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Matrix transformations on the matrix domains of triangles
in the spaces of strongly C1-summable and bounded sequences

By FEYZİ BAŞAR (İstanbul), EBERHARD MALKOWSKY (Giessen)

and BİLÂL ALTAY (Malatya)

Abstract. Let wp
0 , wp and wp

∞ be the sets of sequences that are strongly summable

to zero, summable and bounded of index p ≥ 1 by the Cesàro method of order 1, which

were introduced by Maddox [I. J. Maddox, On Kuttner’s theorem, J. London Math.

Soc. 43 (1968), 285–290]. We study the matrix domains wp
0(T ) = (wp

0)T , wp(T ) = (wp)T

and wp
∞(T ) = (wp

∞)T of arbitrary triangles T in wp
0 , wp and wp

∞, determine their β-

duals, and characterize matrix transformations on them into the spaces c0, c and `∞.

1. Introduction and preliminary results

Let ω denote the set of all complex sequences x = (xk)∞k=1. As usual, we write
`∞, c, c0 and φ for the sets of all bounded, convergent, null and finite sequences,
and `p = {x ∈ ω :

∑∞
k=1|xk|p < ∞} for 1 ≤ p < ∞. Let e and e(n) (n = 1, 2, . . . )

be the sequences with ek = 1 for all k ∈ N, and e
(n)
n = 1 and e

(n)
k = 0 for k 6= n,

where N denotes the set of positive integers.
A subspace X of ω is said to be an BK space if it is a Banach space with

continuous coordinates Pn : X → C (n = 1, 2, . . . ), where Pn(x) = xn for all
x ∈ X. A BK space X ⊃ φ is said to have AK if every sequence x = (xk)∞k=1 ∈ X

has a unique representation x =
∑∞

k=1xke(k).
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If X is a subset of ω then Xβ = {a ∈ ω :
∑∞

k=1akxk converges for all x ∈ X}
is called the β-dual of X.

Let X 6= {θ} be a Banach space and SX = {x ∈ X : ‖x‖ = 1} and BX =
{x ∈ X : ‖x‖ < 1} be the unit sphere and open unit ball in X. Then X∗ denotes
the Banach space of all continuous linear functionals on X with its norm given
by ‖f‖ = supx∈SX

|f(x)| = supx∈BX
|f(x)|.

Let A = (ank)∞n,k=1 be an infinite matrix of complex numbers and x =
(xk)∞k=1 ∈ ω. We write An = (ank)∞k=1 for the sequence in the n-th row of A,
and Anx =

∑∞
k=1ankxk and Ax = (Anx)∞n=1 provided the series

∑∞
k=1ankxk

converges for all n ∈ N. If X is a subset of ω then XA = {x ∈ ω : Ax ∈ X} is the
matrix domain of A in X. Given subsets X and Y of ω, we write (X, Y ) for the
class of all matrices A with X ⊂ YA, that is A ∈ (X, Y ) if and only if An ∈ Xβ

for all n ∈ N and Ax ∈ Y for all x ∈ X.
An infinite matrix T = (tnk)∞n,k=1 is said to be a triangle if tnn 6= 0 for all

n ∈ N and tnk = 0 for k > n. We will frequently use the following well-known
result that every triangle T has a unique inverse S which also is a triangle, and
T (Sx) = (TS)(x) = x for all x ∈ ω ([29, 1.4.8, p. 9] and [8, Remark 22 (a),
p. 22]). Throughout, let T denote a triangle, and S its inverse.

Maddox [17] introduced and studied the following sets of sequences that are
strongly summable and bounded with index p (1 ≤ p < ∞) by the Cesàro method
of order 1

wp
0 =

{
x ∈ ω : lim

n→∞
1
n

n∑

k=1

|xk|p = 0

}
, wp

∞ =

{
x ∈ ω : sup

n

1
n

n∑

k=1

|xk|p < ∞
}

and

wp =

{
x ∈ ω : lim

n→∞
1
n

n∑

k=1

|xk − ξ|p = 0 for some ξ ∈ C
}

.

Throughout we use the convention that every term with a subscript less than
one is equal to zero.

We write
∑

ν =
∑2ν+1−1

k=2ν and maxν = max2ν≤k≤2ν+1−1 for ν = 0, 1, . . . . The
following result is known.

Proposition 1.1. ([20, Proposition 3.44, p. 207]) Let 1 ≤ p < ∞. Then the

sets wp
0 , wp and wp

∞ are BK spaces with the (equivalent) norms

‖x‖wp
∞ = sup

ν∈N

(
1
2ν

∑
ν |xk|p

)1/p

and ‖x‖†
wp
∞

= sup
n∈N

(
1
n

n∑

k=1

|xk|p
)1/p

;
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wp
0 is a closed subspace of wp and wp is a closed subspace of wp

∞; wp
0 has AK; every

sequence x = (xk)∞k=1 ∈ wp has a unique representation x = ξe+
∑∞

k=1(xk−ξ)e(k),

where ξ ∈ C is the strong C1-limit of the sequence x, that is

lim
n→∞

1
n

n∑

k=1

|xk − ξ|p = 0. (1.1)

In the past, several authors studied matrix transformations on sequence
spaces that are the matrix domains of the matrix ∆ of the difference operator, or
of the matrices of some of the classical methods of summability in spaces such as
`p, c0, c or `∞. For instance, some matrix domains of ∆ were studied in [12], [16],
[26], of the Cesàro matrices in [5], [6], [27], of the Euler matrices in [3, 4], [23], of
the Riesz matrices in [2], and of the Nörlund matrices in [28]. All the matrices
mentioned are triangles.

In this paper, we study the matrix domains wp
0(T ) = (wp

0)T , wp(T ) = (wp)T

and wp
∞(T ) = (wp

∞)T (1 ≤ p < ∞) of arbitrary triangles T in the spaces wp
0 ,

wp and wp
∞, determine their β-duals, and characterize matrix transformations on

them into the spaces c0, c and `∞.
The rest of this paper is organized, as follows:
In Section 2, some required definitions and the characterization of the matrix

transformations from the spaces wp
0 , wp and wp

∞ to the spaces `∞, c and c0 are
given. Section 3 is devoted to the determination of the β-duals of the spaces
wp

0(T ), wp(T ) and wp
∞(T ). In Section 4, the classes (UT , V ) with U ∈ {wp

0 , wp
∞}

and V ⊂ w, (XT , Y ) with X ∈ {wp
0 , wp, wp

∞} and Y ∈ {`∞, c, c0} of infinite
matrices are characterized. In the final section of the paper, the results are
summarized, open problems and further suggestions are recorded.

