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Approximation ratio of the digits in Oppenheim
series expansion

By BAO-WEI WANG (Wuhan) and JUN WU (Wuhan)

Abstract. This paper is concerned with the Hausdorff dimensions of some sets

determined by the approximation ratio of the digits in Oppenheim series expansion.

We give a general characterization on the Hausdorff dimensions of such sets. As it’s

corollaries, we answer the questions posed by Galambos.

1. Introduction

Oppenheim series expansion is a generalized tool to the representation of real
numbers by infinite series, including Lüroth [12], Engel, Sylvester expansions
[3] and Cantor product [14] as special cases, which is given by the following
algorithm. For any x ∈ (0, 1], set

x = x1, dn = [1/xn] + 1, xn = 1/dn + γn · xn+1, (1)

where γn = γn(d1, . . . , dn) is some positive rational valued function and [y] de-
notes the integer part of y. Then it leads to an infinite series expansion for each
x ∈ (0, 1] with the form

x ∼ 1
d1

+ γ1
1
d2

+ · · ·+ γ1γ2 . . . γn
1

dn+1
+ . . . , (2)

which is called the Oppenheim expansion of x, see [13]. The expansion (2) is
termed as the restricted Oppenheim expansion of x if γn depends on the last
denominator dn only and the function

hn(d) = γn(d) · d(d− 1) (3)
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is integer-valued for all d ≥ 2 and n ≥ 1. In this restricted case, a sufficient and
necessary condition for the series on the right hand side in (2) to be the expansion
of its sum by the algorithm (1) is, see [13],

dn+1 ≥ γndn(dn − 1) + 1 for all n ≥ 1. (4)

In the present paper, we deal with the restricted Oppenheim expansion only.
The representation (2) under (1) was first studied by Oppenheim [13], where

he established the arithmetical properties, including the question of rationality of
this expansion. The foundations of the metric theory were laid down by Galam-

bos [6], [7], [8], [10], [11], see also the monographs of Galambos [9], Schweiger

[15], Vervaat [16], Dajani and Kraaikamp [2]. From [9], Chapter 6, it can
be seen that the integer approximations Tn(x) to the ratios dn(x)/hn−1(dn−1(x))
given by

Tn(x) <
dn(x)

hn−1(dn−1(x))
≤ Tn(x) + 1, n ≥ 1, (5)

where h0 ≡ 1, plays an important role in the metric theory of Oppenheim expan-
sion. They are stochastically independent and are distributed as the denominators
in the Lüroth expansion. Galambos ([9], Chapter 6) showed that

1
n log n

(T1(x) + · · ·+ Tn(x)) → 1, as n →∞ (6)

in probability but it has Lebesgue measure zero where the above convergence
actually occurs. Let

Bm = {x ∈ (0, 1] : 1 ≤ Tn(x) ≤ m for all n ≥ 1}, m ≥ 2,

D =
{

x ∈ (0, 1] :
1

n log n
(T1(x) + · · ·+ Tn(x)) → 1, as n →∞

}
,

and for any k > 0, let

Dk = {x ∈ (0, 1] : T1(x) + · · ·+ Tn(x) ≤ kn log n, for sufficiently large n}.

Galambos, see [9], page 132–133, posed the questions to calculate the Hausdorff
dimension of the sets Bm, D and Dk above.

In this paper, we give a general characterization on the Hausdorff dimension
of the set determined by the approximation ratio dn+1(x)

hn(dn(x)) . More precisely, denote

C =
{

x ∈ (0, 1] : Ln <
dn(x)

hn−1(dn−1(x))
≤ Mn for all n ≥ 1

}
,
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where {Ln : n ≥ 1} and {Mn : n ≥ 1} are two given integer-valued sequences,
then what is the Hausdorff dimension of C? We get the point under some natural
restrictions on Ln and Mn. By (5), it is easy to check that

C = {x ∈ (0, 1] : Ln ≤ Tn(x) ≤ Mn − 1 for all n ≥ 1}.

So, as corollaries, we answer the questions posed by Galambos.

Remark 1.1. Since Tj(x) ≥ 1 for all j ≥ 1, we have T1(x)+· · ·+Tn(x) ≥ n for
all n ≥ 1. Thus we should modify Galambos’ question to calculate the Hausdorff
dimension of Ek (see [9], page 133) to calculate the Hausdorff dimension of Dk,
where Ek is defined as the set of points with the inequality in Dk holding for all
n ≥ 1.

