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The existence of an associate subgroup in normal cryptogroups

By MARIO PETRICH (Brač)

Abstract. Let S be a semigroup. If a, x ∈ S are such that a = axa, then x is an

associate of a. A subgroup G of S is an associate subgroup of S if it contains exactly

one associate of each element of S. Representing a normal cryptogroup S as a strong

semilattice of Rees matrix semigroups, we give necessary and sufficient conditions on S

in order for S to have an associate subgroup. Having an associate subgroup is equiva-

lent to admitting a unary operation satisfying three simple axioms. We prove that every

maximal subgroup of S is an associate subgroup if and only if S is completely simple. A

counterexample shows that the unary semigroups corresponding to two different asso-

ciate subgroups of (completely simple) S need not be isomorphic. Normal cryptogroups

having an associate subgroup are characterized in several ways in the main result of the

paper.

1. Introduction and summary

The concept of an associate subgroup was introduced by Blyth, Giraldes

and Smith in [1] as a generalization of a notion introduced by Blyth and Mc-

Fadden in [3]. Let S be a semigroup. For a, x ∈ S such that a = axa, the
element x is an associate of a. Consider the following condition on a subsemi-
group T of S: T contains exactly one associate of every element of S. It is proved
in [1] that T must be a maximal subgroup, say G, of S. In such a case, G is termed
an associate subgroup of S. When S is orthodox and G is also the group of units
of S, a structure theorem is proved in [3] for S in terms of a semidirect product of
the band of idempotents of S and G. This result is generalized in [1] to the case
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when S is orthodox and has a middle unit. In its turn, this result was generalized
by Blyth and Martins in [2] to regular semigroups with a medial idempotent,
where e is medial if for any product of idempotents a we have a = aea. Even this
case does not include such familiar examples as completely simple semigroups.

The situation explained above suggests at least two directions of investiga-
tion: either to try to generalize the last of these results or to start from a familiar
class of regular semigroups and single out those that admit an associate subgroup.
The first option is enhanced by the attractive construction in the structure the-
orem in [2], whereas the second seems promising if the class in question has a
substantial structure theorem. This work is devoted to the second approach for
normal cryptogroups (completely regular semigroups S in which H is a congru-
ence and S/H is a normal band). In the constellation of manifold choices of
classes of regular semigroups, those with an associate subgroup seem to offer a
promising case in terms of structure theory.

An associate subgroup of S induces a unary operation so we refer to it as a
∗-semigroup below.

Section 2 consists of a short list of terminology and notation. The general
case of ∗-semigroups takes up Section 3 with several lemmas to be used later. The
centerpiece of this section is a reformulation of a result in [2] and [4]. Completely
simple semigroups are treated in Section 4 with a remarkable result: they are
precisely all semigroups in which every maximal subgroup is associate. Section 5
is auxiliary treating certain concepts to be used later. The case of general normal
cryptogroups is the subject of Section 6. In particular, it contains several charac-
terizations of normal cryptogroups which admit an associate subgroup including
one of them in terms of a subdirect product of a normal band and a completely
simple semigroup; these are our main results.

2. Terminology and notation

As a general reference, we recommend the book [6]. In addition, or for
emphasis, we now list a few frequently used concepts and notation.

Throughout the paper S denotes an arbitrary semigroup unless specified oth-
erwise. For elements s, t ∈ S, t is an associate of s if s = sts; if also s is an
associate of t, that is t = tst then s and t are inverses of each other. Denote
by A(s) the set of all associates and by V (s) the set of all inverses of s. A sub-
semigroup T of S is an associate subsemigroup of S if for every s ∈ S, T ∩ A(s)
contains exactly one element.
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We denote by E(S) the set of all idempotents of S, C(S) (the core of S)
the subsemigroup of S generated by E(S), G(S) the set of all group elements
(completely regular elements) of S, A(S) the automorphism group of S. For
s ∈ S, Hs denotes the H-class of s and if Hs is a group, then s0 stands for its
identity.

The semigroup S is a normal cryptogroup (a normal band of groups) if S is
completely regular, that is S = G(S), Green’s relation H is a congruence, that
is S is a cryptogroup, and S/H is a normal band, that is satisfies the identity
axya = ayxa.

3. Generalities

The following result is essentially known, but we summarize in it the seminal
features of an associate subgroup starting with the more general concept of an
associate subsemigroup.

Theorem 3.1. Let T be an associate subsemigroup of a semigroup S.

(i) T is a maximal subgroup of S.

(ii) The identity z of T is a maximal idempotent of S.

(iii) For every s ∈ S, define s∗ by the requirement

A(s) ∩ T = {s∗}. (1)

The unary operation s → s∗ satisfies the following axioms:

(A1) s = ss∗s,

(A2) s∗s∗∗ = t∗∗t∗,

(A3) s = st∗s =⇒ s∗ = t∗.

