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Near periodicity and Zhukovskij stability

By CHANGMING DING (Xiamen), ZHEN JIN (Taiyuan)

and JOSÉ M. SORIANO (Sevilla)

Abstract. In this paper, we prove pairwise equivalence between near periodicity,

Poisson stability, recurrence and nonwandering of a point with Zhukovskij stability. In

a locally compact phase space, a periodic point is nearly periodic if and only if it is

Zhukovskij stable. Also, it is shown that for a nearly periodic system each orbit closure

is minimal and stable.

1. Introduction

The notion of near periodicity was first introduced in [1]. The equivalence
between near periodicity, recurrence, Poisson stability and nonwandering un-
der Lipschitz stability was established in [11]. Obviously, Lipschitz stability is
stricter than Lyapunov stability, also, Lyapunov stability is rather restrictive for
its isochronous correspondence of orbits. In this paper we generalize the results in
[11] under a relaxed concept of stability, i.e., Zhukovskij stability. Meanwhile, we
deal with the relationship between periodicity and near periodicity. It is shown
that a periodic point is nearly periodic if and only if it is Zhukovskij stable. If a
nearly periodic point is Lyapunov asymptotically stable, then it is a rest point.
We also show the minimality and stability of each orbit closure for a nearly pe-
riodic system. Therefore, near periodicity is not only a recursive notion but also
of some stability.

Let (X, d) be a metric space with a prescribed metric d. Denote by S(x, r) =
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{y ∈ X | d(x, y) < r} and S[x, r] = {y ∈ X | d(x, y) ≤ r} the open ball
and the closed ball with center x and radius r > 0 respectively. In addition,
let H(x, r) = {y ∈ X | d(x, y) = r} and for a set A in X, define S(A, r) =⋃

a∈A S(a, r). A dynamical system or continuous flow (X,π) on X is a continuous
map π : X×R→ X such that π(x, 0) = x, π(π(x, t), s) = π(x, t+s) for all x ∈ X

and t, s ∈ R. We suppress the map π notationally and just write x · t in place of
π(x, t). Similarly, if A ⊂ X and I ⊂ R, then A · I is the set {x · t |x∈A, t∈ I},
in particular x ·R = {x} ·R and x ·R+ = {x} ·R+ are the orbit and the positive
semi-orbit, respectively, of a point x ∈ X. A set Y ⊂ X is positively (nega-
tively) invariant if Y · R+ = Y (Y · R− = Y ), and is invariant if Y · R = Y .
A nonempty set Y is called (positively) minimal provided it is closed and (posi-
tively) invariant, but none of its nonempty proper subsets has these two proper-
ties. The limit set, prolongational limit set and prolongational set are defined by
ω(x) = {y ∈| x · tn → y for some sequence {tn} in R+ with tn → +∞}, J+(x) =
{y ∈ X | there are sequences {xn} in X and {tn} in R+ such that xn → x,
tn → +∞ and xn ·tn → y} and D+(x) = {y ∈ X | there are sequences {xn} in X

and {tn} in R+ such that xn → x and xn · tn → y}. The negative versions α(x),
J−(x) and D−(x) are defined similarly by reversing the direction of the time t.

A point x ∈ X is said to be nonwandering if x ∈ J+(x). A point x is called
positively (negatively) Poisson stable if x ∈ ω(x) (x ∈ α(x)), and x is said to
be Poisson stable if it is both positively and negatively Poisson stable. A point
x is called recurrent if for each ε > 0 there exists a T = T (ε) > 0, such that
x · R ⊂ S(x · [t − T, t + T ], ε) for all t ∈ R. A compact set M in X is positively
(negatively) stable provided every neighborhood U of M contains a positively
(negatively) invariant neighborhood V of M , i.e., M ⊂ V ⊂ U and V · R+ = V

(V ·R− = V ). A set M is called stable provided it is both positively and negatively
stable, i.e., each neighborhood U of M contains an invariant neighborhood V

of M . It is well-known that a compact set M in a locally compact space is
positively (negatively) stable if and only if D+(M) = M (D−(M) = M), where
D±(M) =

⋃
x∈M D±(x).

