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Matrix transformations on the matrix domains of triangles
in the spaces of strongly Ci-summable and bounded sequences

By FEYZI BASAR (Istanbul), EBERHARD MALKOWSKY (Giessen)
and BILAL ALTAY (Malatya)

Abstract. Let wh, w” and w%, be the sets of sequences that are strongly summable
to zero, summable and bounded of index p > 1 by the Cesaro method of order 1, which
were introduced by Maddox [I. J. MADDOX, On Kuttner’s theorem, J. London Math.
Soc. 43 (1968), 285-290]. We study the matrix domains w§(T) = (wh)r, w?(T) = (wP)r
and w8 (T) = (wh,)r of arbitrary triangles T in wj, w” and wk,, determine their §-
duals, and characterize matrix transformations on them into the spaces co, ¢ and foo.

1. Introduction and preliminary results

Let w denote the set of all complex sequences & = ()52 ;. As usual, we write
loo, ¢, co and ¢ for the sets of all bounded, convergent, null and finite sequences,
and £, = {z € w: > 70 |zk|P < oo} for 1 < p < oo. Let e and e™ (n=1,2,...)
be the sequences with e, = 1 for all k € N, and e;”) =1and efcn) =0 for k # n,
where N denotes the set of positive integers.

A subspace X of w is said to be an BK space if it is a Banach space with
continuous coordinates P, : X — C (n = 1,2,...), where P,(z) = x, for all
x € X. A BK space X D ¢ is said to have AK if every sequence x = (z4)52; € X
has a unique representation x = Z;ozlzke(k).
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If X is a subset of w then X# = {a € w: Y77 ayzy converges for all z € X}
is called the (-dual of X.

Let X # {0} be a Banach space and Sx = {x € X : ||z|| = 1} and Bx =
{z € X :||z|| < 1} be the unit sphere and open unit ball in X. Then X* denotes
the Banach space of all continuous linear functionals on X with its norm given
by [1£]] = subsesy 1£(@)] = supyepy 7))

Let A = (ank);S=; be an infinite matrix of complex numbers and z =
(xk)72, € w. We write A,, = (ank)72, for the sequence in the n-th row of A,
and A,z = Y0 ankxy and Az = (A,x)52, provided the series > ;o aniTs
converges for all n € N. If X is a subset of w then X4 = {z € w: Az € X} is the
matriz domain of A in X. Given subsets X and YV of w, we write (X,Y") for the
class of all matrices A with X C Yy, that is A € (X,Y) if and only if 4,, € X*
for alln € Nand Az € Y for all z € X.

An infinite matrix T = (tnk)f:’k:l is said to be a triangle if t,, # 0 for all
n € N and ¢, = 0 for £ > n. We will frequently use the following well-known
result that every triangle T has a unique inverse S which also is a triangle, and
T(Sz) = (TS)(xz) = z for all z € w ([29, 1.4.8, p. 9] and [8, Remark 22 (a),
p. 22]). Throughout, let T' denote a triangle, and S its inverse.

MADDOX [17] introduced and studied the following sets of sequences that are
strongly summable and bounded with index p (1 < p < 00) by the Cesaro method
of order 1

1< 1<
wé’:{wa:nlLIréonZ|xk|P:0}, wgoz{xewzsupn2|xk|l’<oo}
n

k=1 k=1

and

1 n
wP = {J;Ew: lim Z|xk—§|p:0forsome§€((j}.
n—oo N
k=1

Throughout we use the convention that every term with a subscript less than

one is equal to zero.
v+l
We write ), = Zi:? ! and max, = maxyw <p<ovti_q for v =0,1,.... The

following result is known.

Proposition 1.1. ([20, Proposition 3.44, p. 207]) Let 1 < p < co. Then the
sets wh, wP and wk_ are BK spaces with the (equivalent) norms

1/

o Lo o) and LS )
X = su —_— X an X = Ssu — X N
vk T e 2 e O ¢ Lyt ' ’
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wh is a closed subspace of wP and w? is a closed subspace of w?_; wh has AK; every
sequence x = (x)72 ; € wP has a unique representation x = §e+zzozl(xkf§)e(k),
where £ € C is the strong C1-limit of the sequence z, that is

n—oo N

1 n
lim — |y — &P = 0. (1.1)
k=1

In the past, several authors studied matrix transformations on sequence
spaces that are the matrix domains of the matrix A of the difference operator, or
of the matrices of some of the classical methods of summability in spaces such as
Ly, o, cor {s. For instance, some matrix domains of A were studied in [12], [16],
[26], of the Cesaro matrices in [5], [6], [27], of the Euler matrices in [3, 4], [23], of
the Riesz matrices in [2], and of the Nérlund matrices in [28]. All the matrices
mentioned are triangles.

