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Iterative Pexider equation

By MARIUSZ BAJGER (Rzeszów, Poland)

Abstract. We consider the Pexider equation Fst = Hs ◦ Gt for (s, t) belonging
to the domain of a binary operation on a groupoid K, where {Ft : t ∈ K} ⊂ ZX ,
{Gt : t ∈ K} ⊂ Y X , {Ht : t ∈ K} ⊂ ZY are unknown families of functions. It is
shown that, in the case when there exists a unit element e in K and He is an injection
and Ge is a surjection, the equation can be reduced to the Cauchy equation. Using
the above result we solve the following problem: when does it follow from the equality
Fst = Hs ◦Gt, for (s, t) belonging to a set L ( R2

+, that Fst = Hs ◦Gt for (s, t) ∈ R2
+?

Finally, some other conditions are established under which the equation may be reduced
to the Cauchy equation.

Let K be a non-empty set endowed with a binary operation (i.e. a
mapping of a subset D(K) of K ×K into K). The set K with the binary
operation is called a groupoid (cp. [2]). If (s, t) ∈ D(K) then we say that
st is defined.

The binary operation is said to be associative in case the following
implication holds: if in the equation s(tp) = (st)p, s, t, p ∈ K, one of its
sides or both the products tp and st are defined then both sides of the
equation are defined and the equality holds.

An element e ∈ K will be called a unit if for every t ∈ K the products
te and et are defined and te = et = t.

For t ∈ K we denote by Kl(t) (Kr(t)) the set of all elements e ∈ K
such that et (te) is defined and et = t (te = t).

Let K be a groupoid and X, Y , Z arbitrary non-empty sets. We shall
consider the Pexider functional equation

(1) Fst = Hs ◦Gt for (s, t) ∈ D(K),

where {Ft : t ∈ K} ⊂ ZX , {Gt : t ∈ K} ⊂ Y X , {Ht : t ∈ K} ⊂ ZY are
unknown families of functions. We understand (1) in such a way that if st
is defined, then the composition Hs ◦Gt is defined (i.e. Ran Gt ⊂ DomHt,
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t ∈ K, where Ran Gt denotes the range of Gt and Dom Ht denotes the
domain of Ht) and equality (1) holds. Similar problems have been studied
in [1], [5], [6], [7].

Let us denote by In(X,Y ) (Sur(X,Y )) the set of all injections (sur-
jections) of X into (onto) Y .

Theorem 1. Let K be a groupoid such that there exists a unit element
e in K.

(i) If {Ft : t ∈ K} ⊂ ZX , {Gt : t ∈ K} ⊂ Y X , {Ht : t ∈ K} ⊂ ZY

satisfy (1) and He ∈ In(Y, Z), Ge ∈ Sur(X, Y ) then there exist functions
A ∈ In(Y,Z), B ∈ Sur(X,Y ) and a family of functions {Tt : t ∈ K} ⊂ Y Y

such that

Tst = Ts ◦ Tt for (s, t) ∈ D(K)(2)

and 



Ft = A ◦ Tt ◦B,

Gt = Tt ◦B,

Ht = A ◦ Tt, t ∈ K.

(3)

(ii) If A ∈ ZY , B ∈ Y X are arbitrary functions and {Tt : t ∈ K} ⊂ Y Y

fulfils condition (2) then the functions Ft, Gt, Ht given by (3) satisfy
equation (1).

Proof. Put F (t) := Ft, G(t) := Gt, H(t) := Ht. Setting in (1) t = e
and then s = e we get

F (s) = H(s) ◦G(e), s ∈ K,(4)

F (t) = H(e) ◦G(t), t ∈ K.(5)

Comparing the right hand sides of (4) and (5) for s = t we obtain

(6) H(t) ◦G(e) = H(e) ◦G(t), t ∈ K.

By (6) and the relation G(e) ∈ Sur(X,Y ) we infer that

(7) Ran H(t) ⊂ Ran H(e) for t ∈ K.