Definition 1.1. A point x ∈ X is said to be positively (negatively) nearly
periodic if D+(x) = ω(x) (D−(x) = α(x)). It is said to be nearly periodic if both
D+(x) = ω(x) and D−(x) = α(x) hold.

In [11], Lee introduced the concept of weak near periodicity, i.e., x · R+ =
J+(x) and x · R− = J−(x). In fact, it can be verified that weak near periodicity is
equivalent to near periodicity. We point out that in [1], [11] recurrence and almost
periodicity respectively correspond to Poisson stability and recurrence here.
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Remark. Auslander [3], [4] used prolongations to define generalized recur-
rence and α-stabilities. So, the notion of near periodicity should imply recurrence
as well as some stability (see Theorem 3.4). Recall that a dynamical system is
topologically transitive if for any two nonempty open sets U and V of X there
exists some t ∈ R with U ∩ V · t 6= ∅, and a point is transitive if its orbit is
dense in X. For a topological dynamical system defined by a continuous map on
a compact metric space, we similarly define the notion of positively near period-
icity. In that case, it is easy to show that in a topologically transitive system,
the transitive points are exactly the positively nearly periodic points. As to the
case of real flows, we need many careful and deep considerations to find more
interior properties. Actually, the referee suggests an extension to general group
actions which include real flows as well as topological dynamical systems about
maps. We will do such a generalization in a subsequent paper, since there are
interesting researches for connecting our considerations with the existing works.

A dynamical system is said to have a property (pointwise) if every point in
it possesses the corresponding property. For example, a nearly periodic system
(X, π) means that for each x ∈ X, x is nearly periodic.

2. Zhukovskij stability

Historically, Lyapunov stability, Poincaré (orbital) stability and Zhukovskij
stability are pairwise different and perhaps the most important stabilities of solu-
tions of differential equations. The paper [12] presents excellent comparisons and
analyses for these kinds of stabilities. Now, we recall the concept of Zhukovskij
Stability (see [12] and [9]).

Definition 2.1. A point x in X is called positively (negatively) Zhukovskij
stable provided that given any ε > 0, there is a δ = δ(ε) > 0 such that for any
y ∈ S(x, δ), one can find a time parametrization τy such that d(x · t, y · τy(t)) < ε

holds for t ≥ 0 (t ≤ 0), where τy is a homeomorphism from [0, +∞) to [0, +∞)
((−∞, 0] to (−∞, 0]) with τy(0) = 0. Moreover, if d(x · t, y · τy(t)) → 0 as t →
+∞ (t → −∞) also holds, then the point x is said to be positively (negatively)
Zhukovskij asymptotically stable. A point x is said to be Zhukovskij stable if it
is both positively and negatively Zhukovskij stable.

For convenience, in order to prove our results, we sometimes use an equivalent
statement of Zhukovskij stability. In Definition 2.1, let t̄ = τy(t) and h(t̄) =
τ−1
y (t̄) = t; it follows that d(x · t, y · τy(t)) = d(x · h(t̄), y · t̄). Thus, we restate
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positively the Zhukovskij stability of x as follows: For each ε > 0 there exists a
δ = δ(ε) > 0 such that if y ∈ S(x, δ), then one can find a homeomorphism τy

from [0, +∞) to [0, +∞) with τy(0) = 0 to keep d(x · τy(t), y · t) < ε for t ≥ 0. In
addition, this is equivalent to the condition that for each ε > 0, there exists a δ > 0
such that if y ∈ S(x, δ), then one can find two homeomorphisms hy(t) and hx(t)
from [0,+∞) to [0, +∞) with hx(0) = hy(0) = 0 to keep d(x · hx(t), y · hy(t)) < ε

for t ≥ 0.
In Definition 2.1, for two different points y1 and y2 in S(x, δ), |τy1(t) −

τy2(t)| (t ∈ [0, +∞)) may be unbounded even if d(y1, y2) is sufficiently small (see
Example 3.8 in Section 3). That is, in general, τy is not continuous at y. If x

is Zhukovskij stable, so is x · t for each t ∈ R, thus the orbit x · R can be called
Zhukovskij stable.

