# Outer generalized inverses in rings and related idempotents 

By BILJANA NAČEVSKA (Skopje) and DRAGAN S. DJORDJEVIĆ (Niš)


#### Abstract

In this paper we investigate outer generalized inverses of elements in rings, and related idempotents. Among other things, if $a^{\prime} a a^{\prime}=a^{\prime}$ and $b^{\prime} b b^{\prime}=b^{\prime}$, we consider the relations $b^{\prime} b=a^{\prime} a+u$ and $b b^{\prime}=a a^{\prime}+v$ for a suitable choice of $u$ and $v$.


## 1. Introduction and preliminaries

Let $\mathcal{R}$ be ring with the unit 1 . We use $\mathcal{R}^{-1}$ and $\mathcal{R}^{\bullet}$, respectively, to denote the set of all invertible elements of $\mathcal{R}$ and the set of all idempotents of $\mathcal{R}$. An element $a \in \mathcal{R}$ is outer generalized invertible, if there exists some $a^{\prime} \in \mathcal{R}$ satisfying $a^{\prime}=a^{\prime} a a^{\prime}$. Such an $a^{\prime}$ is called the outer generalized inverse of $a$. In this case $a^{\prime} a$ and $1-a a^{\prime}$ are idempotents corresponding to $a$ and $a^{\prime}$.

For example, the ordinary and generalized Drazin inverse, as well as the Moore-Penrose inverse in rings with involution, are special cases of outer generalized inverses.

Recently, Castro-Gonzalez and Vélez-Cerrada [3] considered generalized Drazin invertible elements $a, b \in \mathcal{R}$, such that the corresponding idempotents $a^{\pi}=1-a a^{D}$ and $b^{\pi}=1-b b^{D}$ satisfy $1-\left(b^{\pi}-a^{\pi}\right)^{2} \in \mathcal{R}^{-1}$.

Generalized inverses in rings have been studied in [4], [5], [6] and [8]. Related results concerning the perturbation of the generalized inverse or related idempotents can be found in [1], [2], [3], [9], [10].

In this paper we extend some results from [3] to idempotents related to
outer generalized inverses of $a$ and $b$. Particularly, we investigate outer generalized inverses with prescribed idempotents, which are introduced in [4].

## 2. Idempotents in rings

In this section we prove some statements concerning idempotents in rings. Let $\mathcal{R}$ be a ring with the unit 1 . First we investigate the relations between idempotents $p$ and $p+u$ for $u \in \mathcal{R}$ and $1-u^{2} \in \mathcal{R}^{-1}$.

Theorem 2.1. Let $u \in \mathcal{R}$ be such that $1-u^{2} \in \mathcal{R}^{-1}$, and let $p \in \mathcal{R}^{\bullet}$. Then the following conditions are equivalent:
(i) $p+u \in \mathcal{R}^{\bullet}$;
(ii) $p+u=(1-u)^{-1} p(1+u)=(1+u) p(1-u)^{-1}$;
(iii) $1-p-u=(1+u)^{-1}(1-p)(1-u)=(1-u)(1-p)(1+u)^{-1}$;

Moreover, if previous conditions hold, and $r=(1+u) p+(1-u)(1-p)$, then $r \in \mathcal{R}^{-1}$, where

$$
r^{-1}=p(1-u)^{-1}+(1-p)(1+u)^{-1}
$$

and $p+u=r p r^{-1}$.
Proof. (i) $\Longleftrightarrow$ (ii): Since $p \in \mathcal{R}^{\bullet}$, we have the following:

$$
\begin{gathered}
p+u \in \mathcal{R}^{\bullet} \Leftrightarrow(p+u)^{2}=p+u \Leftrightarrow p^{2}+p u+u p+u^{2}=p+u \\
\Leftrightarrow p(1+u)=(1-u)(p+u) \Leftrightarrow(1-u)^{-1} p(1+u)=p+u
\end{gathered}
$$

In the same way the second equality can be proved.
(i) $\Longleftrightarrow$ (iii) Since $p \in \mathcal{R}^{\bullet}, 1-p \in \mathcal{R}^{\bullet}$, we have

$$
p+u \in \mathcal{R}^{\bullet} \Longleftrightarrow(1-p)+(-u) \in \mathcal{R}^{\bullet} .
$$

Now we use (i) $\Longleftrightarrow$ (ii) for $1-p$ and $-u$ instead of $p$ and $u$, respectively, and the result follows.