Corollary 1.2. (a) The sets wp
0(T ), wp(T ) and wp

∞(T ) are BK spaces with

‖x‖wp
∞(T ) = sup

ν

(
1
2ν

∑
ν |Tkx|p

)1/p

;

wp
0(T ) is a closed subspace of wp(T ), and wp(T ) is a closed subspace of wp

∞(T ).

(b) We put c(n) = {c(n)
k }∞k=1 := T−1e(n) = Se(n) for n = 1, 2, . . . , that is

c
(n)
k =





0, (1 ≤ k ≤ n− 1),

skn, (k ≥ n).

Every sequence z = (zn)∞n=1 ∈ wp
0(T ) has a unique representation

z =
∞∑

n=1

Tnz c(n). (1.2)
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(c) We put define the sequence c(0) = {c(0)
k }∞k=1 by

c
(0)
k =

k∑

j=1

skj (k = 1, 2, . . . ).

Every sequence z = (zn)∞n=1 ∈ wp(T ) has a unique representation

w = ξc(0) +
∞∑

n=1

(Tnz − ξ)c(n), (1.3)

where ξ ∈ C is the strong limit of z in wp(T ), that is

lim
n→∞

(
1
n

n∑

k=1

|Tkz − ξ|p
)

= 0. (1.4)

Proof. (a) Part (a) is an immediate consequence of Proposition 1.1 and [29,
Theorems 4.3.12 and 4.3.14, pp. 63 and 64].

(b) For every fixed n, we have

Ske(n) =
k∑

j=1

skje
(n) =

{
0, (1 ≤ k ≤ n− 1),

skn, (k ≥ n),

hence c(n) = Se(n). Since wp
0 has AK by Proposition 1.1, we have e(n) ∈ wp

0 for
all n ∈ N, and it follows from Tc(n) = T (Se(n)) = (TS)e(n) = e(n) ∈ wp

0 that
c(n) ∈ wp

0(T ) for all n ∈ N. Now let z = (zn)∞n=1 ∈ wp
0(T ) be given, that is

x = Tz ∈ wp
0 . We obtain for x[m] =

∑m
k=1 xke(k)

lim
m→∞

‖x− x[m]‖wp
∞ = lim

m→∞

∥∥∥∥∥x−
m∑

[n=1

xne(n)

∥∥∥∥∥
wp
∞

= lim
m→∞

∥∥∥∥∥x−
m∑

n=1

Tnz e(n)

∥∥∥∥∥
wp
∞

= 0.

We put z〈m〉 =
∑m

n=1 Tnz c(n) for all m. Then we have

z〈m〉 ∈ wp
0(T ), T z〈m〉 =

m∑
n=1

Tnz Tc(n) =
m∑

n=1

xne(n) = x[m]

and so by Part (a)

lim
m→∞

‖z − z〈m〉‖wp
∞(T ) = lim

m→∞
‖T (z − z〈m〉)‖wp

∞ = lim
m→∞

‖Tz − Tz〈m〉‖wp
∞

= lim
m→∞

‖x− x[m]‖wp
∞ = 0,
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that is the representation in (1.2) holds, which is obviously unique.

(c) We have Ske =
∑k

j=1 skjej =
∑k

j=1 skj = ck for all k ∈ N, hence c = Se

and Tc = T (Se) = (TS)e = e ∈ wp implies c ∈ wp(T ). Let z = (zn)∞n=1 ∈ wp(T )
be given. Then x = Tz ∈ wp and by Proposition 1.1 there exists a unique complex
number ξ that satisfies (1.1). We write x(0) = x− ξe and put z(0) = z− ξc. Then
we have x(0) ∈ wp

0 , and it follows from Tz(0) = Tz − ξTc = x − ξe = x(0) ∈ wp
0

that z(0) ∈ wp
0(T ). So z(0) has a unique representation z(0) =

∑∞
n=1 Tnz(0) c(n) =∑∞

n=1(Tn − ξe)c(n) by Part (b), and so

z = ξc + z(0) = ξc +
∞∑

n=1

(Tn − ξ) c(n).

This establishes the unique representation in (1.3). ¤

Example 1.3. Let U be the set of all sequences u = (uk)∞k=1 with uk 6= 0 for
all k ∈ N. If u, v ∈ U then we write u/v = (uk/vk)∞k=1. Let u, v ∈ U be given
and T = (tnk)∞n,k=1 be the factorable matrix with tnk = unvk for 1 ≤ k ≤ n

(n = 1, 2, . . . ). Then the inverse S = (snk)∞n,k=1 of T is obviously given by

snk =





1
unvn

, (k = n),

− 1
un−1vn

, (k = n− 1),

0, (otherwise),

(n = 1, 2, . . . ),

and so we have

c(n) =
1
un

[
1
vn

e(n) − 1
vn+1

e(n+1)

]
for n = 1, 2, . . .

and

c(0) =
k∑

j=1

skj =
{

1
vk

∆k(1/u)
}∞

k=1

.

So it follows from (1.2) and (1.3) in Corollary 1.2 that every sequence z =
(zn)∞n=1 ∈ wp

0(T ) has a unique representation

z =
∞∑

n=1




k∑

j=1

vjzj




[
1
vn

e(n) − 1
vn+1

e(n+1)

]
,
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and that every sequence z = (zn)∞n=1 ∈ wp(T ) has a unique representation

z = ξ

{
1
vk

∆k(1/u)
}∞

k=1

+
∞∑

n=1




k∑

j=1

vjzk − ξ

un




[
1
vn

e(n) − 1
vn+1

e(n+1)

]
,

with ξ from (1.4).