In this paper, we study the matrix domains w§(T) = (wh)r, w?(T) = (wP)r
and w2 (T) = (wh)r (1 < p < o) of arbitrary triangles 7" in the spaces wf,
wP and w? , determine their $-duals, and characterize matrix transformations on
them into the spaces ¢y, ¢ and f.

The rest of this paper is organized, as follows:

In Section 2, some required definitions and the characterization of the matrix
transformations from the spaces wh, w? and wZ, to the spaces £, ¢ and ¢ are
given. Section 3 is devoted to the determination of the (B-duals of the spaces
wh(T), wP(T) and wE, (T). In Section 4, the classes (Ur,V) with U € {wf, wt, }
and V C w, (Xr,Y) with X € {w], wP, w& } and Y € {{, ¢, co} of infinite
matrices are characterized. In the final section of the paper, the results are
summarized, open problems and further suggestions are recorded.

Corollary 1.2. (a) The sets wh(T), wP(T) and wE_(T') are BK spaces with

1 1/p
el ry =sup (3 ol )
wh(T) is a closed subspace of wP(T'), and wP(T') is a closed subspace of w? (T).
(b) We put ¢ = {c,(cn)}io:1 =T = Se(™ forn=1,2,..., that is

0, (1<k<n-1),
o
=

Skn, (k>mn).

Every sequence z = (2,,)52, € wh(T') has a unique representation

z = ZTnzc(”). (1.2)
n=1
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(c) We put define the sequence ¢ = {c{”}22 | by

k
c,(eo) = Zskj (k=1,2,...).
j=1

Every sequence z = (z,)%2; € wP(T) has a unique representation

w =& + Z(Tnz — &)™, (1.3)
n=1

where & € C is the strong limit of z in w?(T'), that is

1 n
lim (=S Tz —ef | =o. 1.4
n;ﬂ;{)(ﬂél bz §|> 0 (1.4)

PROOF. (a) Part (a) is an immediate consequence of Proposition 1.1 and [29,
Theorems 4.3.12 and 4.3.14, pp. 63 and 64].

(b) For every fixed n, we have

k
0 (1<k<n-1)
Spe™ = Zske(n) _)Y SRS g
! Skn, (k>mn),

j=1

hence ¢(™ = Se(™. Since w§ has AK by Proposition 1.1, we have e(™ € w} for
all n € N, and it follows from Tc(™ = T(Se™) = (T'S)e(™ = e € wh that
™ € wh(T) for all n € N. Now let 2z = (2,)22, € wh(T) be given, that is
x =Tz € wl. We obtain for 2™ = 7" z.e(*)

lim ||z — 2™ lwz, = lim |jlz — Z zpe™| = lim ||z — Z T,ze™| =o.
m— o0 m— o0 — Wb m— o0 oyt Wb
We put (™ = S Tz ¢ for all m. Then we have

m m
M) e wh(T), Tzm = Z Tz Te™ = Z znel™ = giml
n=1 n=1
and so by Part (a)
lim [}z — 2 g oy = Tim [T(z = 2]l = lim [Tz — T2,

W}E»noo ”‘r - x[m]ngo =0,
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that is the representation in (1.2) holds, which is obviously unique.

(c) We have Sie = Z?Zl Sgjej = Z?Zl sg; = ¢ for all k € N, hence ¢ = Se
and Tc = T'(Se) = (T'S)e = e € wP implies ¢ € wP(T). Let z = (2,)52, € wP(T)
be given. Then x = Tz € wP and by Proposition 1.1 there exists a unique complex
number ¢ that satisfies (1.1). We write 2(?) = 2 — e and put 2(%) = z — . Then
we have 2(®) € wf, and it follows from T2 = Tz — ¢Tc = x — ée = (9 € w
that 2(*) € wh(T). So 29 has a unique representation z(®) = > T2 (™) =
S2%° (T, — €e)c™ by Part (b), and so

n=1

z=tet20 =ty (T -,
n=1

This establishes the unique representation in (1.3). O

o0

Ezample 1.3. Let U be the set of all sequences u = (uy)72, with ug # 0 for
all k € N. If u,v € U then we write u/v = (ux/vk)72 ;. Let u,v € U be given
and T = (tnk)fjk:l be the factorable matrix with t,, = u,vg for 1 < k < n
(n=1,2,...). Then the inverse S = (s, )=, of T is obviously given by

b) k = b)
UpUn ( n)
Snk = _ 1 , (k:n_l), (n:1727"')7
Up—1VUn
0, (otherwise),

and so we have

1 (1 1
W= [e(") — e(”H)] forn=1,2,...
Un vn+1

and

o0

0 = Zi:skj = {;Ak(l/u)}

j=1 k=1

So it follows from (1.2) and (1.3) in Corollary 1.2 that every sequence z =
(2n)5%1 € wh(T) has a unique representation

2=y D vz [ve(") - 6(”“)] :

UnJrl
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and that every sequence z = (2,,)52; € wP(T') has a unique representation

(oo}

zzg{vlkAk(l/u)} )

Un+1

00 k f 1 1
2\ ) e -]

with £ from (1.4).