Note that in view of (4) and the fact that G(e) ∈ Sur(X,Y )

(8) Ran H(t) = Ran F (t), t ∈ K.

From (1) we have

(9) F (st) = F (e(st)) = H(e) ◦G(st) for (s, t) ∈ D(K).

Hence

(10) Ran F (st) ⊂ RanH(e) for (s, t) ∈ D(K).
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Thus from (7), (8), (10) we have the following relations

Dom H(e)−1 ⊃ Ran H(t) = RanF (t), t ∈ K,

Dom H(e)−1 ⊃ Ran F (st), (s, t) ∈ D(K).

We introduce on X an equivalence relation ∼ putting

x ∼ y iff G(e)(x) = G(e)(y).

Denote X̃ := X/∼ and let g be an invertible mapping such that g([x]) ∈
[x]. Thus the function G(e)◦g : X̃ → Y is a bijection. From (4) we obtain
F (t) ◦ g = H(t) ◦G(e) ◦ g whence

(11) H(t) = F (t) ◦ g ◦ (G(e) ◦ g)−1 for t ∈ K.

Hence (1) may be written as follows:

(12) F (st) = F (s) ◦ g ◦ (G(e) ◦ g)−1 ◦G(t) for (s, t) ∈ D(K).

(5) yields

(13) G(t) = H(e)−1 ◦ F (t), t ∈ K.

Next (6) implies

(14) G(t) = H(e)−1 ◦H(t) ◦G(e), t ∈ K.

Putting (13) into (12) we obtain

(15) F (st) = F (s) ◦ g ◦ (G(e) ◦ g)−1 ◦H(e)−1 ◦ F (t), (s, t) ∈ D(K).

Define T (t) := H(e)−1 ◦ F (t) ◦ g ◦ (G(e) ◦ g)−1, t ∈ K. Hence by
(12) and (13) we can write

T (st) = H(e)−1 ◦ F (st) ◦ g ◦ (G(e) ◦ g)−1 =

= H(e)−1 ◦ F (s) ◦ g ◦ (G(e) ◦ g)−1 ◦G(t) ◦ g ◦ (G(e) ◦ g)−1 =

= H(e)−1 ◦ F (s) ◦ g ◦ (G(e) ◦ g)−1◦H(e)−1◦F (t)◦g◦(G(e)◦g)−1 =

= T (s) ◦ T (t).

Then (2) holds, where Tt := T (t), t ∈ K. By (11) we have

(16) H(t) = H(e) ◦ T (t), t ∈ K,

and from (16), (14)

(17) G(t) = T (t) ◦G(e), t ∈ K.
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Setting s = e in (15) and (12) we get

(18) F (t) = F (e) ◦ g ◦ (G(e) ◦ g)−1 ◦H(e)−1 ◦ F (t), t ∈ K,

and
F (t) = F (e) ◦ g ◦ (G(e) ◦ g)−1 ◦G(t), t ∈ K

respectively. Hence by (17), the definition of T , and (18) we obtain

(19) F (t) = H(e) ◦ T (t) ◦G(e), t ∈ K.

Putting A := H(e), B := G(e) we get from (19), (17) and (16) the formulas
(3).

The proof of (ii) is easy.
Now we present an application of the above result.

Let D(R+) := {(s, t) ∈ R+ : s · t = 0 or s = c · t} where R+ denotes the
set of all non-negative real numbers and c ∈ R+.

Assume that {Ft : t ∈ R+}, {Gt : t ∈ R+}, {Ht : t ∈ R+} are one-
parameter families of functions mapping a real interval I := 〈a, b〉 into
itself. We consider the following problem: when does the equality Ft+s =
Hs ◦Gt for (s, t) ∈ D(R+) imply that Ft+s = Hs ◦Gt for (s, t) ∈ R2

+? The
analogous problem for the Cauchy equation

(20) Ft+s = Ft ◦ Fs, (s, t) ∈ D(R+)

has been considered by M.C. Zdun in [8] and M. Sablik in [3]. In the
latter paper there has been proved the following

Theorem 2. If the limit lim
t→0

Ft(x)−x
t =: d(x) 6= 0 exists in (a, b), d is

a continuous function, F (x, t) = Ft(x) is continuous (as a function of two
variables) and (20) holds, then {Ft : t ∈ R+} is an iteration semigroup
(i.e. Ft+s = Ft ◦ Fs for (s, t) ∈ R2

+, cp. [4]).