2. Matrix transformations on wp
0 , wp and wp

∞

We will show in Section 3 that the determination of the β-duals of the sets
wp

0(T ), wp(T ) and wp
∞(T ) can be reduced to that of the β-duals of the sets wp

0 , wp

and wp
∞, and the characterizations of the classes (wp

0 , c0), (wp, c) and (wp
∞, c0).

The β-duals of the sets wp
0 , wp and wp

∞ are known. In this section, we characterize
the classes (X, Y ), where X is any of the sets wp

0 , wp and wp
∞, and Y is any of

the sets c0, c and `∞.
Throughout, let 1 ≤ p < ∞ and q be the conjugate number of p, that is

q = ∞ for p = 1 and q = p/(p − 1) for 1 < p < ∞. If p = 1 then we omit the
index p, that is we write w0 = w1

0 etc., for short.
We put

Mp =
{
a ∈ ω : ‖a‖Mp < ∞}

, where

‖a‖Mp =





∞∑
ν=0

2νmaxν |ak|, (p = 1),

∞∑
ν=0

2ν/p (
∑

ν |ak|q)1/q
, (1 < p < ∞).

Given a ∈ ω, we write

‖a‖∗X = sup
x∈SX

∣∣∣∣∣
∞∑

k=1

akxk

∣∣∣∣∣
provided the expression on the righthand side is defined and finite which is the
case whenever X is a BK space and a ∈ Xβ ([29, Theorem 7.2.9, p. 107]).

The next results are known. They give the β-duals of wp
0 , wp and wp

∞, the
continuous duals of wp

0 and wp, and the characterization of the class (X, `∞) for
arbitrary BK spaces X.

Proposition 2.1. ([17] and [20, Proposition 3.47, p. 208]) We have

(a) (wp
0)β = (wp)β = (wp

∞)β = Mp;
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(b) (wp
0 , ‖ · ‖)∗ ≡Mp, that is (wp

0)∗ and Mp are norm isomorphic;

(c) f ∈ (wp)∗ if and only if there exist a0 ∈ C and a sequence a = (ak)∞k=1 ∈Mp

such that

f(x) = ξa0 +
∞∑

k=1

akxk for all x ∈ wp with ξ from (1.1);

moreover

‖f‖ = |a0|+ ‖a‖Mp
for all f ∈ (wp)∗;

(d) ‖a‖∗
wp
∞

= ‖a‖Mp
for all a ∈ (wp

∞)β .

Proposition 2.2. ([15, Theorem 1.8]) Let X be a BK space. Then we have

A ∈ (X, `∞) if and only if An∈Xβ , (n∈N) and ‖A‖(X,`∞) = supn∈N ‖An‖∗X<∞.

We also need the next lemma.

Lemma 2.3. Let B = (bnk)∞n,k=1 be an infinite matrix. If ‖Bn‖Mp < ∞ for

all n ∈ N and limn→∞ ‖Bn‖Mp = 0, then ‖Bn‖Mp converges uniformly in n ∈ N.

Proof. Let ε > 0 be given. Since limn→∞ ‖Bn‖Mp = 0, there exists N ∈ N
such that ‖Bn‖Mp < ε for all n > N . For ρ ∈ N and µ ∈ N ∪ {∞} we write

‖Bn‖<ρ,µ>
Mp

=





µ∑
ν=ρ

2νmaxν |bnk|, (p = 1),

µ∑
ν=ρ

2ν/p (
∑

ν |bnk|q)1/q
, (1 < p < ∞).

Since ‖Bn‖Mp < ∞ for all n ∈ N, for each n with 1 ≤ n ≤ N , there exists
ν(n) ∈ N0 such that ‖Bn‖〈ν(n),∞〉

Mp
< ε. We choose ρ = max1≤n≤N ν(n). Then we

have
‖Bn‖〈ν,∞〉

Mp
≤ ‖Bn‖〈ρ,∞〉

Mp
< ε for all ν ≥ ρ and for all n ∈ N. ¤

Now we characterize the classes (X, Y ) for X ∈ {wp
0 , wp, wp

∞} and Y ∈
{`∞, c, c0}.

Theorem 2.4. The necessary and sufficient conditions for A ∈ (X, Y ) when

X ∈ {wp
0 , wp, wp

∞} and Y ∈ {`∞, c, c0} can be read from the following table:

From

To

wp
∞ wp

0 wp

`∞ 1. 1. 1.
c0 2. 3. 4.
c 5. 6. 7.
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where

1. (1.1) supn∈N ‖An‖Mp < ∞
2. (2.1) limn→∞ ‖An‖Mp

= 0

3. (1.1) and (3.1), where (3.1) limn→∞ ank = 0 for all k ∈ N
4. (1.1), (3.1) and (4.1), where (4.1) limn→∞

∑∞
k=1ank = 0

5. (5.1), (5.2) and (5.3), where (5.1) αk = limn→∞ ank exists for all k ∈ N
(5.2) (αk)∞k=1, An ∈Mp for all n ∈ N
(5.3) limn→∞ ‖An − (αk)∞k=1‖Mp = 0

6. (1.1) and (5.1)

7. (1.1), (5.1) and (7.1), where (7.1) α = limn→∞
∑∞

k=1ank exists.

We remark that the conditions for A ∈ (wp
∞, c0) and A ∈ (wp

∞, c) can be

replaced by the conditions

2’. (2.1’) and (3.1), where (2.1’) ‖An‖Mp converges uniformly in n ∈ N
5’. (2.1’) and (5.1).

Proof. 1. Condition (1.1) for A ∈ (wp
0 , `∞) follows from Propositions 2.2

and 2.1 (b) and (d). Then (1.1) for A ∈ (wp, `∞) and A ∈ (wp
∞, `∞) follows from

the fact that (wp
∞, `∞) ⊃ (wp, `∞) ⊃ (wp

0 , `∞) by Proposition 1.1.

3. and 6. Since wp
0 is a BK space with AK by Proposition 1.1, and c0 and

c are closed subspaces of `∞ the conditions follow from the characterization of
(wp

0 , `∞) and [29, 8.3.6, p. 123].

4. and 7. The conditions follow from those in 3. and 6. and
[29, 8.3.7, p. 123].