The Hausdorff dimension of Bm has been considered in [17]. Some other
exceptional sets associated with the Oppenheim series expansion were discussed
in [18], [20], [21].

We will use | · | to denote the diameter of a set, dimH to denote the Hausdorff
dimension and ‘cl’ the closure of a subset of (0, 1] respectively.

2. Main results

In this section, we collect some elementary properties on Oppenheim series
expansion and state our main results.

Definition 2.1. Let d1, d2, . . . , dn be an admissible sequence, i.e., d1 ≥ 2 and
dj+1 ≥ hj(dj) + 1 for all 1 ≤ j < n. We call the set

I(d1, . . . , dn) := {x ∈ (0, 1] : d1(x) = d1, . . . , dn(x) = dn}

an n-th order admissible interval.

Proposition 2.2 ([9]). Let d1, d2, . . . , dn be an admissible sequence. Then

the n-th order admissible interval I(d1, . . . , dn) is the interval with two endpoints

1
d1

+ γ1(d1)
1
d2

+ · · ·+ γ1(d1) . . . γn−1(dn−1)
1
dn

,

and

1
d1

+γ1(d1)
1
d2

+ · · ·+γ1(d1) . . . γn−1(dn−1)
1
dn

+γ1(d1) . . . γn−1(dn−1)
1

dn(dn − 1)
.
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Thus

|I(d1, . . . , dn)| = γ1(d1) . . . γn−1(dn−1)
1

dn(dn − 1)
=

n−1∏

j=0

hj(dj)
dj+1(dj+1 − 1)

.

Definition 2.3. We call {hn, n ≥ 1} is of order t, if there exist two constants
0 < c1 ≤ c2 such that

c1d
t ≤ hn(d) ≤ c2d

t

for all d ≥ 2 and n ≥ 1.

Let {Ln, n ≥ 1} and {Mn, n ≥ 1} be two positive integer sequences which
are non-decreasing and satisfy

Ln < Mn, Mn ≥ 3, and sup
n≥1

Mn

Ln
:= α < ∞. (7)

Recall that

C =
{

x ∈ (0, 1] : Ln <
dn(x)

hn−1(dn−1(x))
≤ Mn for all n ≥ 1

}

= {x ∈ (0, 1] : Ln ≤ Tn(x) ≤ Mn − 1 for all n ≥ 1}.

Theorem 2.4. Assume hn(d) ≥ d− 1 for all d ≥ 2 and n ≥ 1.

(1) When {Mn, n ≥ 1} is bounded, we have dimH C = 1.

(2) When Mn →∞ as n →∞, we have

(i) If limn→∞
log Mn+1
log Mn

= 1, then dimH C = 1.

(ii) If limn→∞
log Mn+1
log Mn

= b > 1, {hn, n ≥ 1} is of order t

and limn→∞
log(Mn−Ln)

log Mn
= β, then dimH C = β(b−t)+t

(2b−βb+β)(b−t)+t if b > t

and dimH C = 1 if b ≤ t.

Remark 2.5. It would become clear from the details of the proof that the
assumptions of monotonicity and supn≥1

Mn

Ln
< ∞ in (7) is actually not necessary.

But, from the dimensional number of C at the case b > t, the extra assumption
limn→∞

log(Mn−Ln)
log Mn

= β is not superfluous.

Corollary 2.6 ([17]). If hn(d) ≥ d− 1 for all d ≥ 2 and n ≥ 1, then for any

m ≥ 2,

dimH{x ∈ (0, 1] : 1 ≤ Tn(x) ≤ m for all n ≥ 1} = 1.

Proof. This is a direct consequence of Theorem 2.4. ¤
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Corollary 2.7. Suppose hn(d) ≥ d − 1 for all d ≥ 2 and n ≥ 1. Then we

have

dimH{x ∈ (0, 1] : lim
n→∞

T1(x) + · · ·+ Tn(x)
n log n

= 1} = 1.

Proof. Choose

Ln = [log(n + 6)], Mn =
[
log(n + 6) + (log(n + 6))

1− 1√
log log(n+6)

]
+ 2

for all n ≥ 1. Applying Theorem 2.4, we get the desired result immediately. ¤

Corollary 2.8. Suppose hn(d) ≥ d − 1 for all d ≥ 2 and n ≥ 1. Then for

any k > 0,

dimH{x ∈ (0, 1] : T1(x) + · · ·+ Tn(x) ≤ kn log n, for sufficiently large n} = 1.