In particular, z = s∗s∗∗ for all s ∈ S and for S∗ = {s∗ | s ∈ S}, we have S∗ = T .

Conversely, let S be a semigroup with a unary operation ∗ satisfying axioms

(A1)–(A3). Let z = s∗s∗∗ for any s ∈ S. Then Hz is an associate subgroup of S

with identity z, and for every s ∈ S, relation (1) holds.

Proof. Direct part.
(i) This is the content of ([1],Theorem 2).
(ii) Let e ∈ E(S) be such that e ≥ z. Then

z = ze = zee∗e = ze∗e = e∗e = e∗ze = e∗z = e∗
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whence
e = ee∗e = eze = z,

and z is maximal.
(iii) Let s, t∈S. Then s = ss∗s and axiom (A1) holds. Since s∗, s∗∗, t∗, t∗∗∈Hz,

and by (A1) we have s∗s∗∗, t∗∗t∗ ∈ E(S), we get s∗s∗∗ = t∗∗t∗ and axiom (A2)
holds. If s = st∗s, then t∗ ∈ A(s) ∩Hz = {s∗} so that axiom (A3) holds as well.
The remaining assertions now follow without difficulty.

Converse. The definition of z is justified by axiom (A2). For any s ∈ S, this
axiom also implies that

z ∈ s∗S ∩ Ss∗, s∗ = zs∗ = s∗z ∈ zS ∩ Sz

and thus s∗ H z, that is s∗ ∈ Hz. Since s∗ ∈ A(s) by axiom (A1), we get
s∗ ∈ A(s) ∩Hz.

Let t ∈ A(s) ∩ Hz. Then t ∈ A(s) implies that s = sts and t ∈ Hz yields
t∗ = t−1 in view of (A1). But then t = t∗∗ so that s = s(t∗)∗s and axiom (A3)
gives s∗ = (t∗)∗ = t. Therefore A(s) ∩ Hz = {s∗} which proves that Hz is an
associate subgroup of S and relation (1) holds. ¤

The above theorem is essentially a variant of ([4], Theorem 3.1). It appears
convenient to introduce the following

Definition 3.2. If z is an idempotent of a semigroup S and Hz is an associate
subgroup of S, call z an associate idempotent and the zenith of the ∗-operation
induced by Hz. By a ∗-operation we will mean that axioms (A1)–(A3) are sat-
isfied, in which case S is a ∗-semigroup. For brevity we will speak of ∗-bands,
normal ∗-cryptogroups, etc.

Lemma 3.3. Let S and T be ∗-semigroups and χ : S → T be a multiplicative

homomorphism. Then χ respects the ∗-operations if and only if it respects their

zeniths.

Proof. Let z and w be the zeniths of S and T , respectively.
Direct part. For any s ∈ S, we have

zχ = (s∗s∗∗)χ = (sχ)∗(sχ)∗∗ = w.

Converse. For any s ∈ S, we get sχ = (sχ)(s∗χ)(sχ) where s∗ H z which
implies that s∗χ H zχ = w. But then s∗χ ∈ A(sχ) ∩ Hw = {(sχ)∗} and thus
s∗χ = (sχ)∗. ¤

It is of some interest to compare two associate subgroups of the same semi-
group.
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Proposition 3.4. Any two associate idempotents of a semigroup S are D-

equivalent.

Proof. Let z and w be associate idempotents of S. Denote by ∗ and − the
corresponding ∗-operations on S relative to z and w, respectively. Then z = zzz

and w = ww∗w, where z ∈ Hw and w∗ ∈ Hz. In particular, z = wu for some
u ∈ S. It follows that z = zwuz ∈ zwS, and trivially zw ∈ zS so that z R zw.
Similarly w L zw and thus z R zw L w so that z D w. ¤

In particular, any two associate subgroups of S are isomorphic. Also, by
Theorem 3.1(ii), in a monoid, its identity is the only possible associate idempotent.

It will be convenient to use the following notation. If S is a ∗-semigroup and
s ∈ S, let

s+ = s(ss)∗s.

We will need the following result.

Lemma 3.5. The following conditions on an element a of a semigroup S are

equivalent.

(i) s is completely regular.

(ii) s is contained in a subgroup of S.

(iii) s ∈ s2S ∩ Ss2.

Proof. See ([6], Proposition II.1.3). ¤

We will often use the following lemma without express mention.

Lemma 3.6. Let S be a ∗-semigroup. Then

G(S) = {s ∈ S | s = ss+ = s+s}.