Remark. Zhukovskij stability is closely related to equicontinuity (see Akin

[2] and Glasner [10]) in the topological dynamical systems. In fact, observe
that if τy(t) ≡ t for each y ∈ S(x, δ), then Zhukovskij stability is just Lyapunov
stability, and the latter corresponds to equicontinuity.

Theorem 2.2. If a system (X, π) is positively (negatively) Zhukovskij stable

at a point x ∈ X, then J+(x) = ω(x)(J−(x) = α(x)).

Proof. Let (X, π) be positively Zhukovskij stable at x. Since ω(x) ⊂ J+(x)
always holds, it is sufficient to show that J+(x) ⊂ ω(x). Let p ∈ J+(x). Then
there exist a sequence {tn}∞n=1 in R+ and a sequence {xn}∞n=1 in X such that
xn → x, tn → +∞ and xntn → p. Now, given any ε > 0, there exists a δ(ε) > 0
such that for each y ∈ S(x, δ(ε)), one can find a homeomorphism τy from [0, +∞)
to [0,+∞) with τy(0) = 0 satisfying d(x · τy(t), y · t) < ε for t ≥ 0. We select
an N > 0 such that if n ≥ N , then d(x, xn) < δ(ε) and d(xn · tn, p) < ε.
Further, it follows that for n ≥ N , d(x · τxn(t), xn · t) < ε holds for t ≥ 0, where
the homeomorphisms τxn are defined similarly as τy. Thus, we obtain that for
n ≥ N ,

d(x · τxn(tn), p) ≤ d(x · τxn(tn), xn · tn) + d(xn · tn, p) < 2ε,

where τxn(tn) → +∞ as tn → +∞. This implies that p ∈ ω(x). A similar
argument works for the case in brackets. The proof is complete. ¤

Corollary 2.3. Let x be positively (negatively) Zhukovskij stable. The point

x is nonwandering if and only if it is positively (negatively) nearly periodic. In

particular, if a periodic point x is positively (negatively) Zhukovskij stable, then

it is positively (negatively) nearly periodic, but the converse is not true.

Proof. We only prove the case outside the brackets. If x is nonwandering,
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i.e., x ∈ J+(x), then we have that x · R+ ⊂ J+(x) since J+(x) is invariant,
thus D+(x) = x · R+

⋃
J+(x) = ω(x). Conversely, by x ∈ D+(x) = ω(x), a

nearly periodic point is always Poisson stable (i.e., x ∈ ω(x)), thus it follows
that x is also nonwandering. The irrational flow on the torus (see [13, p. 345])
implies that a nearly periodic point may not be periodic, even under Lipschitz
stability ([11]). ¤

In the following, we only prove the results of positive versions of stability and
near periodicity, etc. Similar arguments work for the negative versions.

Theorem 2.4. Let X be locally compact and x be positively Zhukovskij

stable. Then, if x is positively Poisson stable, it is positively Lagrange stable, i.e.

the closure of its positive semi-orbit x · R+ is compact.

Proof. Suppose the contrary: if x · R+ is not compact, then we may find a
sequence {x · tn}∞n=1 (tn → +∞) that has no convergent subsequences. Now, x

is a regular point, so there exists a τ -tube U ([5, p. 49]) containing x. Since X is
locally compact, let S[x, 2r] (r > 0) be a compact ball in U . Thus we may assume
that x · tn does not lie in S[x, 2r] for every n. Because x is positively Poisson
stable, there exists a sequence {τn}∞n=1 (τn → +∞) with τ1 < t1 < τ2 < t2 <

· · · < τn < tn < · · · such that x · τn → x, where we suppose that x · τn ∈ S(x, r).
Note that if necessary, we use subsequences. Further, by the continuity of π we
can take a sequence {θn}∞n=1 such that for each n, x · θn ∈ H(x, 2r), τn < θn < tn
and x · (θn, tn] ⊂ X − S[x, 2r]. We assert that tn − θn → +∞, otherwise there is
a subsequence {nk} such that tnk