Using Theorems 1(i) and 2 we shall prove the following

Proposition 1. Suppose that H0 ∈ In(I), G0 ∈ Sur(I), the functions
H(x, t) := Ht(x), H0 are continuous and Ft+s = Hs ◦ Gt for (s, t) ∈
D(R+). If the limit lim

t→0

(H−1
0 ◦Ht)(x)−x

t =: d(x) 6= 0 exists in (a, b) and d is

continuous then Ft+s = Hs ◦Gt for (s, t) ∈ R2
+.

Proof. By the proof of Theorem 1(i) we have the formulas

(21)





Ft = H0 ◦ Tt ◦G0,

Gt = Tt ◦G0,

Ht = H0 ◦ Tt, t ∈ R+,
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where {Tt : t ∈ R+} ⊂ II is a family of functions such that Tt+s = Tt ◦ Ts

for (s, t) ∈ D(R+). On account of (21) we have

lim
t→0

(H−1
0 ◦Ht)(x)− x

t
= lim

t→0

Tt(x)− x

t
.

Hence, by Theorem 2, we infer that Tt+s = Tt ◦ Ts for (s, t) ∈ R2
+ and

consequently, from formulas (21), we get the Proposition.

In the associative case we have the following general Lemma which
will be used in the proof of the next Theorem:

Lemma. (i) Let K be a groupoid such that the binary operation is
associative and Kl(t) 6= ∅, Kr(t) 6= ∅ for every t ∈ K. Suppose that
l ∈ ×

t∈K
Kl(t), r ∈ ×

t∈K
Kr(t) and

{Ft : t ∈ K} ⊂ ZX , {Gt : t ∈ K} ⊂ Y X , {Ht : t ∈ K} ⊂ ZY satisfy (1).

If

(C) Hl(t) ∈ In(Y,Z), Gr(t) ∈ Sur(X, Y ) for t ∈ K

then there exist {Mt}t∈K ⊂ In(Y,Z), {Nt}t∈K ⊂ Sur(X, Y ) and {Tt}t∈K ⊂
Y Y such that

(H) Tst = Ts ◦ Tt, Mst ◦ Tst = Ms ◦ Tst, Tst ◦Nst = Tst ◦Nt

for (s, t) ∈ D(K), and

(22)





Ft = Mt ◦ Tt ◦Nt,

Gt = Tt ◦Nt,

Ht = Mt ◦ Tt, t ∈ K

(ii) Conversely, if {Mt}t∈K ⊂ ZY , {Nt}t∈K ⊂ Y X , {Tt}t∈K ⊂ Y Y

satisfy (H) then the functions Ft, Gt, Ht given by (22) fulfil equation (1).

Proof. Suppose that {Ft}t∈K , {Gt}t∈K , {Ht}t∈K satisfy (1) and
condition (C). Put F (t) := Ft, G(t) := Gt, H(t) := Ht, lt := l(t), rt :=
r(t).

From equation (1) we directly obtain

F (st) = F (lst(st)) = H(lst) ◦G(st),(23)
(s, t) ∈ D(K).

F (st) = F ((st)rst) = H(st) ◦G(rst),(24)

In view of associativity we have

F (st) = F ((lss)t) = F (ls(st)) = H(ls) ◦G(st),(25)
(s, t) ∈ D(K).