2. Matrix transformations on wj, w? and w?_

We will show in Section 3 that the determination of the (3-duals of the sets
wh(T), wP(T) and wh, (T') can be reduced to that of the S-duals of the sets wf, wP

and w? , and the characterizations of the classes (wf), co), (wP,c) and (W&, o).

00
The 3-duals of the sets wf, w? and wk, are known. In this section, we characterize
the classes (X,Y’), where X is any of the sets w), w? and w? , and Y is any of
the sets cg, ¢ and f.

Throughout, let 1 < p < oo and ¢ be the conjugate number of p, that is
g=ooforp=1and g=p/(p—1) for 1 < p < oo. If p =1 then we omit the

index p, that is we write wo = w{ etc., for short.

We put
M, ={acw:|allpm, < oo}, where
ZQVmaxl,|ak|, (p=1),
lallam, =S Vs
ZQV/p (Zu|ak\q)1/q, (1<p<o0).
v=0

Given a € w, we write

9]
E gL

lallx = sup
Sx |=1

xeESX

provided the expression on the righthand side is defined and finite which is the
case whenever X is a BK space and a € X? ([29, Theorem 7.2.9, p. 107]).

The next results are known. They give the S-duals of wf, w? and w?,, the
continuous duals of w} and w?, and the characterization of the class (X, {) for
arbitrary BK spaces X.

Proposition 2.1. ([17] and [20, Proposition 3.47, p. 208]) We have
(0) (uB)? = (w9)? = (u)? = My
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(b) (wh, |- |N* = M,, that is (wh)* and M, are norm isomorphic;
(c) f € (wP)* if and only if there exist ag € C and a sequence a = (ay)3>, € My
such that
f(z) = &ap + Z arxy for all x € wP with £ from (1.1);

k=1
moreover

| £l = laol + [lal|m, for all f € (wP)";
(d) Ha||j;go = |la|| s, for all a € (wk,)?.

Proposition 2.2. ([15, Theorem 1.8]) Let X be a BK space. Then we have
A € (X,ls) if and only if A,€ XP, (n€N) and || Al|(x,r..) = SUPpen || An |k < oc.

We also need the next lemma.

Lemma 2.3. Let B = (buk); ;=1 be an infinite matrix. If || By | m, < oo for
alln € N and lim,, . || By||pm, = 0, then || By || s, converges uniformly in n € N.

PROOF. Let € > 0 be given. Since lim,, oo || Bn|/a1, = 0, there exists N € N
such that || B,||am, <€ foralln > N. For p e Nand p € NU {oo} we write

m
ZQ”maxu\bnkL (p = 1)’
<p,pu> v=p
1BI55> =4
> 2P (3 bk )V (1< p < 0).
v=p

Since ||By|lm, < oo for all n € N, for each n with 1 < n < N, there exists
v(n) € Ny such that ||Bn||§\l:t(pn)’oo> < e. We choose p = maxj<,<y v(n). Then we
have
||Bn||§clzo> < ||Bn||§&§°> <e forall v>pandforalln e N. O

Now we characterize the classes (X,Y) for X € {w},wP,wl } and Y €
{6007 & CO}'

Theorem 2.4. The necessary and sufficient conditions for A € (X,Y) when
X e {wh,wP,wl } and Y € {{,c,co} can be read from the following table:

From | w? | wf | wP
To
loo 1. | 1. ] 1.
Co 2. | 3. | 4.
c 5. | 6. | 7.
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where
(1.1) suppen [|Anllm, < o0

2. (2.1) limy oo [|Anllam, =0

3. (1.1) and (3.1), where (3.1) limy, o0 @ =0 for all k € N

4. (1.1), (3.1) and (4.1), where (4.1) lim, o Y poq@nk =0

5. (5.1), (5.2) and (5.3), where (5.1) oy = limy, o0 Qi exists for all k € N
(5.2) (ag)2y,An € M, foralln e N
(5.3) lim, o0 ”An - (O‘k)l?;lllMp =0

6. (1.1) and (5.1)

7. (1.1), (5.1) and (7.1), where (7.1) o = limy, 00 D poy Gnk €XiSts.

We remark that the conditions for A € (w®,¢o) and A € (wh,,c) can be
replaced by the conditions

2’. (2.1') and (3.1), where (2.1’) ||Ay||sm, converges uniformly inn € N
5. (2.1") and (5.1).

ProOOF. 1. Condition (1.1) for A € (w, {s) follows from Propositions 2.2
and 2.1 (b) and (d). Then (1.1) for A € (wP,{x) and A € (wE,,{s,) follows from
the fact that (W, ls) D (WP, le) D (wh, lss) by Proposition 1.1.