− θnk
→ T ≥ 0. Then x · tnk

= (x · θnk
) · (tnk

−
θnk

) and x · θnk
∈ H(x, 2r) imply that {x · tn} has a convergent subsequence, a

contradiction. Next, since x is positively Zhukovskij stable, for the above r there
exists a δ > 0 (δ < r) such that if d(x, x · τn) < δ, then d(x · t, (x · τn) · hn(t)) < r

holds for t ≥ 0 and a homeomorphism hn from [0, +∞) to [0, +∞) with hn(0) = 0.
Without loss of generality, we assume that for each n, d(x, x · τn) < δ < r. Since
S[x, 2r] lies in the τ -tube U , it follows that θn − τn ≤ 2τ for every n, thus there
exists a T = T (τ) > 0 such that if t > T , then hn(t) ≥ 2τ ≥ θn − τn for
each n. In addition, by the continuity of π and Definition 2.1, for each fixed
t > T it follows from tn − θn → +∞ that one can take an n0 = n0(t) to satisfy
t ≤ h−1

n0
(tn0 − θn0). This implies that hn0(t) ≤ tn0 − θn0 ≤ tn0 − τn0 , i.e., for

t > T there exists an n0 such that θn0 ≤ τn0 + hn0(t) ≤ tn0 . Thus we obtain that
d(x, x · (tn0 + hn0(t))) ≥ 2r. Hence,

d(x, x · t) ≥ d(x, x · (τn0 + hn0(t)))− d(x · (τn0 + hn0(t)), x · t) ≥ 2r − r = r,

and this contradicts that x is positively Poisson stable. This completes the proof.
¤
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Theorem 2.5. (a) Let (X, π) be periodic system with no rest points. Then

it is Zhukovskij stable. (b) If the periods of all points in a periodic system (X, π)
are bounded, then the system is Zhukovskij stable.

Proof. (a) For each x ∈ X, since x is not a rest point, let Tx > 0 be its
minimal period. Given any ε > 0, it follows from the continuity of π that there
exists a δ > 0 such that if y ∈ S(x, δ), then d(y · t, x · t) < ε for t ∈ [0, Tx + 1].
Also, we may assume that |Ty − Tx| < 1 holds for y ∈ S(x, δ), where Ty is the
period of y. Now, we define a homeomorphism τy : [0, +∞) → [0,+∞) as follows:
For each positive integer n and t ∈ [(n− 1)Tx, nTx], let

τy(t) = (n− 1)Ty +
Ty

Tx
[t− (n− 1)Tx].

Thus it is easy to see that x is positively Zhukovskij stable. Similarly, we obtain
that x is negatively Zhukovskij stable.

(b) There exists a T > 0 such that for each x ∈ X, its period Tx ≤ T or x is
a rest point. By the continuity of π, there exists a δ > 0 such that if y ∈ S(x, δ),
then d(y · t, x · t) < ε for t ∈ [0, T + 1]. Thus, an argument similar to that of (a)
works for this case. ¤

Corollary 2.6. If a periodic system (X,π) has no rest points or the periods

of all points in X are bounded, then the system is nearly periodic.

This corollary is obtained in [1, p. 247, Theorem 1.10] and [11, p. 401, Theo-
rem 2.5]. Here its proof follows immediately from Corollary 2.3 and Theorem 2.5.

Theorem 2.7. If there is a Zhukovskij stable point in a compact minimal

set, then each point in the minimal set is Zhukovskij stable.

Proof. Let A be a compact minimal set. A point p in A is Zhukovskij
stable. Suppose q ∈ A and let ε > 0 be given. Since p is Zhukovskij stable, there
is a δ = δ(ε) > 0 such that for any y ∈ S(p, δ), one can find a time parametrization
τy such that d(p · t, y · τy(t)) < ε/2 holds for t ≥ 0, where τy is a homeomorphism
from [0,+∞) to [0,+∞) with τy(0) = 0. Since A is compact and minimal, it is
covered by the family of open sets {S(p, δ) · t | t ∈ R}. Thus, there exists a τ ∈ R
such that q ∈ S(p, δ) · τ . Choose an r ∈ (0, ε) such that S(q, r) ⊂ S(p, δ) · τ .
Now, for each x ∈ S(q, r), x · (−τ) and q · (−τ) lie in S(p, δ). Then, there are two
homeomorphisms hx(t) and hq(t) from [0,+∞) to [0,+∞) with hx(0) = hq(0) = 0
such that d(x · (hx(t)− τ), p · t) < ε/2 and d(q · (hq(t)− τ), p · t) < ε/2 for t ≥ 0.
It follows that d(x · (hx(t)− τ), q · (hq(t)− τ)) < ε holds for t ≥ 0. Thus it is easy
to see that q is Zhukovskij stable. The proof is complete. ¤
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3. Near periodicity

In this section, we first consider the equivalence between several recursion
notions and generalize the results in [11].