Proof. Choose

Ln =
[
k

2
log n

]
, Mn =

[
k

2

(
log n + (log n)1−

1√
log log n

)]

when n is large enough. Then the desired result is an easy consequence of Theo-
rem 2.4. ¤

At the end of this section, we state the Billingsley theorem (see [1], [4], [5],
[19]), which will be used to obtain the lower bound of the Hausdorff dimension of
a fractal set.

Lemma 2.9. Let E ⊂ (0, 1] be a Borel set and µ be a measure with µ(E) > 0.

If for any x ∈ E,

lim inf
r→0

log µ(B(x, r))
log r

≥ s,

where B(x, r) denotes the open ball with center at x and radius r, then dimH E≥s.

3. Proof of Theorem 2.4

We fix some notation at first.
For any admissible sequence d1, d2, . . . , dn, let

J(d1, . . . , dn) =
⋃

Ln+1hn(dn)<dn+1≤Mn+1hn(dn)

cl I(d1, . . . , dn, dn+1),
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and call J(d1, . . . , dn) an n-th order basic interval. By Proposition 2.2, we have

|J(d1, . . . , dn)| =
(

1
Ln+1

− 1
Mn+1

)
|I(d1, . . . , dn)|. (8)

Fix k ≥ 1 and d̄1, . . . , d̄k an admissible sequence. For any n ≥ k, let

Dn(d̄1, . . . , d̄k) =
{

(d1, . . . , dn) ∈ Nn : dj = d̄j , 1 ≤ j ≤ k,

Lj+1 <
dj+1

hj(dj)
≤ Mj+1, k ≤ j < n

}
.

In the following, we shall give a bound estimation of the gap Gl(d1, . . . , dn)
which is the gap between J(d1, . . . , dn) and the closest n-th order basic interval
which lies on the left hand side of J(d1, . . . , dn), and give a bound estimation
of the gap Gr(d1, . . . , dn) which is the gap between J(d1, . . . , dn) and the closest
n-th order basic interval, (if it exsits, otherwise we set Gr(d1, . . . , dn) = ∞),
which lies on the right hand side of J(d1, . . . , dn). For Gl(d1, . . . , dn), it is clear
that Gl(d1, . . . , dn) is not less than the distance between the left endpoint of
J(d1, . . . , dn) and the left endpoint of I(d1, . . . , dn). Thus by Proposition 2.2,

Gl(d1, . . . , dn) ≥ 1
Mn+1

|I(d1, . . . , dn)|.

For Gr(d1, . . . , dn), let J(d̃1, . . . , d̃n) be the n-th order basic interval which lies
on the right hand side of J(d1, . . . , dn) and closest to it. Let j0 = min{j :
dj 6= d̃j}. Then dj = d̃j for 1 ≤ j < j0 and dj0 > d̃j0 . Moreover, it is clear
that Gr(d1, . . . , dn) is not less than the distance between the left endpoint of
J(d̃1, . . . , d̃j0) and the left endpoint of I(d̃1, . . . , d̃j0). Thus, by Proposition 2.2,
we have

Gr(d1, . . . , dn) ≥ 1
Mj0+1

I(d̃1, . . . , d̃j0) ≥
1

Mj0+1
I(d1, . . . , dj0)

≥ 1
Mj0+1

I(d1, . . . , dn) ≥ 1
Mn+1

I(d1, . . . , dn). (9)

Write
G(d1, . . . , dn) =

1
Mn+1

I(d1, . . . , dn). (10)

Now we are in the position to show Theorem 2.4. We divide the proof into
three propositions.
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Proposition 3.1. Suppose hn(d) ≥ d − 1 for all d ≥ 2 and n ≥ 1. If

{Mn, n ≥ 1} is bounded, we have dimH C = 1.

Proposition 3.2. Suppose hn(d) ≥ d − 1 for all d ≥ 2 and n ≥ 1. If

Mn →∞, as n →∞, and limn→∞
log Mn+1
log Mn

= 1, we have dimH C = 1.

Proposition 3.3. Assume hn(d) ≥ d − 1 for all d ≥ 2 and n ≥ 1. Suppose

Mn → ∞, as n → ∞, limn→∞
log Mn+1
log Mn

= b > 1, {hn, n ≥ 1} is of order t and

limn→∞
log(Mn−Ln)

log Mn
= β, then dimH C = β(b−t)+t

(2b−βb+β)(b−t)+t if b > t and dimH C = 1
if b ≤ t.