3. and 6. Since w}, is a BK space with AK by Proposition 1.1, and ¢y and
c are closed subspaces of /., the conditions follow from the characterization of
(wh, ls) and [29, 8.3.6, p. 123].

4. and 7. The conditions follow from those in 3. and 6. and
29, 8.3.7, p. 123).

5. and 5’. First we show that the conditions in 5. imply those in 5°’.. We as-
sume that the conditions in 5. are satisfied, and define the matrix B = (byx )5 =1
by bk = ank — oy for all n, k € N. It follows from (5.2) and (5.3) that B,, € M,
for all n € N and lim,, .o || Bp||am, = 0. Hence || By, || o, is uniformly convergent
in n € N by Lemma 2.3, and so [|[An|lm, = [[Bn + (ar)Z:llam, is uniformly
convergent in n. This shows that the conditions in 5. imply those in 5°..

Now we show the sufficiency of the conditions in 5°. for A € (w%,c). We
assume that (2.1’) and (5.1) are satisfied. It follows from (2.1’) and (5.1) that there
exists p € Ny such that || A, pH ) <1 for all n € N, and (ank)eq € ¢ C loo
for every k € N, hence for every k € N, there exists a constant My > 0 such
that |ank| < My for all n € N. We put M =1+ [[(M)32 1||<0p Then we have

lAnla, = IARlE + 1Al < IR 157 +1 = M for all n € N,
hence (1.1) holds.
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Now we show that (1.1) and (5.1) together imply (ax)72, € M,. Let u € Ny
be given. Then we have

0, 0, 0,
) 155" < 11An = ()22 155 + 11455

SHAﬂ——k%)iﬂH$$>+su§HAanp for all n € N.
ne

Since the first term on the right side of the inequality converges to zero for n — oo,
we obtain from (5.1) and (1.1)

0,
)2y 15072 < sup [[ A, < 0.
neN

Since p € Ng was arbitrary, it follows that ||(ax)3Z;[lm, < oo, hence (ax)pe, €
M,, and so (a)$2, € (wh)” by Proposition 2.1 (a). Furthermore, (1.1) and
(2.1°) imply that A,z is absolutely and uniformly convergent in n for each x € w?,
since Y07 1 lank@| < sup, ey |Anlla, [|2]wz, - This implies

o0 (o)
nILH;O A= Z (nh—>ngo ank) Ty = Zakﬂ% for each z € wh_,

k=1 k=1
that is Az € ¢ for all + € w&, hence A € ({,c). Thus we have proved the
sufficiency of conditions (2.1’) and (5.1).

Now we show the necessity of the conditions in 5. and 5°.. We assume A €
(wh,, c). Since e®) € wh for every k € N, it follows that Ae®) = (a,;); € c,
hence (5.1) holds. Also wP C w? implies (wZ ,c) C (wP,c), hence (1.1) holds
by 1.. Obviously (1.1) implies A,, € M, for all n € N, and as in the sufficiency
part of the proof, (1.1) and (5.1) imply (ag)32, € M,, so the conditions in (5.2)
hold. Now A € (w?,c) and ()32, € M,, = (wk)? trivially imply B € (v, c),
where the matrix B is defined as above. We show that this implies

lim [[By|m, =0, (1)

n—oo

that is (5.3). Then it will follow from Lemma 2.3 that ||B,||a(, converges uni-
formly in n, whence || A, ||, = [[Bn+(ar)3Z; ]|, converges uniformly in n, that
is (2.1’). Thus all the conditions in 5. and 5°. hold.

To show that (I) is necessary, we assume that it is not satisfied and con-
struct a sequence z € wf with Bx ¢ ¢, which is a contradiction to B €
(w8, ¢). If |Bpllm, # 0 (n — oo) then there exists a real ¢ > 0 such that
limsup,, . [|Bn|lm, = ¢, hence limj .o ||By,|lsm, = c for some subsequence
(n;). We omit the indices j, that is we assume without loss of generality

lim ||B,|m, = c. (II)
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Tt follows from (5.1) that

lim b, = 0 for every k € N. (III)

n—oo

By (IT) and (III), there exists an integer n(1) such that

c

c
’ | Bruyllm, — C’ <= and [by)1| < 10

10

Since || By(1)llm, < oo, we can choose an integer v/(2) > 0 such that

v(2),00 c
IBuy I < =,
10

and it follows that

(v(2)+1,00) 3c

B (0 (2 b —
| Bryll + |bn(1y,1] < 10

< 1Baw g, — | + 1B 155
Now we choose an integer n(2) > n(1) such that

0,v(2 C
B, < 15 and [ 1Bullag, — | < 5,
and an integer v(3) > v(2) such that || B2
that

||§Cl(§’)+1’°°) < ¢/10. Again it follows

3c
B 1/(2 )+1,v(3)) 2
1Bl <X

Continuing in this way, we can determine sequences {n(r)}>2; and {v(r)}2; of
integers n(l) <n(2) < ... and 0 =v(1) < v(2) < ... such that forallr =1,2,...