Lemma 3.1 ([5, p. 39]). For an x ∈ X, let x · R be compact. Then the orbit

x · R is recurrent if and only if for each ε > 0 the set Kε = {t | d(x, x · t) < ε} is

relatively dense.

Theorem 3.2. Let X be locally compact and x be Zhukovskij stable. The

following conditions on the point x are pairwise equivalent.

(1) nearly periodic; (2) recurrent; (3) Poisson stable; (4) nonwandering.

Proof. It is clear that (2) =⇒ (3) =⇒ (4). By Theorem 2.2, we have
that ω(x) = J+(x) and α(x) = J−(x), thus (3) ⇐⇒ (4) holds. (1) ⇐⇒ (4) is
obtained in Corollary 2.3. Then it is sufficient to show that (3) =⇒ (2). Let
x be Poisson stable. By Theorem 2.4, x · R is compact. If x is a rest point,
then we are done. So, let x be a regular point. For a given ε > 0, suppose
that the set Kε = {t | d(x, x · t) < ε} is not relatively dense. We assume that
there exists a τ -tube U such that S[x, 2r] ⊂ S(x, ε) ⊂ U for some r > 0 and
S[x, 2r] is compact. Thus the set {t | d(x, x · t) ≤ 2r} (⊂ Kε) is not relatively
dense either. Now, by the continuity of π and x ∈ ω(x) there are sequences
{τn}, {θn} and {tn} with τ1 < θ1 < t1 < · · · < τn < θn < tn < · · · such that
x · τn → x, x · θn ∈ H(x, 2r), x · tn /∈ S[x, 2r], tn → +∞ and tn − θn → +∞ as
n → +∞. Using the technique in the proof of Theorem 2.4, we get a contradiction
to the compactness of x · R. It follows that Kε is relatively dense. Therefore, by
Lemma 3.1 the proof is complete. ¤

Remark. Under Lyapunov stability, it follows from [5, p. 108, Theorem 6.10]
that we can add almost periodicity to the equivalence in Theorem 3.2. It is not
known to the author whether this remains valid under Zhukovskij stability of x.
Note that the local compactness of X is only used in proving (3) =⇒ (2).

In the following, we shall see that near periodicity not only implies recur-
siveness but also some stability. Meanwhile, we consider the relationship between
near periodicity and periodicity.

Lemma 3.3 ([6, p. 136]). In a locally compact phase space, every positively

minimal set is compact.

Theorem 3.4. Let (X, π) be a nearly periodic system in a locally compact

space. Then for each x ∈ X the closure x · R is a minimal and stable set.
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Proof. First, we prove the minimality of x · R. Otherwise, x · R has a
proper closed invariant subset A ⊂ x · R with A 6= ∅. Of course, x does not lie in A.
Take a y ∈ A, the near periodicity of x implies that ω(x) = D+(x) = x · R, hence
y ∈ ω(x) ⊂ J+(x). So it is easy to see that x ∈ J−(y). Since A is a closed invariant
set, it follows that y · R− ⊂ A and α(y) ⊂ A. Now, the near periodicity of the
system implies D−(y) = α(y) ⊂ A and we obtain that x ∈ J−(y) ⊂ D−(y) ⊂ A.
This contradiction shows the minimality of x · R. Further, we assert that x · R is
compact. In fact, let y ∈ x · R = ω(x), then J+(x) ⊂ J+(y) (see [5, p. 60]). We
obtain that ω(x) = J+(x) ⊂ J+(y) = ω(y), thus ω(y) = ω(x) = x · R for each
y ∈ x · R. It follows from [6, p. 133, Lemma 12.3] that x · R is positively minimal,
and therefore it is compact by Lemma 3.3. Next, by the near periodicity of x we
have that D+(x) = ω(x) = x · R = D−(x) = α(x). It follows that D+(x · R) ⊃
D+(x) = x · R. In order to prove that D+(x · R) ⊂ x · R, we take a y ∈ x · R and
consider D+(y) = y ·R+ ∪ J+(y). The minimality of x · R implies that x ∈ ω(y),
thus J+(y) ⊂ J+(x). We obtain that D+(y) ⊂ y ·R+ ∪ J+(x) ⊂ x · R∪D+(x) =
x · R. Hence D+(x ·R) = x · R holds, and similarly D−(x · R) = x · R. Thus it
follows that x · R is stable. ¤