Proof. If s ∈ G(S), then by Lemma 3.5 we have s = s2x = ys2 for some
x, y ∈ S and thus

s = s2x = ss(ss)∗ssx = ss(ss)∗s = ss+

and dually s = s+s. Conversely, s = ss+ ∈ s2S and s = s+s ∈ Ss2 which by the
same reference yields s ∈ G(S). ¤

Another result will be needed.

Lemma 3.7. A semigroup S is completely regular if and only if for every

s ∈ S, we have s ∈ s2Ss.
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Proof. This is the dual of a part of ([6], Theorem II.1.4). ¤

Corollary 3.8. Let S be a ∗-semigroup. Then S is completely regular if

and only if s = ss+ (equivalently s = s+s) for every s ∈ S.

Proof. The direct part follows from Lemma 3.6. For the converse, assume
that s = ss+ for all s ∈ S. Then s ∈ s2Ss and Lemma 3.7 implies that S is
completely regular. The statement in the parentheses follows dually. ¤

4. Completely simple semigroups

From the development of the concept of an associate subgroup one gets the
impression that the motivation for it was the desire that, in the original set-
ting, the group of units of an orthodox semigroup and its band of idempotents
determine the structure of the entire semigroup [3]. The first generalization sub-
stitutes the identity element by a middle unit [1]. The second generalization
further weakens these hypotheses [2]. In each of these cases, the authors arrive at
a lucid structure theorem. The main result in this section points in a different di-
rection: the concept of an associate subgroup can be regarded as a generalization
of completely simple semigroups.

In the preceding section we established the relationship of semigroups with
an associate subgroup and a class of unary semigroups which we dubbed ∗-
semigroups. We tackle here the problem of necessary and sufficient conditions
on an abstract semigroup S in order for S to have all its maximal subgroups
associate.

Theorem 4.1. The following conditions on a semigroup S are equivalent.

(i) S is regular and every maximal subgroup of S is an associate subgroup.

(ii) S is completely simple.

(iii) S admits a unary operation s → s∗ satisfying axiom s = (st)(st)∗s.

In such a case, S admits a unary operation making it a ∗-semigroup.

Proof. (i) =⇒ (ii). By Theorem 3.1(ii), every idempotent of S is maximal.
But then all idempotents of the regular semigroup S are primitive and thus S is
completely simple.

(ii) =⇒ (i). We may set S = M(I, G, Λ;P ). Fix

Hjµ = {(j, h, µ) | h ∈ G}.



The existence of an associate subgroup in normal cryptogroups 287

For any (i, g, λ) ∈ S, the equation

(i, g, λ) = (i, g, λ)(j, h, µ)(i, g, λ) = (i, gpλjhpµig, λ)

has a unique solution (j, p−1
λj g−1p−1

µi , µ). Therefore Hjµ is an associate subgroup
of S.

(ii) =⇒ (iii). We may set S = M(I, G,Λ; P ) where P is normalized at 1.
For every s = (i, g, λ) ∈ S, let s∗ = (1, g−1, 1). Straightforward verification will
show that that the given identity is satisfied.

(iii) =⇒ (ii). Setting s = t in the given identity, by Lemma 3.7 we conclude
that S is completely regular. The given identity also implies that s ∈ StS for any
s, t ∈ S and thus S is simple. Therefore S is completely simple.

Simple verification will show that s∗ defined in (ii) =⇒ (iii) above satisfies
axioms (A1)–(A3). ¤

It is part (iii) which locates the completely simple case among ∗-semigroups.
The theorem shows that completely simple semigroups form a variety in the con-
text of ∗-semigroups.

As a consequence of Proposition 3.4, any two associate subgroups of a semi-
group S are isomorphic. This follows trivially from Theorem 4.1 for completely
simple semigroups. It seems natural to ask whether the ∗-semigroups resulting
from two associate subgroups are ∗-isomorphic. We will see below that this fails
even for completely simple semigroups.

Let I = Λ = {1, 2}, G be a group and P = [ e e
e q ] where e is the identity

of G and q will be specified later. Let χ be an automorphism of the semigroup
S = M(I,G, Λ;P ). Recall from ([6], Section III.3) that

χ : M(I, G,Λ; P ) −→M(J,H, M ; Q)

is a homomorphism if there exist mappings

ϕ : I → J, ψ : Λ → M, u : I → H, v : Λ → H

and a homomorphism ω : G → H such that pλiω = vλqλψ,iϕui and

(i, g, λ)χ = (iϕ, ui(gω)vλ, λψ) (i ∈ I, g ∈ G, λ ∈ Λ).

Recall that (ϕ, u, ω, v, ψ) is called an h-quintuple. In this case, ϕ and ψ are
permutations of the set {1, 2}, ω is an automorphism of G, and u : i → ui and
v : λ → vλ are functions from {1, 2} to G.
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Suppose that the ∗-semigroups induced by the maximal (i.e. associate) sub-
groups H11 and H12 are ∗-isomorphic. By Lemma 3.3, there is an automorphism
χ of S such that (1, e, 1)χ = (1, e, 2). In the above notation ϕ = (1) and ψ = (12)
so that the condition on these parameters has the form

pλiω = vλpλψ,iui (i, λ ∈ {1, 2}).