||B ||/Ct (r4+1)41,00) < i

(Ou(r)) _ €
HBn(r)HMP < 10

10’

v\r vir 3
HBnTH ()+1 (r+1)) S <£

d .
aln 10

If p =1, we define the sequence x = (zy) by

0, (k=1),
(=1)72”sgn (by(r) k() (k= k(v)), where k(v) € [27,2VT1 —1]
o is the smallest integer with
* |bn(r), k()] = max, by k],
0, (k # k(v)),

wr)+1<v<v(r+l); r=12...).
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Then we obviously have z € wy and ||z, <1, and

v(r) 00
| Bury® = (—=1)7¢| <Y 5 onekl lzsl + D0 X, bl k]
v=0 v=v(r+1)+1
v(r+1) v(r) 00
+ Z S by kT — € <Z2 max, by, () x| + Z 2"max, by, () 1|
v=v(r)+1 v=v(r+1)+1
(r+1)
r v O,v(r v(r+1)+1,00
+|(=1) ( > 2 maxywn(r),u—c) = 1Bugr 1%, 7+ 1B I 0+
=v(r)+1
3¢ ¢
B V(r)+1 v(r+l)) < i X_C 1 N.
+ | 1 Brir g <10+10+10 5 forallre

Consequently (B,z)%2, is not a Cauchy sequence, hence not convergent.
If 1 < p < 00, we define the sequence x = (z) by

0, (k=1),
7 = 0 277 (1)7 50,1 a4l (S o al?) 7, (2 k<200 )
wr)+1<v<v(r+1); r=12,...).

Let v € Ny be given. Then there exists r such that v(r) + 1 <v < v(r + 1)
and

1 1 y _ -1
S Sl = o2 e 4P (S, il = 1,
that is x € wZ and [|z[/,z. < 1. We also have by Hélder’s inequality

v(r) 00
|Buyr — (=1)7e| <3277 (5, Ibuial®) /4 S0 27 (5, byl )

v=0 v=v(r+1)+1
v(r+1) Y
Jor(§ )
v=v(r)+1
o,v v(r+1)+1,00 v(r)+1,v(r+1
= 1B I+ 1By 1587 [ By I+ —
3
<7+£+7c ¢ for all € N.

10 10 10 2
Consequently (B,z)22; is not a Cauchy sequence, hence not convergent. So we
have x € w®,, but Bz ¢ c in both cases, which is a contradiction to B € (wZ_, c).
This completes the proof of 5. and 5°..

2. and 2’. are proved in the same way as 5. and 5°. with ay = 0 for all k£ € N.
O
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3. The B-duals of w§(T), wP(T) and w?_(T)

Now we determine the S-duals of wh(T), w?(T) and w?_ (T).

We write ¥ = (0nk)55=; for the triangle with o, = 1 for 1 < k < n
(n=1,2,...), cs = cx for the set of all convergent series, and R = S* for the
transpose of the inverse S of the triangle T

The following results are helpful.

Lemma 3.1. We have

(a) a € {wh(T)}? if and only if a € (My)r and W € (wh,co), where W =
(Wink )5S g— is the triangle with wy,;, = Z;’;m sjgajforl <k <m(m=1,2,...);

(b) a € {wP(T)}? if and only if a € (M,)g and W € (w?,c);

(c) a € {wE (T)}? if and only if a € (M,)r and W € (wE, co).

PROOF. Let a = (an)52; € w. We define the triangles B = (buk); k=1
and C = (cnk)f:’kzl by bur = apsSnpr and cpp = Z?:k ajsjp for 1 < k < n
(n =1,2,...), hence C = ¥B. Let X be any of the sets w}, w? or w . Since
x € X if and only if 2 = Sz € Xr, and since a,2, = ¢, ST = a, 22:1 SpkTE =
Y heq AnSnkxr = Bpx for all n € N, we observe that a € (X7)? if and only
if B € (X,cs), and this is the case by [20, Theorem 3.8, p. 180] if and only if
Ce (X, 0.

(a) First we assume a € {w}(T)}?. Then C € (w}, c) which is the case by 6.
in Theorem 2.4 if and only if

o0
Ria = nlingo Cnk = Zajsjk exists for every k € N (3.1)
j=k
and
1C|am, = sup [|Crllm, < oo. (3.2)
n

We show that (3.1) and (3.2) imply
Ra = (Rra)i2, € M, = (wh)’. (3.3)

Let i € Ny be given. It follows from (3.2) that there exists a constant M > 0 such
that [|(327_, ajsjk)iilﬂﬁgt’g) < M. Letting n — oo and using (3.1), we obtain
HRaHf&’? < M, and (3.3) follows, since p was arbitrary.