Theorem 3.5. Let x be positively Lyapunov and asymptotically stable. If x

is also positively nearly periodic, then it is a rest point.

Proof. If x is not a rest point, it follows that there exist positive numbers ε

and t0 such that S(x, ε) · t0 ∩ S(x, ε) = ∅. Since x is positively nearly periodic,
it follows that x ∈ ω(x), so there exists a sequence {ti}∞i=1 ⊂ R+ such that
ti → +∞ and x · ti → x, x · ti 6= x. By Lyapunov asymptotical stability of x, it
follows that there is a δ ∈ (0, ε) such that for any y ∈ S(x, δ), d(x · t, y · t) < ε

(t ≥ 0) and d(x · t, y · t) → 0 as t → +∞. Now we choose a t1 ∈ {ti} such that
t1 > t0 and d(x, x · t1) = η < δ (η > 0). It follows from the continuity of π that
there exists a θ ∈ (0, η/2) such that if y ∈ S(x, θ), then d(x · t, y · t) < η/2 for
t ∈ [0, t1]. Since x1 = x · t1 ∈ S(x, δ), there is a t2 ∈ {ti} with t2 > t1 such
that d(x, x · t2) < θ/2 and d(x · t, x1 · t) < θ/2 for t ≥ t2. Let x2 = x · t2 and
x3 = x1 · t2. Thus, d(x, x3) ≤ d(x, x2) + d(x2, x3) ≤ θ < η/2. On the other hand,
since x2 lies in S(x, θ), it follows that d(x · t1, x2 · t1) < η/2, i.e., d(x1, x3) < η/2
(x2 · t1 = x · (t2 + t1) = x1 · t2). Hence, d(x, x1) ≤ d(x, x3) + d(x3, x1) < η.
This contradicts d(x, x1) = η, so we conclude that x is a rest point. The proof is
complete. ¤

The irrational flow on the torus implies that a Lyapunov stable and nearly
periodic point may not be periodic. So, it is an interesting problem to find a
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condition such that a nearly periodic point is periodic. We think that the answer
to the following problem is positive.

Problem. Let a dynamical system (X, π) be positively Zhukovskij and as-
ymptotically stable at a positively nearly periodic point x ∈ X. Is the point x

periodic?

Lemma 3.6. Let X be locally compact. If a point x ∈ X is periodic and

positively nearly periodic, then its orbit x · R is positively stable.

Proof. Since x is periodic and positively nearly periodic, we obtain that
D+(x) = ω(x) = x · R. Further, if a point y lies in the periodic orbit x · R, then
y · R+ = x · R+ and J+(y) = J+(x). It follows that D+(y) = y · R+

⋃
J+(y) =

x · R+
⋃

J+(x) = D+(x). Thus we conclude that D+(x · R) = x · R, i.e. x · R is
positively stable. ¤

Theorem 3.7. Let X be locally compact. If a periodic point x is also

positively nearly periodic, then its orbit x · R is positively Zhukovskij stable.