Now, suppose that (i), (ii) and (iii) hold. Let $r=(1+u) p+(1-u)(1-p)$. If we take

$$
r^{\prime}=p(1-u)^{-1}+(1-p)(1+u)^{-1}
$$

then we get

$$
r r^{\prime}=(1+u) p(1-u)^{-1}+(1-u)(1-p)(1+u)^{-1}=(p+u)+(1-p-u)=1
$$

because of (i) and (ii). From the same reason we have

$$
\begin{aligned}
r^{\prime} r & =p(1-u)^{-1}(1+u) p+(1-p)(1+u)^{-1}(1-u)(1-p) \\
& =(1+u)^{-1}(p+u)(p+u)(1-u)+(1-u)^{-1}(1-p-u)(1-p-u)(1+u) \\
& =p+(1-p)=1
\end{aligned}
$$

Consequently $r^{-1}=r^{\prime}$. Moreover, we have $r p r^{-1}=(1+u) p(1-u)^{-1}+0=p+u$, because of (i) and (ii).

We state two auxiliary results, and prove the second one.
Lemma 2.2. If $p, p+u \in \mathcal{R}^{\bullet}$ hold, then pup $=-p u^{2}=-u^{2} p$. If $m, m-u \in$ $\mathcal{R}^{\bullet}$ is satisfied, then $m u m=m u^{2}=u^{2} m$.

Theorem 2.3. Let $u \in \mathcal{R}$ be such that $1-u^{2} \in \mathcal{R}^{-1}$, and let $p, m, p+u \in \mathcal{R}^{\bullet}$. Then the following conditions are equivalent:
(i) $m=p+u$;
(ii) $p(1+u)(1-m)=(1-p)(1-u) m$;
(iii) $m(1-u)(1-p)=(1-m)(1+u) p$.

Proof. (i) $\Longrightarrow$ (ii) and (iii): Suppose that (i) holds. Using the results from Theorem 2.1 we have $p(1+u)(1-m)=(1-u)(p+u)(1-(p+u))=0$ and $(1-p)(1-u) m=(1+u)(1-(p+u))(p+u)=0$. Similarly, it is straightforward to prove that (iii) holds.
(ii) $\Longrightarrow(\mathrm{i})$ : Now, let $p(1+u)(1-m)=(1-p)(1-u) m$. Multiplying this equality from the right side with $m$ and $(1-m)$ respectively, we get

$$
(1-p)(1-u) m=0 \text { and } p(1+u)(1-m)=0
$$

Using Theorem 2.1 again, it follows that

$$
m=(p+u) m \text { and } p+u=(p+u) m
$$

so (i) follows.
In the same manner (iii) $\Longrightarrow$ (i) can be proven, taking $p, m-u$ and $-u$ instead of $m, m+u$ and $u$, respectively.

## 3. Outer generalized inverses and idempotents

In this section we prove some results concerning the outer generalized inverses with prescribed idempotents.

Definition 3.1. Let $a \in \mathcal{R}$ and $p, q \in \mathcal{R}^{\bullet}$. An element $a^{\prime} \in \mathcal{R}$ satisfying

$$
a^{\prime} a a^{\prime}=a^{\prime}, \quad a^{\prime} a=p, \quad 1-a a^{\prime}=q
$$

is called a $(p, q)$-outer generalized inverse of $a$, denoted by $a^{\prime}=a_{p, q}^{(2)}$. It is proved in [4] that if $a_{p, q}^{(2)}$ exists, then it is unique. The set of all $(p, q)$-outer invertible elements of $\mathcal{R}$ is denoted by $\mathcal{R}_{p, q}^{(2)}$.

Now, as our main result, we characterize elements $a$ and $b$ such that $b^{\prime} b=$ $a^{\prime} a+u$ and $b b^{\prime}=a a^{\prime}+v$ such that $1-u^{2} \in \mathcal{R}^{-1}$ and $1-v^{2} \in \mathcal{R}^{-1}$.