5. and 5’. First we show that the conditions in 5. imply those in 5’.. We as-
sume that the conditions in 5. are satisfied, and define the matrix B = (bnk)∞n,k=1

by bnk = ank − αk for all n, k ∈ N. It follows from (5.2) and (5.3) that Bn ∈Mp

for all n ∈ N and limn→∞ ‖Bn‖Mp = 0. Hence ‖Bn‖Mp is uniformly convergent
in n ∈ N by Lemma 2.3, and so ‖An‖Mp = ‖Bn + (αk)∞k=1‖Mp is uniformly
convergent in n. This shows that the conditions in 5. imply those in 5’..

Now we show the sufficiency of the conditions in 5’. for A ∈ (wp
∞, c). We

assume that (2.1’) and (5.1) are satisfied. It follows from (2.1’) and (5.1) that there
exists ρ ∈ N0 such that ‖An‖〈ρ+1,∞〉

Mp
< 1 for all n ∈ N, and (ank)∞n=1 ∈ c ⊂ `∞

for every k ∈ N, hence for every k ∈ N, there exists a constant Mk > 0 such
that |ank| ≤ Mk for all n ∈ N. We put M = 1 + ‖(Mk)∞k=1‖〈0,ρ〉

Mp
. Then we have

‖An‖Mp = ‖An‖〈0,ρ〉
Mp

+ ‖An‖〈ρ+1,∞〉
Mp

≤ ‖(Mk)∞k=1‖〈0,ρ〉
Mp

+ 1 = M for all n ∈ N,
hence (1.1) holds.
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Now we show that (1.1) and (5.1) together imply (αk)∞k=1 ∈Mp. Let µ ∈ N0

be given. Then we have

‖(αk)∞k=1‖〈0,µ〉
Mp

≤ ‖An − (αk)∞k=1‖〈0,µ〉
Mp

+ ‖An‖〈0,µ〉
Mp

≤ ‖An − (αk)∞k=1‖〈0,µ〉
Mp

+ sup
n∈N

‖An‖Mp
for all n ∈ N.

Since the first term on the right side of the inequality converges to zero for n →∞,
we obtain from (5.1) and (1.1)

‖(αk)∞k=1‖〈0,µ〉
Mp

≤ sup
n∈N

‖An‖Mp
< ∞.

Since µ ∈ N0 was arbitrary, it follows that ‖(αk)∞k=1‖Mp < ∞, hence (αk)∞k=1 ∈
Mp, and so (αk)∞k=1 ∈ (wp

∞)β by Proposition 2.1 (a). Furthermore, (1.1) and
(2.1’) imply that Anx is absolutely and uniformly convergent in n for each x ∈ wp

∞,
since

∑∞
k=1|ankxk| ≤ supn∈N ‖An‖Mp ‖x‖wp

∞ . This implies

lim
n→∞

Anx =
∞∑

k=1

(
lim

n→∞
ank

)
xk =

∞∑

k=1

αkxk for each x ∈ wp
∞,

that is Ax ∈ c for all x ∈ wp
∞, hence A ∈ (`∞, c). Thus we have proved the

sufficiency of conditions (2.1’) and (5.1).
Now we show the necessity of the conditions in 5. and 5’.. We assume A ∈

(wp
∞, c). Since e(k) ∈ wp

∞ for every k ∈ N, it follows that Ae(k) = (ank)∞n=1 ∈ c,
hence (5.1) holds. Also wp ⊂ wp

∞ implies (wp
∞, c) ⊂ (wp, c), hence (1.1) holds

by 1.. Obviously (1.1) implies An ∈ Mp for all n ∈ N, and as in the sufficiency
part of the proof, (1.1) and (5.1) imply (αk)∞k=1 ∈Mp, so the conditions in (5.2)
hold. Now A ∈ (wp

∞, c) and (αk)∞k=1 ∈Mp = (wp
∞)β trivially imply B ∈ (wp

∞, c),
where the matrix B is defined as above. We show that this implies

lim
n→∞

‖Bn‖Mp = 0, (I)

that is (5.3). Then it will follow from Lemma 2.3 that ‖Bn‖Mp converges uni-
formly in n, whence ‖An‖Mp = ‖Bn +(αk)∞k=1‖Mp converges uniformly in n, that
is (2.1’). Thus all the conditions in 5. and 5’. hold.

To show that (I) is necessary, we assume that it is not satisfied and con-
struct a sequence x ∈ wp

∞ with Bx 6∈ c, which is a contradiction to B ∈
(wp
∞, c). If ‖Bn‖Mp 6→ 0 (n → ∞) then there exists a real c > 0 such that

lim supn→∞ ‖Bn‖Mp = c, hence limj→∞ ‖Bnj‖Mp = c for some subsequence
(nj). We omit the indices j, that is we assume without loss of generality

lim
n→∞

‖Bn‖Mp = c. (II)
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It follows from (5.1) that

lim
n→∞

bnk = 0 for every k ∈ N. (III)

By (II) and (III), there exists an integer n(1) such that

∣∣ ‖Bn(1)‖Mp − c
∣∣ <

c

10
and |bn(1),1| <

c

10
.

Since ‖Bn(1)‖Mp
< ∞, we can choose an integer ν(2) > 0 such that

‖Bn(1)‖〈ν(2),∞〉
Mp

<
c

10
,

and it follows that
∣∣∣ ‖Bn(1)‖〈0,ν(2)〉

Mp
− c

∣∣∣ ≤
∣∣ ‖Bn(1)‖Mp − c

∣∣ + ‖Bn(1)‖〈ν(2)+1,∞〉
Mp

+ |bn(1),1| <
3c

10
.

Now we choose an integer n(2) > n(1) such that

‖Bn(2)‖〈0,ν(2)〉
Mp

<
c

10
and

∣∣ ‖Bn(2)‖Mp − c
∣∣ <

c

10
,

and an integer ν(3) > ν(2) such that ‖Bn(2)‖〈ν(3)+1,∞〉
Mp

< c/10. Again it follows
that ∣∣∣ ‖Bn(2)‖〈ν(2)+1,ν(3)〉

Mp
− c

∣∣∣ <
3c

10
.

Continuing in this way, we can determine sequences {n(r)}∞r=1 and {ν(r)}∞r=1 of
integers n(1) < n(2) < . . . and 0 = ν(1) < ν(2) < . . . such that for all r = 1, 2, . . .