The proof of Proposition 3.1 is the same as that in Proposition 3.2, except
some minor modifications. Also it can be done with the ideas given in [17]. So,
we show Proposition 3.2 and 3.3 in details only.

In the sequel, the following Stolz’s formula is used several times, so we state
it as a lemma here.

Lemma 3.4. Let {an, bn, n ≥ 1} be two real sequences. If an tends to

infinity increasingly as n →∞ and there exists −∞ ≤ α ≤ ∞ such that

lim
n→∞

bn − bn−1

an − an−1
= α,

Then limn→∞ bn

an
= α.

Proof of Proposition 3.2. By (7), the assumptions on Mn and Stolz’s
formula, we have

lim
n→∞

∑n−1
j=1 log

[(
1
2α

)j ∏j
i=1 Mi

]

∑n+1
j=1 2 log Mj + log Mn+1

= lim
n→∞

∑n
i=1 log Mi − n log 2α

3 log Mn+2 − log Mn+1
= ∞. (11)

For any 0 < ε < 1, let ε′ = ε
1−ε . By (11), there exists k1 ∈ N such that for any

n ≥ k1, we have

n−1∏

j=1

(
1

(2α)j

j∏

i=1

Mi

)ε′

≥
n+1∏

j=1

M2
j ·Mn+1. (12)

Set

E(M1) =
{

x ∈ (0, 1] : d1(x) = M1, Ln+1 <
dn+1(x)

hn(dn(x))
≤ Mn+1 for all n ≥ 1

}
.
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It is easy to see E(M1) ⊂ C. From the definition of Dn(d̄1, . . . , d̄k) and
J(d1, . . . , dn), we have

E(M1) =
∞⋂

n=1

⋃

(d1,...,dn)∈Dn(M1)

J(d1, . . . , dn).

Set µ(J(M1)) = 1. For any n ≥ 2 and J(d1, . . . , dn) ∈ Dn(M1), set

µ(J(d1, . . . , dn)) =
n−1∏

j=1

(
1

Mj+1 − Lj+1
· 1
hj(dj)

)
. (13)

Then µ is a probability mass distribution supported on E(M1), because
∑

Ln+1hn(dn)<dn+1≤Mn+1hn(dn)

µ(J(d1, . . . , dn, dn+1))

= µ(J(d1, . . . , dn))×
∑

Ln+1hn(dn)<dn+1≤Mn+1hn(dn)

1
Mn+1 − Ln+1

· 1
hn(dn)

= µ(J(d1, . . . , dn)).

In order to apply Lemma 2.9 to give a lower bound estimation on dimHE(M1),
we will estimate the measure of arbitrary balls.

We claim first that, for any (d1, . . . , dn) ∈ Dn(M1),

|J(d1, . . . , dn)| ≥ Mn+1

(
µ(J(d1, . . . , dn))

)1+ε′
, (14)

which, in fact, is the essential point in getting the desired result. Note that for
any (d1, . . . , dn) ∈ Dn(M1),

hn(dn) ≥ 1
2
dn ≥ 1

2
Lnhn−1(dn−1) ≥ · · · ≥ 1

2n

n∏

j=1

Lj ≥ 1
(2α)n

n∏

j=1

Mj . (15)

Combine (12) and (15), we have,

∣∣∣J(d1, . . . , dn)
∣∣∣ ≥ 1

M2
n+1

n∏

j=1

1
M2

j

n−1∏

j=1

1
hj(dj)

≥ Mn+1

(
n−1∏

j=1

1
hj(dj)

)1+ε′

. (16)

So, we get the claims.
Let r0 = min{G(d1, . . . , dk1), (d1, . . . , dk1) ∈ Dk1(M1)}. Now we estimate

µ(B(x, r)) for any x ∈ E(M1) and 0 < r < r0. For any x ∈ E(M1), there exists
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a sequence d1, d2, . . . such that (d1, . . . , dn) ∈ Dn(M1) and x ∈ J(d1, . . . , dn) for
all n ≥ 1. Choose n ≥ k1 such that

G(d1, . . . , dn+1) ≤ r < G(d1, . . . , dn).

By the definition of G(d1, . . . , dn), we know that B(x, r) can intersect only one
n-th order basic interval which is J(d1, . . . , dn). For the number of (n + 1)-th
basic intervals that B(x, r) can intersect, we distinguish two cases.