For special values of i and λ, we get

λ = i = 1 : e = v1u1,

λ = 2, i = 1 : e = v2u1,

λ = 1, i = 2 : e = v1qu2,

λ = i = 2 : qω = v2u2.

From the first two equations, we obtain v1 = v2, from the third u2 = q−1v−1
1 and

using this in the fourth yields

qω = v1q
−1v−1

1 .

Letting πg : x → g−1xg (x ∈ G) for any g ∈ G, we obtain

qωπv1 = (v1q
−1v−1

1 )πv1 = q−1,

where ωπv1 ∈ A(G). Letting τ = ωπv1 , our hypothesis implies the existence of
an automorphism τ of G and an element q of G such that qτ = q−1.

Mr. Peter Campbell then of the University of St. Andrews, Scotland, has
kindly provided examples of groups G in which there exists an element q such
that qτ 6= q−1 for all automorphisms τ of G. For this q in our sandwich matrix
the ∗-semigroups induced by H11 and H12 are not ∗-isomorphic.

In detail, some of his findings are:“the group of smallest order with this
property has 20 elements with the presentation 〈s, t | s5 = 1, t4 = 1, st = ts2〉
or equally 〈s, t | s2tsts−1t = 1, t2 = 1〉. A list of permutation generators is
[(1, 2, 4, 5, 3), (2, 4, 3, 5)]. When considering it as a permutation group the calcu-
lations suggest that any of the ten 4-cycles in the group e.g. (2, 5, 3, 4), (1, 3, 2, 4)
etc. satisfy this property. There were also groups of order 21 and 27 satisfying
this property”.

Any smaller format of sandwich matrix would be 1 × 1, 1 × 2, 1 × 3, 2 × 1,
3 × 1 giving a rectangular group. There are no counterexamples among rectan-
gular groups. Hence the smallest example of a completely simple semigroup with
nonisomorphic ∗-semigroups is of order 4× 20 = 80.
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5. Purity, injectivity and surjectivity

We review here some concepts. They will be used subsequently. We then
briefly establish certain relationships among some of them.

The setting is: S and T are regular semigroups and χ : S → T is a homo-
morphism. We denote by χ the congruence on S induced by χ. The homomor-
phism χ is

pure if a ∈ S, aχ ∈ E(T ), then a ∈ E(S),

H-injective if a, b ∈ S, a H b, aχ = bχ, then a = b,

H-surjective if a ∈ S, b ∈ T, aχ H b implies the existence of x ∈ S such that

x H a, xχ = b.

The first concept was introduced in [5]; the last one is new. Recall that the
natural partial order is defined by

a ≤ b if a = eb = bf for some e, f ∈ E(S).

Lemma 5.1. Let χ : S → T be a homomorphism of regular semigroups.

(i) If S and T are completely regular, then χ is pure if and only if it isH-injective.

(ii) Let S = M(I, G, Λ;P ), T = M(J,H, M ; Q) and χ = χ(ϕ, u, ω, v, ψ). Then

(a) χ is H-injective if and only if ω is (H-)injective.

(b) χ is H-surjective if and only if ω is (H-)surjective.

Proof. (i) Assume that χ is pure and a H b, aχ = bχ. Then a χ b whence
ab−1 χ b0 so that (ab−1)χ = b0χ ∈ E(T ). By hypothesis, ab−1 ∈ E(S). But then
a H b implies a = b. Thus χ is H-injective.

Conversely, suppose that χ is H-injective and let aχ = f ∈ E(T ). Then
a0χ = (aχ)0 = f0 = f and hence aχ = a0χ. Since a H a0, the hypothesis implies
that a = a0. Hence χ is pure.

(ii)(a) Assume that χ is H-injective and gω = 1. For any i ∈ I, λ ∈ Λ,
we get (i, g, λ)χ = (i, 1, λ)χ. Now (i, g, λ) H (i, 1, λ) by hypothesis implies that
(i, g, λ) = (i, 1, λ) so that g = 1. Hence ω is injective.

Conversely, suppose that ω is injective and (i, g, λ)χ = (i, h, λ)χ. Hence
gω = hω which by hypothesis yields g = h, and thus (i, g, λ) = (i, h, λ). Therefore
χ is H-injective.

(b) Assume that χ is H-surjective and let h ∈ H. Let a = (i, g, λ) ∈ S be
arbitrary. For b = (iϕ, uihvλ, λψ) we have aχ H b. By hypothesis, there exists
x = (i, t, λ) such that xχ = b whence ui(tω)vλ = uihvλ and thus tω = h.