Theorem 3.2. Let $a, b, u, v \in \mathcal{R}$ such that $a$ and $b$ are outer invertible and $1-u^{2}, 1-v^{2} \in \mathcal{R}^{-1}$. Then the following conditions are equivalent
(i) $b^{\prime} b=a^{\prime} a+u$ and $b b^{\prime}=a a^{\prime}+v$;
(ii) $u b^{\prime}+a^{\prime} v=b^{\prime}-a^{\prime}-a^{\prime}(a-b) b^{\prime}$ and $a u+v b=b b^{\prime} b-a a^{\prime} a-a\left(a^{\prime}-b^{\prime}\right) b$;
(iii) $u a^{\prime}+b^{\prime} v=b^{\prime}-a^{\prime}-b^{\prime}(a-b) a^{\prime}$ and $b u+v a=b b^{\prime} b-a a^{\prime} a-b\left(a^{\prime}-b^{\prime}\right) a$.

Proof. From the fact that $a$ and $b$ are outer invertible it follows that there exist $p, q, m, n \in \mathcal{R}^{\bullet}$ and there exist $a^{\prime}, b^{\prime} \in R$ such that $a^{\prime}=a_{p, q}^{(2)}$ and $b^{\prime}=b_{m, n}^{(2)}$. That is $a^{\prime} a=p, 1-a a^{\prime}=q, b^{\prime} b=m$ and $1-b b^{\prime}=n$.
(i) $\Longrightarrow$ (ii): Using direct computations from $u=b^{\prime} b-a^{\prime} a$ and $v=b b^{\prime}-a a^{\prime}$ we have that (ii) is satisfied.
(ii) $\Longrightarrow$ (i): Suppose that (ii) holds. If we multiply the first equality with $1-a^{\prime} a$ from the left side we get

$$
\begin{equation*}
\left(1-a^{\prime} a\right)(1-u) b^{\prime}=0 \tag{3.1}
\end{equation*}
$$

and then multiplying the last equality by $b$ from the right side we get

$$
\left(1-a^{\prime} a\right)(1-u) b^{\prime} b=0
$$

that is

$$
\begin{equation*}
(1-p)(1-u) m=0 \tag{3.2}
\end{equation*}
$$

holds.
In the same manner, if we multiply the first equality in (ii) with $1-b b^{\prime}$ from the right side we get

$$
\begin{equation*}
a^{\prime}(1+v)\left(1-b b^{\prime}\right)=0 \tag{3.3}
\end{equation*}
$$

and than multiplying the last equality with $a$ from the left side we have

$$
a a^{\prime}(1+v)\left(1-b b^{\prime}\right)=0
$$

that is

$$
\begin{equation*}
(1-q)(1+v) n=0 \tag{3.4}
\end{equation*}
$$

holds.
Similarly, if we multiply second equality in (ii) with $1-b^{\prime} b$ from the right side we get

$$
a u\left(1-b^{\prime} b\right)+v b\left(1-b^{\prime} b\right)=-a a^{\prime}(a+b)\left(1-b^{\prime} b\right)
$$

which is the same as

$$
a u\left(1-b^{\prime} b\right)+a a^{\prime} a\left(1-b^{\prime} b\right)=-v\left(1-b b^{\prime}\right) b-a a^{\prime}\left(1-b b^{\prime}\right) b .
$$

Multiplying the last equality with $a^{\prime}$ from the left side we get

$$
\begin{equation*}
a^{\prime} a(1+u)\left(1-b^{\prime} b\right)=-a^{\prime}(1+v)\left(1-b b^{\prime}\right) b \tag{3.5}
\end{equation*}
$$

The right-hand side of (3.5) is equal to zero because of (3.3). So, we have $a^{\prime} a(1+u)\left(1-b^{\prime} b\right)=0$ or

$$
\begin{equation*}
p(1+u)(1-m)=0 \tag{3.6}
\end{equation*}
$$

Now, using Theorem 2.3 together with (3.2) and (3.6) we have the result that $b^{\prime} b=a^{\prime} a+u$.