‖Bn(r)‖〈0,ν(r)〉
Mp

<
c

10
, ‖Bn(r)‖〈ν(r+1)+1,∞〉

Mp
<

c

10

and
∣∣∣ ‖Bn(r)‖〈ν(r)+1,ν(r+1)〉

Mp
− c

∣∣∣ <
3c

10
.

If p = 1, we define the sequence x = (xk) by

xk =





0, (k = 1),

(−1)r2νsgn (bn(r),k(ν)), (k = k(ν)), where k(ν) ∈ [2ν , 2ν+1 − 1]

is the smallest integer with

|bn(r),k(ν)| = maxν |bn(r),k|,
0, (k 6= k(ν)),

(ν(r) + 1 ≤ ν ≤ ν(r + 1); r = 1, 2, . . . ).
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Then we obviously have x ∈ w∞ and ‖x‖w∞ ≤ 1, and

∣∣Bn(r)x− (−1)rc
∣∣ ≤

ν(r)∑
ν=0

∑
ν |bn(r),k| |xk|+

∞∑

ν=ν(r+1)+1

∑
ν |bn(r),k| |xk|

+

∣∣∣∣∣∣

ν(r+1)∑

ν=ν(r)+1

∑
νbn(r),kxk − c

∣∣∣∣∣∣
≤

ν(r)∑
ν=0

2νmaxν |bn(r),k|+
∞∑

ν=ν(r+1)+1

2νmaxν |bn(r),k|

+

∣∣∣∣∣∣
(−1)r

(
ν(r+1)∑

ν=ν(r)+1

2νmaxν |bn(r),k| −c

)∣∣∣∣∣∣
= ‖Bn(r)‖〈0,ν(r)〉

M1
+ ‖Bn(r)‖〈ν(r+1)+1,∞〉

M1

+
∣∣∣ ‖Bn(r)‖〈ν(r)+1,ν(r+1)〉

M1
− c

∣∣∣ <
c

10
+

c

10
+

3c

10
=

c

2
for all r ∈ N.

Consequently (Bnx)∞n=1 is not a Cauchy sequence, hence not convergent.
If 1 < p < ∞, we define the sequence x = (xk) by

xk =





0, (k = 1),

2ν/p(−1)rsgn(bn(r),k)|bn(r),k|q−1
(∑

ν |bn(r),k|q
)−1/p

, (2ν ≤ k≤ 2ν+1 − 1)

(ν(r) + 1 ≤ ν ≤ ν(r + 1); r = 1, 2, . . . ).

Let ν ∈ N0 be given. Then there exists r such that ν(r) + 1 ≤ ν ≤ ν(r + 1)
and

1
2ν

∑
ν |xk|p =

1
2ν

∑
ν2ν |bn(r),k|pq−p

(∑
ν |bn(r),k|q

)−1 = 1,

that is x ∈ wp
∞ and ‖x‖wp

∞ ≤ 1. We also have by Hölder’s inequality

∣∣Bn(r)x− (−1)rc
∣∣ ≤

ν(r)∑
ν=0

2ν/p
(∑

ν |bn(r),k|q
)1/q +

∞∑

ν=ν(r+1)+1

2ν/p
(∑

ν |bn(r),k|q
)1/q

+

∣∣∣∣∣∣
(−1)r

(
ν(r+1)∑

ν=ν(r)+1

2ν/p
(∑

ν |bn(r),k|q
)1/q − c

)∣∣∣∣∣∣

= ‖Bn(r)‖〈0,ν(r)〉
Mp

+ ‖Bn(r)‖〈ν(r+1)+1,∞〉
Mp

+
∣∣∣ ‖Bn(r)‖〈ν(r)+1,ν(r+1)〉

Mp
− c

∣∣∣

<
c

10
+

c

10
+

3c

10
=

c

2
for all r ∈ N.

Consequently (Bnx)∞n=1 is not a Cauchy sequence, hence not convergent. So we
have x ∈ wp

∞, but Bx 6∈ c in both cases, which is a contradiction to B ∈ (wp
∞, c).

This completes the proof of 5. and 5’..
2. and 2’. are proved in the same way as 5. and 5’. with αk = 0 for all k ∈ N.

¤
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3. The β-duals of wp
0(T ), wp(T ) and wp

∞(T )

Now we determine the β-duals of wp
0(T ), wp(T ) and wp

∞(T ).
We write Σ = (σnk)∞n,k=1 for the triangle with σnk = 1 for 1 ≤ k ≤ n

(n = 1, 2, . . . ), cs = cΣ for the set of all convergent series, and R = St for the
transpose of the inverse S of the triangle T .

The following results are helpful.

Lemma 3.1. We have

(a) a ∈ {wp
0(T )}β if and only if a ∈ (Mp)R and W ∈ (wp

0 , c0), where W =
(wmk)∞m,k=1 is the triangle with wmk =

∑∞
j=m sjkaj for 1 ≤ k ≤ m (m = 1, 2, . . . );

(b) a ∈ {wp(T )}β if and only if a ∈ (Mp)R and W ∈ (wp, c);

(c) a ∈ {wp
∞(T )}β if and only if a ∈ (Mp)R and W ∈ (wp

∞, c0).

Proof. Let a = (an)∞n=1 ∈ ω. We define the triangles B = (bnk)∞n,k=1

and C = (cnk)∞n,k=1 by bnk = ansnk and cnk =
∑n

j=k ajsjk for 1 ≤ k ≤ n

(n = 1, 2, . . . ), hence C = ΣB. Let X be any of the sets wp
0 , wp or wp

∞. Since
x ∈ X if and only if z = Sx ∈ XT , and since anzn = anSnx = an

∑n
k=1 snkxk =∑n

k=1 ansnkxk = Bnx for all n ∈ N, we observe that a ∈ (XT )β if and only
if B ∈ (X, cs), and this is the case by [20, Theorem 3.8, p. 180] if and only if
C ∈ (X, c).