290 Mario Petrich

Conversely, suppose that ω is surjective and let a = (i, g, λ) ∈ S and b =
(j, h, µ) ∈ T be such that aχ H b. Then iϕ = j and λψ = µ. For xω = u−1

i hv−1
λ

and c = (i, x, λ), we have c H a and cχ = b. Therefore χ is H-surjective. ¤

A regular semigroup S is

pure if e ∈ E(S), a ∈ S, e ≤ a =⇒ a ∈ E(S),

H-surjective if a ≥ b, b H c implies the existence of x such that x H a, x ≥ c.

The first concept was introduced in [5]; the second one is known as the link
property.

Lemma 5.2. Let S and T be disjoint completely simple semigroups and V

be an ideal extension of T by S0 determined by a homomorphism χ : S → T .

(i) V is pure if and only if χ is pure.

(ii) V is H-surjective if and only if χ is H-surjective.

Proof. (i) This is a special case of ([5], Corollary 3.5).
(ii) Straightforward. ¤

In this context, the concept of H-minorization in completely regular semi-
groups could be termed H-injectivity.

6. Normal cryptogroups

We now address the problem: which normal cryptogroups have an associate
subgroup? Equivalently, which ones contain an associate idempotent or admit
the structure of a ∗-semigroup? This problem for completely simple semigroups
had an easy solution in Section 4. Here the situation is more complex, but as we
will see presently, still manageable. We will represent our semigroup as a strong
semilattice of Rees matrix semigroups, and the needed structure homomorphisms
in terms of h-quintuples. All of these parameters will come into play pointing as
to possible complications if we want to consider more general semigroups. We
will obtain several characterizations of normal cryptogroups with an associate
subgroup one of which is as a subdirect product of a normal band and a completely
simple semigroup. We will construct such subdirect products. We shall use freely
Theorem 3.1 to simultaneously consider associate subgroups or ∗-operations.

We will consistently represent a normal cryptogroup S in the form
[Y ; Sα, χα,β ]. Another result will be needed.
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Lemma 6.1. Let S be a semigroup. Then S ∼= [Y ; Sα, χα,β ] where Sα is

completely simple for every α ∈ Y and χα,β is pure for all α ≥ β if and only if S

is a subdirect product of a normal band and a completely simple semigroup.

Proof. See ([6], Theorem IV.3.3). ¤

Theorem 6.2. Let S = [Y ; Sα, χα,β ] be a normal cryptogroup, where

Sα = M(Iα, Gα, Λα; Pα) (α ∈ Y ),

χα,β = χ(ϕα,β , uα,β , ωα,β , vα,β , ψα,β) (α ≥ β).

Then the following statements are equivalent.

(i) S has an associate subgroup.

(ii) Y has an identity element ε and all ωε,α are isomorphisms.

(iii) Y is a monoid and all ωα,β are isomorphisms.

(iv) S/D is a monoid and S is pure and H-surjective.

(v) S is an H-surjective subdirect product of a normal band B such that B/D
is a monoid and a completely simple semigroup M .

In such a case, G is an associate subgroup of S if and only if G is a maximal

subgroup of Sε. If G = Hkν and (i, g, λ) ∈ Sα, then

(i, g, λ)∗ = (k, (vε,α
ν pα

νψε,α,igpα
λ,kϕε,α

uε,α
k )−1ω−1

ε,α, ν).

Moreover, for every α ∈ Y and e ∈ E(Sα), He is an associate subgroup of Sα,

∪β≤αSβ and ∪f≤eHf .

Proof. (i) =⇒ (ii). Let z = (k, p−1
νk , ν) ∈ Sε be an associate idempotent

of S. Axiom (A1) implies that ε is the identity of Y . Let s = (i, g, λ) ∈ Sα. Then
s∗ = (k, h, ν) for some h ∈ Gε. First note that

ss∗ = (sχα,αε)(s∗χε,αε) = (sχα,α)(s∗χε,α) = s(s∗χε,α).

Omitting sub- and superscripts, we get by axiom (A1)

(i, g, λ) = (i, g, λ)(k, h, ν)(i, g, λ) = (i, g, λ)(kϕ, uk(hω)vν , νψ)(i, g, λ)

= (i, gpλ,kϕuk(hω)vνpνψ,ig, λ)

whence hω = (vνpνψ,igpλ,kϕuk)−1. Now given t ∈ Gα, let g = (pλ,kϕuktvνpνψ,i)−1.
By the above, for this g there exists a unique h ∈ Gε such that hω = t. Therefore
ωε,α is an isomorphism of Gε onto Gα.
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(ii) =⇒ (iii). First let α ≥ β ≥ γ in Y . We simplify the notation by writing

χα,β = χ(ϕ, u, ω, v, ψ), χβ,γ = χ(ϕ′, u′, ω′, v′, ψ′), χα,γ = χ(ϕ′′, u′′, ω′′, v′′, ψ′′).