Now, multiplying the second equality of (ii) with $1-a a^{\prime}$ from the left side, we get

$$
\left(1-a a^{\prime}\right)(a u+v b)=\left(1-a a^{\prime}\right)\left(b b^{\prime} b+a b^{\prime} b\right)
$$

which is the same as

$$
a\left(1-a^{\prime} a\right)\left(u-b^{\prime} b\right)=\left(1-a a^{\prime}\right)\left(b b^{\prime}-v\right) b
$$

Multiplying the last equality with $b^{\prime}$ from the right side we get

$$
\begin{equation*}
\left(1-a a^{\prime}\right)(1-v) b b^{\prime}=-a\left(1-a^{\prime} a\right)(1-u) b^{\prime} \tag{3.7}
\end{equation*}
$$

Because of (3.1), it follows that $\left(1-a a^{\prime}\right)(1-v) b b^{\prime}=0$, or

$$
\begin{equation*}
q(1-v)(1-n)=0 \tag{3.8}
\end{equation*}
$$

Finally, using again Theorem 2.3 together with (3.4) and (3.8) it follows that $b b^{\prime}=a a^{\prime}+v$.

The proof of (i) $\Leftrightarrow$ (iii) is just the same as (i) $\Leftrightarrow$ (ii), replacing the role of $a$ and $b$ and taking $-u$ and $-v$ instead of $u$ and $v$, respectively. Or, in other words we prove the result taking (i) to be $a^{\prime} a=b^{\prime} b-u$ and $a a^{\prime}=b b^{\prime}-v$.

Theorem 3.2 gives a characterization of the elements in a ring which have related idempotents differing by a suitable choice of $u$ and $v$. If $a$ is generalized Drazin invertible element in $R$ and if $a^{\pi}$ is the spectral idempotent of $a$ then $a^{D}=a_{p, 1-p}^{(2)}$ for $p=1-a^{\pi}$. See [6] and [7] for the definition of quasinilpotent elements and the generalized Drazin inverse in rings.

Now, as a corollary we obtain one partial result from the main Theorem 3.2 from [3].

Corollary 3.3. Let $a$ and $b$ are generalized Drazin invertible elements in $\mathcal{R}$ and $s \in \mathcal{R}$ such that $1-s^{2} \in R^{-1}$. If $a^{\pi}+s \in R^{\bullet}$ then the following conditions are equivalent:
(i) $b^{\pi}=a^{\pi}+s$;
(ii) $(1+s) b^{D}-a^{D}(1-s)=a^{D}(a-b) b^{D}$.
(iii) $b^{D}(1+s)-(1-s) a^{D}=b^{D}(a-b) a^{D}$

Proof. Let $a^{\prime}=a^{D}$ and $b^{\prime}=b^{D}$. Using Theorem 3.2 with $u=v=-s$ the result follows.

Also, as a corollary we obtain the first result from Theorem 4.2 in [4].
Corollary 3.4. Let $a, b \in R$ and let $p, q \in R^{\bullet}$ be such that $a_{p, q}^{(2)}$ and $b_{p, q}^{(2)}$ exist. Then the following hold

$$
a_{p, q}^{(2)}-b_{p, q}^{(2)}=b_{p, q}^{(2)}(b-a) a_{p, q}^{(2)}=a_{p, q}^{(2)}(b-a) b_{p, q}^{(2)} .
$$

Proof. With $a^{\prime}=a_{p, q}^{(2)}$ and $b^{\prime}=b_{p, q}^{(2)}$ and $u=v=0$ from (ii) and (iii) in Theorem 3.2 the result follows.

## 4. Perturbation of outer generalized invertible elements in Banach algebras

In this section we assume that $\mathcal{R}$ is a complex Banach algebra with the unit 1. Results from Theorem 3.2 are also valid in complex Banach algebras. Now we state the following upper bound for $\left\|b^{\prime}-a^{\prime}\right\| /\left\|a^{\prime}\right\|$.

Theorem 4.1. Let $a, b, u, v \in \mathcal{R}, p, q, m, n \in \mathcal{R}^{\bullet}, a^{\prime}=a_{p, q}^{(2)}$ and $b^{\prime}=b_{m, n}^{(2)}$. Let $b^{\prime} b=a^{\prime} a+u$ and $b b^{\prime}=a a^{\prime}+v$.