F (st) = F (s(trt)) = F ((st)rt) = H(st) ◦G(rt),(26)
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Setting in (1) t = rs and then s = lt we get

F (s) = H(s) ◦G(rs), s ∈ K(27)

F (t) = H(lt) ◦G(t), t ∈ K.(28)

Comparing the right hand sides of (27) and (28) for s = t we obtain

(29) H(t) ◦G(rt) = H(lt) ◦G(t), t ∈ K.

Hence, using (29) and the relation G(rt) ∈ Sur(X, Y ), we infer that

(30) RanH(t) ⊂ RanH(lt) for all t ∈ K.

Moreover, from (25) it follows that

(31) Ran F (st) ⊂ RanH(ls) for (s, t) ∈ D(K).

Note that, in view of (27) and the fact that G(rt) ∈ Sur(X,Y ),

(32) Ran H(t) = Ran F (t), t ∈ K.

Thus from (30), (31), (32) we have the following relations

Dom H(lt)−1 ⊃ Ran H(t) = RanF (t), t ∈ K,

Dom H(ls)−1 ⊃ Ran F (st), (s, t) ∈ D(K).

Now, on account of (23) and (25) we get

(33) H(lst)−1 ◦ F (st) = H(ls)−1 ◦ F (st) for (s, t) ∈ D(K).

Fix a t ∈ K and introduce an equivalence relation ∼t on X putting
x ∼t y iff G(rt)(x) = G(rt)(y). Denote

∼t

X := X/∼t .

Fix an invertible mapping gt :
∼t

X → X such that

gt([x]) ∈ [x].

Then for every t ∈ K the mapping G(rt) ◦ gt :
∼t

X → Y is a bijection.
From (27) we obtain

F (t) ◦ gt = H(t) ◦G(rt) ◦ gt, whence

(34) H(t) = F (t) ◦ gt ◦ (G(rt) ◦ gt)−1.

Using (34), (1) may be written as follows:

(35) F (st) = F (s) ◦ gs ◦ (G(rs) ◦ gs)−1 ◦G(t) for (s, t) ∈ D(K).
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Note that the relations (24) and (26) imply the equalities

F (st) ◦ gst = H(st) ◦G(rst) ◦ gst,

F (st) ◦ gt = H(st) ◦G(rt) ◦ gt,
(s, t) ∈ D(K).

Hence we get

(36) F (st) ◦ gst ◦ (G(rst) ◦ gst)−1 = F (st) ◦ gt ◦ (G(rt) ◦ gt)−1

for (s, t) ∈ D(K). By (28) we have

(37) G(t) = H(lt)−1 ◦ F (t), t ∈ K.

Next, (29) implies

(38) G(t) = H(lt)−1 ◦H(t) ◦G(rt), t ∈ K.

Putting (37) into (35) we obtain

(39) F (st) = F (s) ◦ gs ◦ (G(rs) ◦ gs)−1 ◦H(lt)−1 ◦ F (t)

for (s, t) ∈ D(K). Define

T (t) := H(lt)−1 ◦ F (t) ◦ gt ◦ (G(rt) ◦ gt)−1, t ∈ K.

Hence by (33), (36), and (39) we can write

T (st) = H(lst)−1 ◦ F (st) ◦ gst ◦ (G(rst) ◦ gst)−1 =

= H(ls)−1 ◦ F (st) ◦ gst ◦ (G(rst) ◦ gst)−1 =

= H(ls)−1 ◦ F (st) ◦ gt ◦ (G(rt) ◦ gt)−1 =

= H(ls)−1 ◦ F (s) ◦ gs ◦ (G(rs) ◦ gs)−1 ◦H(lt)−1◦
◦ F (t) ◦ gt ◦ (G(rt) ◦ gt)−1 = T (s) ◦ T (t).

Thus T (st) = T (s) ◦ T (t) for (s, t) ∈ D(K).
From (34) we have

(40) H(t) = H(lt) ◦ T (t), t ∈ K,

and from (40), (38)

(41) G(t) = T (t) ◦G(rt), t ∈ K.