For any (i, g, λ) ∈ Sα, we obtain

(i, g, λ)χα,βχβ,γ = (iϕϕ′, u′iϕ(uiω
′)(gωω′)(vλω′)v′λψ, λψψ′),

(i, g, λ)χα,γ = (iϕ′′, u′′i (gω′′)v′′λ, λψ′′)

and thus
u′iϕ(uiω

′)(gωω′)(vλω′)v′λψ = u′′i (gω′′)v′′λ. (2)

For g the identity of Gα, this yields

u′iϕ(uiω
′)(vλω′)v′λψ = u′′i v′′λ

whence
(u′′i )−1u′iϕ(uiω

′) = v′′λ(v′λψ)−1(vλω′)−1.

The left hand side depends only on i and the right hand side only on λ. Hence
both sides are equal to some constant c. It follows that

u′′i c = u′iϕ(uiω
′), c−1v′′λ = (vλω′)v′λψ

which together with (2) yields

u′′i c(gωω′)c−1v′′λ = u′′i (gω′′)v′′λ.

After cancelation, we obtain gωω′ = (gω′′)πc where πc is the inner automorphism
t → c−1tc of Gγ induced by c. Therefore ωω′ = ω′′πc. In the special case
ε ≥ α ≥ β, we get ωε,αωα,β = ωε,βπc whence ωα,β = ω−1

ε,αωε,βπc. Since the
mapping on the right hand side of this equation is an isomorphism, ωα,β is an
isomorphism as well.

(iii) =⇒ (iv). By Lemma 5.1, each χα,β is pure. Since each Sα is (trivially)
pure, ([5], Proposition 3.4) implies that S is pure. By Lemma 5.1, each χα,β is
H-surjective. Since for a ∈ Sα, b ∈ Sβ , a ≥ b if and only if α ≥ β and b = aχα,β ,
and H |Sα= HSα , H-surjectivity of all χα,β implies H-surjectivity of S itself.

(iv) =⇒ (v). As above, in the opposite direction, purity of S implies purity
of all χα,β . Now Lemma 6.1 implies that S is a subdirect product of a normal
band B and a completely simple semigroup M . Here B is a homomorphic image
of S, hence S/D being a monoid implies that also B/D is a monoid.

(v) =⇒ (i). Let z be an element of the D-class of B corresponding to the
identity of B/D. Then (z, c) ∈ S for some c ∈ M . Let g ∈ Hc. Then (x, g) ∈ S
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for some x ∈ B. Since S is completely regular, we have (x, g)0 = (x, g0) ∈ S

where g0 = c0. Next

(zxz, g0) = (z, c0)(x, g0)(z, c0) ∈ S,

(zxz, g) = (z, c0)(x, g)(z, c0) ∈ S,

so
(z, g0) H (z, g)

(zxz, g0) H (zxz, g)

and by H-surjectivity, we get (z, g) ∈ S. Thus {z} × Hc ⊆ S. Now {z} is an
associate subgroup of B and Hc is an associate subgroup of M , see Theorem 4.1.
Expressing this in terms of ∗-operations, in view of the coordinatewise multipli-
cation it shows that {z} ×Hc is an associate subgroup of S.

Let G be an associate subgroup of S. By Theorem 3.1(ii), its identity e is
a maximal idempotent of S so that G ⊆ Sε, where ε is the identity of Y . By
the same reference, G is a maximal subgroup of S and thus a maximal subgroup
of Sε.

Conversely, let G be a maximal subgroup of Sε. Then G = Hkν for some
k ∈ Iε and ν ∈ Λε in the usual notation. For (i, g, λ) ∈ Sα, it remains to show
that the equation

(i, g, λ) = (i, g, λ)(k, h, ν)(i, g, λ)

has a unique solution for h ∈ Gε as indicated in the statement of the theorem.
We simplify the notation and calculate

(i, g, λ)(k, h, ν)(i, g, λ) = (i, g, λ)[(k, h, ν)χ](i, g, λ)

= (i, g, λ)(kϕ, uk(hω)vν , νψ)(i, g, λ)

= (i, gpλ,kϕuk(hω)vνpνψ,ig, λ) = (i, g, λ)

⇐⇒ gpλ,kϕuk(hω)vνpνψ,ig = g

⇐⇒ pλ,kϕuk(hω)vνpνψ,i = g−1

⇐⇒ u−1
k p−1

λ,kϕg−1p−1
νψ,iv

−1
ν = hω

⇐⇒ h = (u−1
k p−1

λ,kϕg−1p−1
νψ,iv

−1
ν )ω−1.