(a) First we assume a ∈ {wp
0(T )}β . Then C ∈ (wp

0 , c) which is the case by 6.
in Theorem 2.4 if and only if

Rka = lim
n→∞

cnk =
∞∑

j=k

ajsjk exists for every k ∈ N (3.1)

and
‖C‖Mp = sup

n
‖Cn‖Mp < ∞. (3.2)

We show that (3.1) and (3.2) imply

Ra = (Rka)∞k=1 ∈Mp = (wp
0)β . (3.3)

Let µ ∈ N0 be given. It follows from (3.2) that there exists a constant M > 0 such
that ‖(∑n

j=k ajsjk)∞k=1‖〈0,µ〉
Mp

≤ M . Letting n → ∞ and using (3.1), we obtain

‖Ra‖〈0,µ〉
Mp

≤ M , and (3.3) follows, since µ was arbitrary.
We note that the matrix W is defined in view of (3.1). Furthermore also have for
all z ∈ ω and for all m ∈ N

m∑

k=1

(Rka)(Tkz)−Wm(Tz) =
m∑

k=1

( ∞∑

j=k

ajsjk

)
Tkz −

m∑

k=1

( ∞∑

j=m

ajsjk

)
Tkz
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=
m∑

k=1

(
m−1∑

j=k

ajsjk

)
Tkz =

m−1∑

k=1

(
m−1∑

j=k

ajsjk

)
Tkz

=
m−1∑

j=1

aj

j∑

k=1

sjkTkz =
m−1∑

j=1

ajSj(Tz) =
m−1∑

j=1

ajzj ,

that is
m−1∑

k=1

akzk =
m∑

k=1

(Rka)(Tkz)−Wm(Tz) for all m ∈ N. (3.4)

It follows from (3.4), a ∈ {wp
0(T )}β and (3.3) that {Wm(Tz)}∞m=1 ∈ c for all

z ∈ XT , which is equivalent to W ∈ (wp
0 , c). Now (3.1) implies

lim
m→∞

wmk = lim
m→∞

∞∑

j=m

ajsjk = 0 for all k ∈ N (3.5)

and W ∈ (wp
0 , c) and (3.5) imply W ∈ (wp

0 , c0) by 3. and 6. in Theorem 2.4.
Conversely if a ∈ (Mp)R and W ∈ (wp

0 , c0), then Ra ∈ Mp = (wp
0)β by

Proposition 2.1 (a), and then a ∈ {wp
0(T )}β follows from (3.4).

(b) and (c) Let X = wp or X = wp
∞. First we assume a ∈ (XT )β . Since

wp
0(T ) ⊂ XT by Corollary 1.2 (a), we have a ∈ {wp

0(T )}β , and Ra ∈ Mp =
Xβ follows from Part (a). Now (3.4) implies W ∈ (X, c). Again Ra ∈ Mp

implies (3.5), and W ∈ (wp
∞, c) and (3.5) imply W ∈ (wp

∞, c0) by 2. and 5. in
Theorem 2.4.

The proof of the converse part is analogous to that of the converse part
of (a). ¤

Theorem 3.2. For every m ∈ N, let ν(m) be the uniquely defined number

with 2ν(m) ≤ m ≤ 2ν(m)+1 − 1. We have

‖Wm‖Mp =





ν(m)−1∑
ν=0

2νmaxν

∣∣∣∣∣
∞∑

j=m

ajsjk

∣∣∣∣∣

+2ν(m) max
2ν(m)≤k≤m

∣∣∣∣∣
∞∑

j=m

ajsjk

∣∣∣∣∣ < ∞, (p = 1),

ν(m)−1∑
ν=0

2ν/p


∑

ν

∣∣∣∣∣
∞∑

j=m

ajsjk

∣∣∣∣∣

q



1/q

+2ν(m)/p




m∑

k=2ν(m)

∣∣∣∣∣
∞∑

j=m

ajsjk

∣∣∣∣∣

q



1/q

< ∞, (1 < p < ∞),

(3.6)
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and

(a) a ∈ {wp
0(T )}β if and only if

‖Ra‖Mp
=





∞∑
ν=0

2νmaxν

∣∣∣∣∣
∞∑

j=k

ajsjk

∣∣∣∣∣ < ∞, (p = 1),

∞∑
ν=0

2ν/p


∑

ν

∣∣∣∣∣
∞∑

j=k

ajsjk

∣∣∣∣∣

q



1/q

< ∞, (1 < p < ∞),

(3.7)

and

sup
m∈N

‖Wm‖Mp
< ∞; (3.8)

(b) a ∈ {wp(T )}β if and only if (3.7) and (3.8) hold and

η = lim
m→∞

m∑

k=1

∞∑

j=m

ajsjk exists; (3.9)

(c) a ∈ {wp
∞(T )}β if and only if (3.7) holds and

lim
m→∞

‖Wm‖Mp = 0. (3.10)

(d) Let X = wp
0 or X = wp

∞. If a ∈ (XT )β then

∞∑

k=1

akzk =
∞∑

k=1

(Rka)(Tkz) for all z ∈ XT ; also ‖a‖∗XT
= ‖Ra‖Mp . (3.11)

If a ∈ {wp(T )}β then

∞∑

k=1

akzk =
∞∑

k=1

(Rka)(Tkz)− ξη for all z ∈ wp(T ),

where ξ and η are from (1.1) and (3.10);

(3.12)

also

‖a‖∗wp(T ) = |η|+ ‖Ra‖Mp for all a ∈ {wp(T )}β . (3.13)

Proof. We apply Lemma 3.1 and Theorem 2.4.
Condition (3.7) is Ra ∈ Mp = (wp

0)β = (wp)β = (wp
∞)β by Proposi-

tion 2.1 (a).
Condition (3.8) comes from W ∈ (wp

0 , c0) and W ∈ (wp, c) and is (1.1) in
Theorem 2.4 3. and 7.; the conditions limm→∞ wmk = 0 and limm→∞ wmk = βk,
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which are (3.1) and (5.1) in 3. and 7., are redundant. Condition (3.9) for W ∈
(wp, c) comes from (7.1) in Theorem 2.4 7..

Condition (3.10) comes from W ∈ (wp
∞, c0) and is (2.1) in Theorem 2.4 2..