If $\|u\|+\left\|a^{\prime}(a-b)\right\|<1$ and $\|v\|<1$, then

$$
\frac{\left\|b^{\prime}-a^{\prime}\right\|}{\left\|a^{\prime}\right\|} \leq \frac{\left\|a^{\prime}(a-b)\right\|+\|u\|+\|v\|}{1-\|u\|-\left\|a^{\prime}(a-b)\right\|}
$$

Proof. From $\|u\|,\|v\|<1$ it follows that $1-u^{2}, 1-v^{2} \in R^{-1}$. Then using the first equation from (ii) in Theorem 3.2 we have $b^{\prime}-a^{\prime}=u b^{\prime}+a^{\prime} v+a^{\prime}(a-b) b^{\prime}=$ $\left(a^{\prime}(a-b)+u\right)\left(b^{\prime}-a^{\prime}\right)+a^{\prime}(a-b) a^{\prime}+u a^{\prime}+a^{\prime} v$. Applying the norm here we get

$$
\left\|b^{\prime}-a^{\prime}\right\| \leq\left(\left\|a^{\prime}(a-b)\right\|+\|u\|\right)\left\|b^{\prime}-a^{\prime}\right\|+\left(\left\|a^{\prime}(a-b)\right\|+\|u\|+\|v\|\right)\left\|a^{\prime}\right\|
$$

and the result follows.
As a corollary we obtain Theorem 5.3 in [3].
Corollary 4.2. Let $a$ and $b$ are generalized Drazin invertible elements in $R$. If $\left\|b^{\pi}-a^{\pi}\right\|+\left\|a^{D}(b-a)\right\|<1$, then

$$
\| \frac{\left\|b^{D}-a^{D}\right\|}{\left\|a^{D}\right\|} \leq \frac{\left\|a^{D}(b-a)\right\|+2\left\|b^{\pi}-a^{\pi}\right\|}{1-\left\|b^{\pi}-a^{\pi}\right\|-\left\|a^{D}(b-a)\right\|}
$$

Again, as a corollary we obtain the second result in Theorem 4.2 in [4].
Corollary 4.3. Let $a$ and $b$ are elements in a Banach algebra $R$, and $p, q \in R^{\bullet}$ be such that $a_{p, q}^{(2)}$ and $b_{p, q}^{(2)}$ exist. Then if $\left\|a_{p, q}^{(2)}\right\|\|b-a\|<1$ then

$$
\frac{\| b_{p, q}^{(2)}-a_{p, q}^{(2)}}{\left\|a_{p, q}^{(2)}\right\|} \leq \frac{\left\|a_{p, q}^{(2)}(b-a)\right\|}{1-\left\|a_{p, q}^{(2)}(b-a)\right\|}
$$

## References

[1] N. Castro-Gonzalez, J. J. Koliha and Y. Wei, Perturbations of Drazin inverse for matrices with equal eigenprojection at zero, Linear Algebra Appl. 312 (2000), 181-189.
[2] N. Castro-Gonzalez and J. Y. Vélez-Cerrada, Characterizations of matrices which eigenprojections at zero are equal to a fixed perturbation, Appl. Math. Comput. 159 (2004), 613-623.
[3] N. Castro-Gonzalez and J. Y. Vélez-Cerrada, Elements of rings and Banach algebras with related spectral idempotents, J. Aust. Math. Soc. 80 (2006), 383-396.
[4] D. S. Djordjević and Yimin Wei, Outer generalized inverses in rings, Comm. Algebra 33 (2005), 3051-3060.
[5] M. P. Drazin, Pseudo-inverses in associate rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514.
[6] R. E.Harte, On quasinilpotents in rings, Panamer. Math. J. 1 (1991), 10-16.
[7] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381.
[8] J. J. Koliha and P. Patricio, Elements of rings with equal spectral idempotents, $J$. Aust. Math. Soc. 72 (2002), 137-152.
[9] V. Rakočević and Y. Wei, The perturbation theory of Drazin inverse and its applications II, J. Aust. Math. Soc. 69 (2000), 1-9.
[10] Y. Wei and G.Wang, The perturbation theory for the Drazin inverse and its applications, Linear Algebra Appl. 258 (1997), 179-186.

BILJANA NAČEVSKA
DEPARTMENT OF MATHEMATICS AND PHYSICS
FACULTY OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGIES
ST. CYRIL AND METHODIUS UNIVERSITY
SKOPJE
R. MACEDONIA

E-mail: biljanan@etf.ukim.edu.mk

DRAGAN S. DJORDJEVIĆ
DEPARTMENT OF MATHEMATICS AND INFORMATICS
FACULTY OF SCIENCES AND MATHEMATICS
UNIVERSITY OF NIS
P.O. BOX 224

18000 NIŠ
SERBIA
E-mail: dragan@pmf.ni.ac.yu ganedj@eunet.yu
(Received November 27, 2007)