We note that the matrix W is defined in view of (3.1). Furthermore also have for
all z € wand for allm € N

Z(Rka)(Tkz) —Win(Tz) = Z ( ajsjk> Tyz — Z ( Z ajsjk>Tkz
k=1 k=1 \ j=k k=1 \ j=m
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-1 m—1 m—1
( a; sjk>Tkz— (Z ajsjk>Tkz
J
1

k k=1
a;

Sjpdpz = E a;S E a;zj,
j=1

3

M

I
: 1M

|
Mh

.
Il
-
=~
Il

1

that is

m—1 m

aRzi = Z(Rka)(Tkz) — Win(Tz) forall m e N. (3.4)
k=1 k=1
It follows from (3.4), a € {wh(T)}? and (3.3) that {W,,(T2)}5_; € c for all
z € Xr, which is equivalent to W € (wf,¢). Now (3.1) implies

lim w,,; = hm Z a;sjr =0 forallkeN (3.5)

m— 00
] =m

and W € (v}, ¢) and (3.5) imply W € (wh, ¢p) by 3. and 6. in Theorem 2.4.

Conversely if a € (Mp)r and W € (w},cp), then Ra € M, = (wh)? by
Proposition 2.1 (a), and then a € {w§(T)}” follows from (3.4).

(b) and (c) Let X = w? or X = w?, . First we assume a € (X7)”. Since
wh(T) € X7 by Corollary 1.2 (a), we have a € {w}(T)}?, and Ra € M, =
XP follows from Part (a). Now (3.4) implies W € (X,c). Again Ra € M,
implies (3.5), and W € (w%,,¢) and (3.5) imply W € (w%,, ¢y) by 2. and 5. in
Theorem 2.4.

The proof of the converse part is analogous to that of the converse part
of (a). O

Theorem 3.2. For every m € N, let v(m) be the uniquely defined number
with 2¥(m) <y < 2v(M)+1 _ 1. We have

v(m)—1
Z 2Ymax,, Zajsjk
2L/(m =1
+ 2V(mn)lg§c<<m Z: @353k | < 0% (p )7
IWanllat, = o N o 1/ (3.6)

DIREC DI BET

v=0 j=m

+2v(m)/p Z Z Qa;jSjk < 00, (1 <p< 00)7
k=2v(m) | j=m
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and
(a) a € {wh(T)}? if and only if

o0 oo
ZT’maxl, Zajsjk < 00, (p=1),
v=0 j=k

||Ra’||Mp = q 1/(1

<o, (1<p<oo),

oo
Z ov/p Zy
v=0

(o]
> ajs;k
=k

and

sup [[Win L, < o
meN

(b) a € {wP(T)}? if and only if (3.7) and (3.8) hold and

m oo
n = lim E E a;jsji  exists;
m— 00 4
k=1j=m

(c) a € {w?, (T)}? if and only if (3.7) holds and
lim [[Wp,[|am, = 0.

(d) Let X = w} or X = wk,. Ifa € (X7)” then

o

e}
Z apzk = Z(Rka)(Tkz) for all z € Xp;  also |lallk,. = ||Rallam,,-
k=1

k=1

If a € {wP(T)}’ then

oo

Zakzk = Z(Rka)(Tkz) —¢&n for all z € wP(T),
k=1 k=1

where £ and n are from (1.1) and (3.10);

also
lallio(ry = 1] + | Rallap,  for all a € {w?(T)}.

Proor. We apply Lemma 3.1 and Theorem 2.4.

(3.8)

(3.10)

(3.11)

(3.12)

(3.13)

Condition (3.7) is Ra € M, = (wh)? = (wP)? = (wb )P by Proposi-

tion 2.1 (a).

Condition (3.8) comes from W € (w§,co) and W € (wP,c) and is (1.1) in
Theorem 2.4 3. and 7.; the conditions lim,, oo Wy = 0 and lim,, oo Wk = Ok,



Matrix transformations on the matrix domains of triangles. .. 207

which are (3.1) and (5.1) in 3. and 7., are redundant. Condition (3.9) for W €
(wP, ¢) comes from (7.1) in Theorem 2.4 7..

Condition (3.10) comes from W € (w&,, ¢p) and is (2.1) in Theorem 2.4 2..

Thus we have shown Parts (a), (b) and (c).

(d) The first condition in (3.11) follows from (3.4) and the fact that W ¢
(X, ¢p); the second condition follows from Proposition 2.1 (b) and (d).