Thus we have shown Parts (a), (b) and (c).
(d) The first condition in (3.11) follows from (3.4) and the fact that W ∈

(X, c0); the second condition follows from Proposition 2.1 (b) and (d).
Now let a ∈ {wp(T )}β and z ∈ wp(T ). Then x = Tz ∈ wp and ξ from (1.1)

exists, hence there exists x(0) ∈ wp
0 such that x = x(0) + ξe. We put z(0) = Sx(0).

Then it follows that z(0) ∈ wp
0(T ) and z = Sx = S(x(0) + ξe) = z(0) + ξSe, and

we obtain as in (3.4) for all m ∈ N
m−1∑

k=1

akzk =
m∑

k=1

(Rka)(Tkz)−Wm[T (z(0) + ξSe)]

=
m∑

k=1

(Rka)(Tkz)−Wm[Tz(0)]− ξWme.

The first term on the righthand side of the last equation converges since Ra ∈
Mp. The second term tends to 0, since a ∈ {wp(T )}β ⊂ {wp

0(T )}β implies
W ∈ (wp

0 , c0). Furthermore, since W ∈ (wp, c) implies that η = limm→∞Wme

exists by (7.1) in Theorem 2.4 7., the identity in (3.12) follows. Finally, (3.13)
follows from Proposition 2.1 (c). ¤

We apply Theorem 3.2 to the matrix T of Example 1.3.

Example 3.3. Let T be the matrix of Example 1.3. Then it is easy to see
that

(a) a ∈ {wp
0(T )}β if and only if

‖Ra‖Mp =





∞∑
ν=0

2νmaxν

∣∣∣∣
ak

ukvk
− ak+1

ukvk+1

∣∣∣∣ < ∞, (p = 1),

∞∑
ν=0

2ν/p

(∑
ν

∣∣∣∣
ak

ukvk
− ak+1

ukvk+1

∣∣∣∣
q)1/q

< ∞, (1 < p < ∞)

(3.14)

and

sup
m∈N

(
2ν(m)/p

∣∣∣∣
am+1

umvm+1

∣∣∣∣
)

< ∞; (3.15)

(b) a ∈ {wp(T )}β if and only if (3.14), (3.15) and

η = lim
m→∞

(
am

um−1vm
+

am

umvm
− am+1

umvm+1

)
exists;
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(c) a ∈ {wp
∞(T )}β if and only if (3.14) and

lim
m→∞

(
2ν(m)/p am+1

umvm+1

)
= 0.

4. Matrix transformations on the spaces wp
0(T ), wp(T ) and wp

∞(T )

Now we characterize the classes (X, Y ) where X is any of the spaces wp
0(T ),

wp(T ) and wp
∞(T ), and Y is any of the spaces c0, c and `∞.

The following results are useful.

Lemma 4.1. (a) Let X = wp
0 or X = wp

∞, and Y be an arbitrary subset

of ω. Then we have A ∈ (XT , Y ) if and only if Â ∈ (X, Y ) and W (n) ∈ (X, c0)
for all n = 1, 2, . . . , where the matrix Â = (ânk)∞n,k=1 and the triangles W (n) =

{w(n)
mk}∞m,k=1 are defined by

ânk =
∞∑

j=k

anjsjk for all n, k ∈ N and w
(n)
mk =

∞∑

j=m

anjsjk for 1 ≤ k ≤ m.

Moreover, we also have if A ∈ (XT , Y ) then

Az = Â(Tz) for all z ∈ XT . (4.1)

(b) Let Y be an arbitrary linear subspace of ω. Then we have A ∈ (wp(T ), Y )
if and only if

Â ∈ (wp
0 , Y ), (4.2)

W (n) ∈ (wp, c) for all n ∈ N (4.3)
and

Âe− {ρ(n)}∞n=1 ∈ Y, where ρ(n) = lim
m→∞

m∑

k=1

w
(n)
mk for all n ∈ N. (4.4)

Moreover, if A ∈ (wp(T ), Y ) then we also have

Az = Â(Tz)− ξ{ρ(n)}∞n=1 for all z ∈ wp(T ), where ξ is from (1.4). (4.5)

Proof. (a) First we assume A ∈ (XT , Y ). Then it follows that An ∈ (XT )β

for all n ∈ N, hence Ân ∈ Xβ and W (n) ∈ (X, c0) for all n ∈ N by Lemma 3.1
(a) and (c). Let x ∈ X be given, hence z = Sx ∈ XT . Since An ∈ (XT )β
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implies Anz = Ân(Tz) = Ânx for all n ∈ N by (3.11) in Theorem 3.2 (d), that
is Âx = Az, Az ∈ Y for all z ∈ XT implies Ax ∈ Y , that is (4.1) holds, and we
have Â ∈ (X,Y ) since x ∈ X was arbitrary.

Conversely, we assume Â ∈ (X, Y ) and W (n) ∈ (X, c0) for all n ∈ N. Then
we have Ân ∈ Xβ , and this and W (n) ∈ (X, c0) together imply An ∈ Xβ

T by
Lemma 3.1 (a) and (c). Now let z ∈ XT be given, hence x = Tz ∈ X. Again we
have Anz = Ânx for all n ∈ N by (3.11) in Theorem 3.2 (d), hence Az = Âx ∈ Y ,
and Âx ∈ Y for all x ∈ X implies Az ∈ Y . Thus we have Â ∈ (X,Y ), since
z ∈ XT was arbitrary.

(b) First we assume that A ∈ (wp(T ), Y ). Then it follows that A ∈ (wp
0(T ), Y )

and so Â ∈ (wp
0 , Y ) by Part (a). Also An ∈ {wp(T )}β implies W (n) ∈ (wp, c) by

Lemma 3.1 (b), and also (3.12) by Theorem 3.2 (d). Since z = Se ∈ wp(T ), hence
Az ∈ Y , and ξ = 1, we obtain (4.4) from (3.12).