This proves the first two additional assertions of the theorem. These state-
ments imply the final claims of the theorem since all three semigroups stated
satisfy part (ii) of the theorem. ¤
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Corollary 6.3. Any two maximal subgroups of a normal ∗-cryptogroup are

isomorphic.

Another result will be useful.

Lemma 6.4. On S = [Y ;Sα, χα,β ] where Sα is completely simple for every

α ∈ Y , define a relation θS by: for a ∈ Sα and b ∈ Sβ , let

a θS b ⇐⇒ aχα,γ = bχβ,γ for some γ ≤ αβ.

Then θS is the least completely simple congruence on S.

Proof. See ([6], Lemma IV.3.2). ¤

We will need the next lemma only for the band case but prove it in full
generality.

Lemma 6.5. Let S = [Y ;Sα, χα,β ] be a normal ∗-cryptogroup. Then θS

preserves the ∗-operation.

Proof. Let s = (i, g, λ) ∈ Sα and t = (j, h, µ) ∈ Sβ and assume that for
some γ ≤ αβ, we have sχα,γ = tχβ,γ . We apply Theorem 6.2. In particular,
Y has an identity ε, so that the zenith z = (k, p−1

νk , ν) of S is an element of Sε.
Further notation:

χε,α = χ(ϕ, u, ω, v, ψ), χε,β = χ(ϕ′, u′, ω′, v′, ψ′),

χα,γ = χ(ϕ′′, u′′, ω′′, v′′, ψ′′), χβ,γ = χ(ϕ′′′, u′′′, ω′′′, v′′′, ψ′′′).

The hypothesis implies

(iϕ′′, u′′i (gω′′)v′′λ, λψ′′) = (jϕ′′′, u′′′j (hω′′′)v′′′µ , µψ′′′)

so that
iϕ′′ = jϕ′′′, u′′i (gω′′)v′′λ = u′′′j (hω′′′)v′′′µ , λψ′′ = µψ′′′. (3)

Next

s∗χε,γ = (k, (vνpνψ,igpλ,kϕuk)−1ω−1, ν)χε,αχα,γ

= (kϕ, p−1
λ,kϕg−1p−1

νψ,i, νψ)χα,γ

= (kϕϕ′′, u′′kϕ(p−1
λ,kϕg−1p−1

νψ,i)ω
′′v′′νψ, νψψ′′). (4)

and analogously

t∗χε,γ = (kϕ′ϕ′′′, u′′′kϕ′(p
−1
µ,kϕ′h

−1p−1
νψ′,j)ω

′′′v′′′νψ′ , νψ′ψ′′′). (5)
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Since s∗ H t∗ and χε,γ preserves H-classes, we get

kϕϕ′′ = kϕ′ϕ′′′, νψψ′′ = νψ′ψ′′′ (6)

Using the condition in the definition of an h-quintuple, we obtain

u′′kϕ(p−1
λ,kϕg−1p−1

νψ,i)ω
′′v′′νψ = u′′kϕ(pλ,kϕω′′)−1(gω′′)−1(pνψ,iω

′′)−1v′′νψ

= u′′kϕ(v′′λpλψ′′,kϕϕ′′u
′′
kψ)−1(gω′′)−1(v′′νψpνψψ′′,iϕ′′u

′′
i )−1v′′νψ

= p−1
λψ′′,kϕϕ′′

[
(v′′λ)−1(gω′′)−1(u′′i )−1

]
p−1

νψψ′′,iϕ′′ , (7)

and similarly

u′′′kϕ′(p
−1
µ,kϕ′h

−1p−1
νψ,j)ω

′′′vνψ′

= p−1
µψ′′′,kϕ′ϕ′′′ [(v

′′′
µ )−1(hω′′′)−1(u′′′j )−1]p−1

νψ′ψ′′′,jϕ′′′ . (8)

The first and the third entries of (4) and (5) are equal by (6). The second
entries of (4) and (5) equal (7) and (8), respectively. The latter two are equal
in view of (3) and (6). Therefore (4) and (5) are equal which proves that θS

preserves the ∗-operation. ¤

Lemma 6.6. The congruence θS in Lemma 6.4 admits the following equiv-

alent formulation:

a θS b ⇐⇒ a ≥ c, b ≥ c for some c ∈ S.

Proof. This follows from the fact that for a ∈ Sα and b ∈ Sβ ,

a ≥ b ⇐⇒ α ≥ β and aχα,β = b. ¤

Lemma 6.7. A regular subsemigroup of a completely regular semigroup is

itself completely regular.