Now let a € {wP(T)}? and 2z € wP(T). Then z = Tz € wP and ¢ from (1.1)
exists, hence there exists z(*) € wh such that x = ) 4 ge. We put 2(0) = §2(0),
Then it follows that 2(®) € w}(T) and z = Sz = S(z(® 4 ¢e) = 2O 4 £Se, and
we obtain as in (3.4) for all m € N

m—1 m
Z agpzk = Z(Rka)(Tkz) — Wi [T(2? + £8e)]
k=1 k=1

= (Rka)(Tyz) = W [T20] — EWpe.
k=1

The first term on the righthand side of the last equation converges since Ra €
M,. The second term tends to 0, since a € {wP(T)}? C {wh(T)}” implies
W € (wh,co). Furthermore, since W € (w?,c) implies that 7 = lim,, .. We
exists by (7.1) in Theorem 2.4 7., the identity in (3.12) follows. Finally, (3.13)
follows from Proposition 2.1 (c). O

We apply Theorem 3.2 to the matrix T of Example 1.3.

Ezxample 3.3. Let T be the matrix of Example 1.3. Then it is easy to see
that

(a) a € {wh(T)}? if and only if

o0
E 2Ymax,,

v=0

Ak Ok+41
UV UkUk+1

< 00, (p=1),

[Rallm, = o Y (3.14)
a ars1 |\
S (x| - wn YT o)
~= UKUK  URUR+1
and
sup (2”(’”)/1’ _GmAl > < o0; (3.15)
meN UmUm+1

(b) a € {wP(T)}” if and only if (3.14), (3.15) and

. am am Am+41 .
n = lim + - exists;
m—00 \ Um—1Um UmUm, UmUm+1
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(c) a € {wP (T)}? if and only if (3.14) and

lim (2u<m>/p “mﬂ) _0

m—00 UmUm+1

4. Matrix transformations on the spaces wj (T), wP(T) and w?_(T)

Now we characterize the classes (X,Y’) where X is any of the spaces wh(T),
wP(T) and wP_ (T), and Y is any of the spaces ¢y, ¢ and £
The following results are useful.

Lemma 4.1. (a) Let X = w} or X = wk,, and Y be an arbitrary subset

of w. Then we have A € (Xp,Y) if and only if A € (X,Y) and W™ € (X, ¢)
for all n = 1,2,..., where the matrix A = (@nk)pr=1 and the triangles W) =

{w(n) o0 w1 are defined by

&nkzz:anjsjk foralln,k e N and w k—Zan]sJk forl1 <k <m.
Jj=k Jj=m

Moreover, we also have if A € (Xp,Y) then

Az =A(Tz) forall z e Xp. (4.1)

(b) Let Y be an arbitrary linear subspace of w. Then we have A € (w?(T),Y)
if and only if

Ae (whY), (4.2)
W™ e (wP,¢) forallneN (4.3)
and
Ae — {p'™}2, €Y, where p™ = lim Zw ") for all n € N. (4.4)
k=1

Moreover, if A € (wP(T),Y) then we also have
Az = A(Tz) — {p™}>2, for all z € wP(T), where ¢ is from (1.4).  (4.5)
PROOF. (a) First we assume A € (X7,Y). Then it follows that 4,, € (Xr)?

for all n € N, hence A, € X and W™ ¢ (X,c¢o) for all n € N by Lemma 3.1
(a) and (c). Let 2 € X be given, hence z = Sz € Xp. Since A4, € (X7)?
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implies A,z = A,(Tz) = Apx for all n € N by (3.11) in Theorem 3.2 (d), that
is Az = Az, Az € Y for all z € X¢ implies Az € Y, that is (4.1) holds, and we
have A € (X,Y) since z € X was arbitrary.

Conversely, we assume A € (X,Y) and W € (X, ¢) for all n € N. Then
we have A, € X?, and this and W™ e (X, co) together imply A, € Xg by
Lemma 3.1 (a) and (c). Now let z € X be given, hence x = Tz € X. Again we
have A,z = A,z for all n € N by (3.11) in Theorem 3.2 (d), hence Az = Az € Y,
and Az € Y for all z € X implies Az € Y. Thus we have A € (X,Y), since
z € Xp was arbitrary.

(b) First we assume that A € (wP(T),Y’). Then it follows that A € (w}(T),Y)
and so A € (wh,Y) by Part (a). Also A,, € {w?(T)}? implies W € (w?, ¢) by
Lemma 3.1 (b), and also (3.12) by Theorem 3.2 (d). Since z = Se € wP(T'), hence
Az €Y, and € = 1, we obtain (4.4) from (3.12).