Setting in (39) and then in (35) s = lt we get

(42) F (t) = F (lt) ◦ glt ◦ (G(rlt) ◦ glt)
−1 ◦H(lt)−1 ◦ F (t), t ∈ K

and
F (t) = F (lt) ◦ glt ◦ (G(rlt) ◦ glt)

−1 ◦G(t), t ∈ K,
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respectively. Hence, using (41), the definition of the function T and (42),
we can write

F (t) = F (lt) ◦ glt ◦ (G(rlt) ◦ glt)
−1 ◦ T (t) ◦G(rt) =

= F (lt) ◦ glt ◦ (G(rlt) ◦ glt)
−1 ◦H(lt)−1 ◦ F (t) ◦ gt◦

◦ (G(rt) ◦ gt)−1 ◦G(rt) =

= F (t) ◦ gt ◦ (G(rt) ◦ gt)−1 ◦G(rt) = H(lt) ◦ T (t) ◦G(rt).

Thus, the following equality holds:

(43) F (t) = H(lt) ◦ T (t) ◦G(rt), t ∈ K.

Define

(44) M(t) := H(lt), N(t) := G(rt) for t ∈ K.

It is clear that M(t) ∈ In(Y, Z) and N(t) ∈ Sur(X,Y ) for t ∈ K.
Now we show that the functions M, N satisfy condition (H). Using

(33) it is easy to check that

M(st) ◦ T (st) = M(s) ◦ T (st) for (s, t) ∈ D(K).

Note that (24) and (26) yield

H(st) ◦G(rst) = H(st) ◦G(rt) for (s, t) ∈ D(K),

hence by (40)

H(lst) ◦ T (st) ◦G(rst) = H(lst) ◦ T (st) ◦G(rt), (s, t) ∈ D(K),

and consequently

T (st) ◦N(st) = T (st) ◦N(t), (s, t) ∈ D(K).

Finally, formulas (22) result directly from (43), (41) and (40).
The proof of (ii) is easy.

Theorem 3. (i) Let K be a groupoid such that the binary operation
is associative and Kl(t) 6= ∅, Kr(t) 6= ∅ for t ∈ K. Assume that there exist
functions l : K 3 t → l(t) ∈ Kl(t), r : K 3 t → r(t) ∈ Kr(t) such that

(45) l(st) = l(s), r(st) = r(t) for (s, t) ∈ D(K)

and {Ft : t ∈ K} ⊂ ZX , {Gt : t ∈ K} ⊂ Y X , {Ht : t ∈ K} ⊂ ZY

satisfy (1). If Hl(t) ∈ In(Y, Z), Gr(t) ∈ Sur(X, Y ), t ∈ K then there exist

{Mt : t ∈ K} ⊂ In(Y, Z), {Nt : t ∈ K} ⊂ Sur(X, Y ), {Tt : t ∈ K} ⊂ Y Y

satisfying the condition

(G) Mst = Ms, Nst = Nt, Tst = Ts ◦ Tt for (s, t) ∈ D(K)
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and

(46)





Ft = Mt ◦ Tt ◦Nt,

Gt = Tt ◦Nt,

Ht = Mt ◦ Tt, t ∈ K.

(ii) Conversely, if {Mt : t ∈ K} ⊂ ZY , {Nt : t ∈ K} ⊂ Y X , {Tt : t ∈
K} ⊂ Y Y satisfy (G) then the functions Ft, Gt, Ht given by (46) fulfil
equation (1).

Proof. According to the Lemma there exist families of functions
{Mt : t ∈ K} ⊂ In(Y, Z), {Nt : t ∈ K} ⊂ Sur(X, Y ), {Tt : t ∈ K} ⊂ Y Y

satisfying condition (H) and such that formulas (46) hold. It is easy to
see, using (45), that the families {Mt : t ∈ K}, {Nt : t ∈ K} defined by
(44) satisfy condition (G). So, the proof of (i) is finished.

The proof of (ii) is trivial.