Proof. First, if x is not a rest point, let T > 0 be its period. From
Lemma 3.6, it follows that the orbit x · R = x · [0, T ] is positively stable. Given
any ε > 0, U = S(x · [0, T ], ε) is an open neighborhood of x · [0, T ]. By the
tubular flow theorem [5, p. 50], there exists a transversal Σ in S(x, σ) · (−θ, θ) for
some positive numbers σ and θ with S(x, σ) · (−θ, θ) ⊂ S(x, ε). Thus it follows
that there exists a µ ∈ (0, σ) such that d(y · t, x · t) < σ for y ∈ S(x, µ) and
t ∈ [0, T + θ]. By Lemma 3.6, there is a positively invariant open set V such that
x · [0, T ] ⊂ V ⊂ S(x · [0, T ], µ) ⊂ U . Take a δ > 0 such that S(x, δ) ⊂ S(x, µ)∩V .
Now, if y ∈ S(x, δ), it follows from the definition of µ that the semi-orbit y · R+

goes back into S(x, σ) at time T . Thus, we may suppose that y ·R+ crosses Σ at
time t1 ∈ [T − θ, T + θ]. Since V is positively invariant and V ⊂ S(x · [0, T ], µ), it
is easy to see that y1 = y · t1 ∈ Σ ∩ V ⊂ Σ ∩ S(x, µ), hence the orbit y1 · R+ also
goes back to Σ at time t2 ∈ [T − θ, T + θ]. Define y2 = y1 · t2 = y · (t1 + t2): then
by induction we obtain two sequences {yi}+∞i=1 and {ti}+∞i=1 (⊂ [T − θ, T + θ]) sat-
isfying yi = yi−1 · ti for i = 2, 3, 4, . . . . Let Ti =

∑i
k=1 tk and T0 = 0. We define

a homeomorphism τy : [0,+∞) → [0, +∞) as follows: For each positive integer n

and t ∈ [Tn−1, Tn], let τy(t) = (n− 1)T + t−Tn−1
Tn−Tn−1

T. Thus, from V ⊂ U it is easy
to verify that d(y · τy(t), x · t) < ε for t ≥ 0, i.e. x is positively Zhukovskij stable.
Secondly, if x is a fixed point, then for any ε > 0 it follows from Lemma 3.6 that
there is a positively invariant neighborhood U such that x ∈ U ⊂ S(x, ε). Let
δ > 0 be such that S(x, δ) ⊂ U . If y ∈ S(x, δ), it is easy to see that y·R+ ⊂ S(x, ε).
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Thus we obtain that d(y · t, x · t) < ε for t ≥ 0, i.e., x is positively Zhukovskij
(Lyapunov) stable. The proof is complete. ¤

Note that in Theorem 3.7 we cannot get Zhukovskij asymptotical stability.
Consider a planar system in polar coordinates: ṙ = f(r) and θ̇ = 1, where
f(r) = r(1 − r)2 sin 1

r−1 for r 6= 1 and f(1) = 0. It is easy to see that the orbit
r = 1 is periodic and nearly periodic. Since there is an infinite number of periodic
orbits in any neighborhood of the unit circle, the orbit r = 1 is stable but not
asymptotically stable. However, if x ·R is also an isolated closed orbit of a planar
system, we can prove the uniformly asymptotically Zhukovskij stability (see [8]).
Note that for a planar system, if x is positively nearly periodic, then it is periodic,
but the converse may not be true.

Now, we present an example that a periodic point is nearly periodic, but not
Lyapunov stable and of course not Lipschitz stable.

Example 3.8. Consider a system in R2 defined by differential equations in
polar coordinates: ṙ = r(1 − r)3 and θ̇ = r. The unit circle is an isolated stable
periodic orbit. We choose an r0 = r(0) > 1 to fix a solution r = r(θ) outside of
the unit circle r = 1. In [7], it is shown that T = 2kπ − ∫ 2kπ

0
dθ√

2(θ+α)+1
is the

time that r = r(θ) surrounds the unit circle k times. Let β(k) =
∫ 2kπ

0
dθ√

2(θ+α)+1
.

Then β(k) → +∞ holds as k → +∞. Thus r = r(θ) is not isochronously attracted
to the solution r = 1, since the closed orbit r = 1 needs time 2kπ for circling itself
k times and the difference of time between solutions r = r(θ) and r = 1 tends to
infinity. This example shows that a periodic orbit may attract its neighbors with
unbounded time phase.

Theorem 3.9. Let X be locally compact. A periodic orbit x · R is nearly

periodic if and only if it is Zhukovskij stable.

Proof. It follows immediately from Corollary 2.3 and Theorem 3.7. ¤
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