Conversely, we assume that the conditions in (4.2), (4.3) and (4.4) are satis-
fied. First A, € (wh)? = M, and W" € (wP, ¢) together imply A, € {w?(T)}"
by Lemma 3.1 (b), and again (3.12) follows by Theorem 3.2 (d). Let z € w?P(T)
be given. Then we have z = Tz € wP. We put (O = z — fe, where £ is
from lim, oo (1/n) > 40—y |z — &P = lim,—oo(1/n) > p_; [Tkz — &P = 0, that
is from (1.4). Then we have z(®) € w} and it follows from (3.12) that Az =
AT2) — €p™We, = A@®) + €[de — {p}e2,] € Y, since A € (wh, V),
Ae—{p™}2> €Y and Y is a linear space. O

Theorem 4.2. The necessary and sufficient conditions for the entries of
A€ (Xr,Y) when X € {wh, wP, wE,} and Y € {{~,co,c} can be read from the
following table:

From | w2 (T) | wh(T) | wP(T)
To
loo 1. 2. 3.
Co 4. 5. 6.
c 7. 8. 9.

where

1. (L1) supney | Anllam, < oo (1.2) limy, oo Wit | g, = 0 for alln € N
with ||A| p, and WS || m, defined as in (3.7) and (3.6)
with a; replaced by ap;

2. (1.1) and (2.1), where (2.1) sup,, ||W,5f)|\Mp < oo foralln e N
3. (1.1), (2.1) (3.1) and (3.2), where
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(3.1) p™ =limp,—o0o >y Zj‘;m an;Sjk exists for allm € N
(3.2) suppen 242, Z;ik ;s — p™] < 00
4. (4.1) and (1.2), where (4.1) limy, o || Ap|lar, = 0
(1.1), (5.1) and (2.1), where (5.1) lim,, o0 Gpr =0 for all k € N
6. (L.1), (5.1), (2.1), (3.1) and (6.1) where
(6.1) limp oo (3002 22525 anjsje — p™) =0
7. (1.2), (7.1), (7.2) and (7.3) where (7.1) & = lim,, oo Gny, exists for all k € N
(7.2) (&), Ap € M, for all n € N (7.3) lim,—o || Ay — (6%)5, I, =0
8. (1.1), (7.1) and (2.1)
9. (1.1), (7.1), (2.1), (3.1) and (9.2), where

(9:2) B =limp—oo (32521 D252k AngSik — p(™) exists.

Proor. We apply Lemma 4.1 and Theorems 3.2 and 2.4.

If X = wk or X = wj then we apply Lemma 4.1 (a), that is we get the
conditions for A € (X,Y) and W € (X, ). Applying Theorem 2.4 1., 2., 3.,
5. and 6., we obtain (1.1) in 1. and 2., (4.1) in 4., (1.1) and (5.1) in 5., (7.1), (7.2)
and (7.3) in 7., and (1.1) and (7.1) in 8. for A € (X,Y’). We obtain the conditions
(1.2) in 1., 4. and 7. for W) € (wE,, co) and (2.1) in 2., 5. and 8. from Theo-
rem 2.4 2. and 3., taking into account that the condition lim,, . wf:]z =0 for

o

all k € N is redundant as in the proof of Theorem 3.2.
If X = wP, we apply Lemma 4.1 (b), that is we get the conditions for Ae
(wh,Y), W e (wP, ¢) for all n and Ae — {p(™}°2 | € Y. Applying Theorem 2.4
., 3. and 6. for A € (wh,Y), we obtain (1.1) in 3., (1.1) and (5.1) in 6. and
(1.1) and (7.1) in 9.. We obtain the conditions (2.1) and (3.1) in 3., 6. and
9. for W ¢ (wP, c); again the condition lim,, wigg exists for all £ € N is
redundant. Finally, Ae — {p(™}2 | € Y yields (3.2) in 3., (6.1) in 6. and (9.2)
in 9.. O

5. Conclusion

Let X denotes the anyone of the spaces wf] , w? or w . We have introduced
the sequence space X (T') which is the domain of a triangle matrix T = (¢,x) in
the sequence space X. We have essentially concerned with two subjects: Deter-
mination of the 8-dual of the space X (T') and the characterization of the certain
matrix transformations defined on the sequence space X (7).

Although the domain of summability matrices in the classical spaces £, c,
¢o and £, of sequences were studied by several authors (see ALTAY [1], ALTAY and
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BASAR [2], [3], [4], AYDIN and BASAR [5], [6], BASAR and ALTAY [7], COLAK and
ET [9], CoLAK, ET and MALKOWSKY [10], ET [11], ET and CoLAK [13], ET and
BASARIR [14], MALKOWSKY, MURSALEEN and SUANTAI [18], MALKOWSKY and
PARASHAR [19], MALKOWSKY and SAVAS [21], MURSALEEN [22], MURSALEEN,
BASAR, ALTAY [23], NG and LEE [24], POLAT and BASAR [25], SENGONUL and
BASAR [27], WANG [28]), the matrix domain of the spaces wf) , w? and w? have
not been examined. The present work fills up this gap in the existing literature.
It is obvious that the a- and ~y-dulas of the new spaces wf (T') , w?(T') and w? (T')
are still open. Besides this, one can try to characterize the classes of infinite
matrices from the spaces w§(T) , wP(T) or wl (T') to a sequence space Y which
is different than that of Section 4. We should note from now on that a new paper
can be based on the extension of the new spaces w§(T) , w?(T) and wE_ (T) to
the paranormed case.
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