Proof. See ([6], Lemma II.3.7). ¤

Next we give a construction of subdirect products which occur in Theo-
rem 6.2(v). We denote by NB∗, RB∗ and CS∗ the classes of ∗-semigroups which
are normal bands, rectangular bands and completely simple semigroups, respec-
tively. By a ∗-band we mean a band which is a ∗-semigroup.
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Theorem 6.8. Let B = [Y ; Bα, χα,β ] ∈ NB∗ with z as its zenith. Then

θ = θB is a ∗-congruence on B and B/θ ∈ RB∗. Let M ∈ CS∗ and A be a

subdirect product of B/θ and M as ∗-semigroups. Define

S = {(x, a) ∈ B ×M | (xθ, a) ∈ A},
(x, a)∗ = (z, a∗) ((x, a) ∈ S).

Then S is H-surjective and a subdirect product of B and M as ∗-semigroups.

Conversely, every H-surjective ∗-semigroup S which is a subdirect product

of a normal ∗-band and a completely simple ∗-semigroup is ∗-isomorphic to one

constructed above.

Proof. Direct part. That θ is a ∗-congruence on B follows from Lemmas 6.4
and 6.5. Hence B/θ ∈ RB∗. Clearly zθ is the zenith of B/θ. Since A is a subdirect
product of B/θ and M as ∗-semigroups, S is closed under both multiplication and
unary operation and is a subdirect product of B and M under multiplication. In
B/θ×M , the unary operation is by coordinates, so (xθ, a)∗ = (zθ, a∗). The above
definition of (x, a)∗ now yields that S is also a subdirect product of B and M as
∗-semigroups.

Let (x, a), (y, b), (u, c) ∈ S be such that (x, a) ≥ (y, b) H (u, c). Then a ≥ b

and thus a = b since M ∈ CS∗ and y H u whence y = u since B ∈ NB∗. Also
x ≥ y and b H c. The former implies that xθ = yθ. From

(xθ, a), (yθ, b), (uθ, c) ∈ A

we deduce that (xθ, c) ∈ A and thus (x, c) ∈ S. Furthermore, (u, c) ≤ (x, c) H
(x, a) and S is H-surjective.

Converse. We assume that S ⊆ B × M is a subdirect product and is H-
surjective. For every x ∈ B, let

Mx = {a ∈ M | (x, a) ∈ S}.
Since B is a band and S is a subdirect product, for every x ∈ B, Mx is a
subsemigroup of M, MxMy ⊆ Mxy,

⋃
x∈B Mx = M , a∗ ∈ Mz for all a ∈ M . For

any s ∈ S, by Corollary 3.8, we have

s = ss+ = ss(ss)∗s+s = s[s(ss)∗s(ss)∗s]s

and thus for any (x, a) ∈ S, we obtain

(x, a) = (x, a)[(x, a)(z, (aa)∗)(x, a)(z, (aa)∗)(x, a)](x, a)

= (x, a)(x, a(aa)∗a(aa)∗a)(x, a)
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which implies that Mx is regular. By Lemma 6.7, we conclude that Mx is com-
pletely regular and thus also completely simple. Therefore the mapping x → Mx

maps B into the partially ordered set S(M) of completely simple subsemigroups
of M .

Assume now that for x, y ∈ B we have x ≥ y and a ∈ Mx. Then (y, b) ∈ S

for some b ∈ M and

((x, a)(y, b)(x, a))0 = (xyx, aba)0 = (y, (aba)0) = (y, a0)

so that (y, a0) ∈ S and thus (y, a) = (x, a)(y, a0) ∈ S. Therefore a ∈ My which
proves

x ≥ y =⇒ Mx ⊆ My. (9)

By hypothesis, S is H-surjective, that is, given (x, a) ≥ (y, b) H (u, c) in S

there exists (v, d) ∈ S such that (x, a) H (v, d) ≥ (u, c). Since B is a band and
M is completely simple, this implies that x = v, y = u, a = b, c = d, x ≥ y, and
thus (x, a), (y, a), (y, c) ∈ S implies (x, c) ∈ S, that is

a ∈ Mx ∩My, c ∈ My =⇒ c ∈ Mx,

and finally
x ≥ y, Mx ∩My 6= ∅ =⇒ My ⊆ Mx. (10)

By (9), we have Mx ∩ My = Mx, and by hypothesis Mx 6= ∅ so that Mx ∩
My 6= ∅. This together with (10) implies

x ≥ y =⇒ My ⊆ Mx

which in conjunction with (9) yields

x ≥ y =⇒ My = Mx.

By Lemma 6.6 this implies that

x θ y =⇒ Mx = My.

We have arrived at the diagram

B S(M)

B/θ

-

¡

¡

¡µ

?

x Mx

xθ

-

¡

¡

¡µ

?
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and hence at a function B/θ → S(M) where B/θ ∈ RB∗. This function deter-
mines a subdirect product A of B/θ and M which bears the relationship to S as
in the direct part of the theorem. ¤
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