Conversely, we assume that the conditions in (4.2), (4.3) and (4.4) are satis-
fied. First Ân ∈ (wp

0)β = Mp and Wn ∈ (wp, c) together imply An ∈ {wp(T )}β

by Lemma 3.1 (b), and again (3.12) follows by Theorem 3.2 (d). Let z ∈ wp(T )
be given. Then we have x = Tz ∈ wp. We put x(0) = x − ξe, where ξ is
from limn→∞(1/n)

∑n
k=1 |xk − ξ|p = limn→∞(1/n)

∑n
k=1 |Tkz − ξ|p = 0, that

is from (1.4). Then we have x(0) ∈ wp
0 and it follows from (3.12) that Az =

Â(Tz) − ξ{ρ(n)}∞n=1 = Â(x(0)) + ξ[Âe − {ρ(n)}∞n=1] ∈ Y , since Â ∈ (wp
0 , Y ),

Âe− {ρ(n)}∞n=1 ∈ Y and Y is a linear space. ¤

Theorem 4.2. The necessary and sufficient conditions for the entries of

A ∈ (XT , Y ) when X ∈ {wp
0 , wp, wp

∞} and Y ∈ {`∞, c0, c} can be read from the

following table:

From

To

wp
∞(T ) wp

0(T ) wp(T )

`∞ 1. 2. 3.
c0 4. 5. 6.
c 7. 8. 9.

where

1. (1.1) supn∈N ‖Ân‖Mp < ∞ (1.2) limm→∞ ‖W (n)
m ‖Mp = 0 for all n ∈ N

with ‖Â‖Mp and ‖W (n)
m ‖Mp defined as in (3.7) and (3.6)

with aj replaced by anj

2. (1.1) and (2.1), where (2.1) supm ‖W (n)
m ‖Mp < ∞ for all n ∈ N

3. (1.1), (2.1) (3.1) and (3.2), where
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(3.1) ρ(n) = limm→∞
∑m

k=1

∑∞
j=m anjsjk exists for all n ∈ N

(3.2) supn∈N |
∑∞

k=1

∑∞
j=k anjsjk − ρ(n)| < ∞

4. (4.1) and (1.2), where (4.1) limn→∞ ‖Ân‖Mp
= 0

5. (1.1), (5.1) and (2.1), where (5.1) limn→∞ ânk = 0 for all k ∈ N
6. (1.1), (5.1), (2.1), (3.1) and (6.1) where

(6.1) limn→∞(
∑∞

k=1

∑∞
j=k anjsjk − ρ(n)) = 0

7. (1.2), (7.1), (7.2) and (7.3) where (7.1) α̂k = limn→∞ ânk exists for all k ∈ N
(7.2) (α̂)∞k=1, Ân ∈Mp for all n ∈ N (7.3) limn→∞ ‖Ân − (α̂k)∞k=1‖Mp

= 0

8. (1.1), (7.1) and (2.1)

9. (1.1), (7.1), (2.1), (3.1) and (9.2), where

(9.2) β = limn→∞(
∑∞

k=1

∑∞
j=k anjsjk − ρ(n)) exists.

Proof. We apply Lemma 4.1 and Theorems 3.2 and 2.4.
If X = wp

∞ or X = wp
0 then we apply Lemma 4.1 (a), that is we get the

conditions for Â ∈ (X, Y ) and W (n) ∈ (X, c0). Applying Theorem 2.4 1., 2., 3.,
5. and 6., we obtain (1.1) in 1. and 2., (4.1) in 4., (1.1) and (5.1) in 5., (7.1), (7.2)
and (7.3) in 7., and (1.1) and (7.1) in 8. for Â ∈ (X,Y ). We obtain the conditions
(1.2) in 1., 4. and 7. for W (n) ∈ (wp

∞, c0) and (2.1) in 2., 5. and 8. from Theo-
rem 2.4 2. and 3., taking into account that the condition limm→∞ w

(n)
mk = 0 for

all k ∈ N is redundant as in the proof of Theorem 3.2.
If X = wp, we apply Lemma 4.1 (b), that is we get the conditions for Â ∈

(wp
0 , Y ), W (n) ∈ (wp, c) for all n and Âe−{ρ(n)}∞n=1 ∈ Y . Applying Theorem 2.4

1., 3. and 6. for Â ∈ (wp
0 , Y ), we obtain (1.1) in 3., (1.1) and (5.1) in 6. and

(1.1) and (7.1) in 9.. We obtain the conditions (2.1) and (3.1) in 3., 6. and
9. for W (n) ∈ (wp, c); again the condition limm→∞ w

(n)
mk exists for all k ∈ N is

redundant. Finally, Âe − {ρ(n)}∞n=1 ∈ Y yields (3.2) in 3., (6.1) in 6. and (9.2)
in 9.. ¤

5. Conclusion

Let X denotes the anyone of the spaces wp
0 , wp or wp

∞. We have introduced
the sequence space X(T ) which is the domain of a triangle matrix T = (tnk) in
the sequence space X. We have essentially concerned with two subjects: Deter-
mination of the β-dual of the space X(T ) and the characterization of the certain
matrix transformations defined on the sequence space X(T ).

Although the domain of summability matrices in the classical spaces `∞, c,
c0 and `p of sequences were studied by several authors (see Altay [1], Altay and
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Başar [2], [3], [4], Aydın and Başar [5], [6], Başar and Altay [7], Çolak and
Et [9], Çolak, Et and Malkowsky [10], Et [11], Et and Çolak [13], Et and
Başarır [14], Malkowsky, Mursaleen and Suantai [18], Malkowsky and
Parashar [19], Malkowsky and Savaş [21], Mursaleen [22], Mursaleen,

Başar, Altay [23], Ng and Lee [24], Polat and Başar [25], Şengönül and
Başar [27], Wang [28]), the matrix domain of the spaces wp

0 , wp and wp
∞ have

not been examined. The present work fills up this gap in the existing literature.
It is obvious that the α- and γ-dulas of the new spaces wp

0(T ) , wp(T ) and wp
∞(T )

are still open. Besides this, one can try to characterize the classes of infinite
matrices from the spaces wp

0(T ) , wp(T ) or wp
∞(T ) to a sequence space Y which

is different than that of Section 4. We should note from now on that a new paper
can be based on the extension of the new spaces wp

0(T ) , wp(T ) and wp
∞(T ) to

the paranormed case.
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Mat. Derg. 55–56 (1996–1997), 221–229.
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[20] E. Malkowsky and V. Rakočević, An introduction into the theory of sequence spaces
and measure of noncompactness, Zbornik Radova, Matematic̆ki Institut SANU Beograd
9(17) (2000), 143–274.
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