When g = const, the coefficients Ek vanish identically, in which case
(1.18) coincide with the spray coefficients proposed in [5]. The involutive curva-
ture tensor (3.12)–(3.13) is meaningful even if the associated Riemannian space
is flat and the 1-form b is parallel.

All the calculation details which have underlined the present paper, and also
convenient explicit representations of the involved derivative tensor Ai|j and the
curvature tensor Ri

k, can be found in [6]. It would be appealing to develop in
future the extensions which can go over the b-parallel case ∇b = 0.

Various Finslerian ideas of applications (see [7]–[9]) can well be matched to
the (g 6= const)-Finsleroid–Finsler space.
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