The following example gives an application of Theorem 3.

Example 1. Let us consider the following functional equation

(47) Fmin{s,t} = Hs ◦Gt for (s, t) ∈ D

where D := {(s, t) ∈ R2 : t ≤ s ≤ c}, c is a fixed real number and
{Ft : t ≤ c} ⊂ ZX , {Gt : t ≤ c} ⊂ Y X , {Ht : t ≤ c} ⊂ ZY are unknown
families of functions. Putting l(s) := c and r(s) := s for s ∈ R, s ≤ c, it
is easy to check that (45) holds. Analysing the proof of the Lemma, it is
easy to see that the associativity assumption in Theorem 3 can be omitted.
Thus, assuming that Hc ∈ In(Y,Z), Gs ∈ Sur(X, Y ) for s ≤ c, we may use
Theorem 3 to get a solution of equation (47). Namely, according to (G),
we have Mt = Mmin{c,t} = Mc =: A for t ≤ c. So, every solution has the
form 




Ft = A ◦ Tt ◦Nt

Gt = Tt ◦Nt,

Ht = A ◦ Tt t ≤ c,

for some A ∈ ZY , {Nt : t ≤ c} ⊂ Y X and {Tt : t ≤ c} ⊂ Y Y such that
Tmin{s,t} = Ts ◦ Tt for (s, t) ∈ D.

The next Proposition gives a condition under which a groupoid K has
the choice functions l, r satisfying condition (45). To precise the formula-
tion of the Proposition let us denote by K◦ the set of all elements e from
a groupoid K such that the following condition holds for all t ∈ K:

(48)
{

if et is defined then et = t,

if te is defined then te = t.
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Define
K◦

l (t) := {e ∈ K◦ : et is defined},
K◦

r (t) := {e ∈ K◦ : te is defined}, t ∈ K.

Proposition 2. Let K be a groupoid such that the binary operation
is associative. Suppose that the set K◦

l (t) (K◦
r (t)) is nonempty for every

t ∈ K. Then there exists a function l : K 3 t → l(t) ∈ Kl(t) (r : K →
Kr(t)) such that l(st) = l(s) (r(st) = r(t)) for (s, t) ∈ D(K).

Proof. Let l◦ : K 3 t → l◦(t) =: l◦t ∈ K◦
l (t). From associativity we

obtain

l◦st(st) = (l◦sts)t, l◦s(st) = (l◦ss)t for (s, t) ∈ D(K).

Consequently, the products l◦sts, l◦s(st) are defined for (s, t) ∈ D(K). More-
over, in virtue of associativity, we may write

l◦sts = l◦st(l
◦
ss) = (l◦stl

◦
s)s, l◦st(st) = l◦s(l◦stst) = (l◦s l◦st)st

for (s, t) ∈ D(K). Hence the products l◦stl
◦
s , l◦s l◦st are defined and, on

account of (48), we get l◦st = l◦s for (s, t) ∈ D(K). Putting l(s) := l◦(s) for
s ∈ K we get the Proposition. In the case when K◦

r (t) is a nonempty set
one can proceed in an analogous way.

Example 2. Let {Xi : i ∈ W} be a family of disjoint sets and let Sij

be the family of all mappings f : Xi → Xj for i, j ∈ W . It is easy to
check that, for the groupoid S :=

⋃
i,j

Sij (with composition of functions as

a binary operation), the sets K◦
l (f), K◦

r (f) are nonempty for every f ∈ S.
So, under suitable assumptions, we may use Proposition 2 to reduce the
equation

Ff◦g = Hf ◦Gg, f, g ∈ S,

where {Ff : f ∈ S} ⊂ ZY , {Gf : f ∈ S} ⊂ Y X , {Hf : f ∈ S} ⊂ ZY are
unknown families of functions, to the Cauchy equation.

Acknowledgement. I wish to thank Professor M.C. Zdun for having
directed for my attention to the problem and for his help in preparing this
paper.
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