Case I. G(d1, . . . , dn+1) ≤ r < |I(d1, . . . , dn+1)|.
In this case, B(x, r) can intersect at most six (n+1)-th order admissible intervals
I(d1, . . . , dn, dn+1 + i), −1 ≤ i ≤ 4. This is because

r ≤ min
{∣∣I(d1, . . . , dn+1 − 1)

∣∣,
4∑

i=1

∣∣I(d1, . . . , dn+1 + i)
∣∣
}

.

for dn+1 ≥ hn(dn) + 1 ≥ dn ≥ M1 ≥ 3. Thus, by (14), we get

µ(B(x, r)) ≤ 6µ(J(d1, . . . , dn+1)) ≤ 6
(

1
Mn+2

|J(d1, . . . , dn+1)|
)1−ε

≤6
(

1
Mn+2

|I(d1, . . . , dn+1)|
)1−ε

= 6|G(d1, . . . , dn+1)|1−ε≤ 6r1−ε. (17)

Case II. |I(d1, . . . , dn+1)| ≤ r < G(d1, . . . , dn).
By Proposition 2.2, we have for any (d1, . . . , dn, d′n+1) ∈ Dn+1(M1),

|I(d1, . . . , dn, d′n+1)| = |I(d1, . . . , dn)| · hn(dn)
d′n+1(d

′
n+1 − 1)

≥ |I(d1, . . . , dn)| · 1
M2

n+1hn(dn)
,

thus B(x, r) can intersect at most

` := 4rM2
n+1hn(dn) · |I(d1, . . . , dn)|−1

(n + 1)-th order basic intervals. Therefore

µ(B(x, r)) ≤ min
{

µ(J(d1, . . . , dn)),
∑

i

µ(J(d1, . . . , dn, i))
}

,

where the sum is over all i such that max{dn+1 − `, hn(dn) + 1} ≤ i ≤ dn+1 + `.
By (13) and (14), we have

µ(B(x, r)) ≤ µ(J(d1, . . . , dn))
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·min
{

1, 8rM2
n+1hn(dn)|I(d1, . . . , dn)|−1 1

Mn+1 − Ln+1

1
hn(dn)

}

≤ 8
(

1
Mn+1

|J(d1, . . . , dn)|
)1−ε

· 1ε(rM2
n+1)

1−ε|I(d1, . . . , dn)|−(1−ε)

(
1

Mn+1 − Ln+1

)1−ε

= 8
(

1
Ln+1

)1−ε

r1−ε ≤ 8r1−ε. (18)

By (17), (18) and Lemma 2.9, we have

dimH E(M1) ≥ 1− ε.

Since ε > 0 is arbitrary and E(M1) ⊂ C, we have

dimH C = 1. ¤

Proof of Proposition 3.3. For any n ≥ 1 and d̄1 ≥ 2, let

Hn(d̄1) =
[(c1

α

)1+t+···+tn−1

M t
nM t2

n−1 . . .M tn−1

2 d̄1
tn

]
,

Gn(d̄1) =
[
c1+t···+tn−1

2 M t
nM t2

n−1 . . . M tn−1

2 d̄1
tn]

+ 1.

We divide the proof into two parts.

Part I. b > t. Write s0 = β(b−t)+t
(2b−βb+β)(b−t)+t . For this case, we know

lim
n→∞

∑n
j=2 log(Mj − Lj) +

∑n
j=2 log Gj−1(d̄1)

2
∑n

j=2 log Mj+1 +
∑n

j=2 log Gj−1(d̄1)− log(Mn+1 − Ln+1)
= s0, (19)

which gives, for any s > s0 and n large enough,

n∏

j=2

(
(Mj − Lj)Gj−1(d̄1)

)1−s

α2ns
n∏

j=2

(Mj+1 − Lj+1

M2
j+1

)s

≤ 1. (20)

For any d̄1 ≥ 2, let

E(d̄1) =
{

x ∈ (0, 1] : d1(x) = d̄1, Ln+1 <
dn+1(x)

hn(dn(x))
≤ Mn+1, for all n ≥ 1

}
.
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Then

C =
∞⋃

d̄1=2

E(d̄1).

For any d̄1 ≥ 2, x ∈ E(d̄1) and n ≥ 1, since {hn, n ≥ 1} is of order t, then

hn(dn(x)) ≤ c2d
t
n(x) ≤ c2M

t
nht

n−1(dn−1(x)).

By iteration, we have for any x ∈ E(d̄1) and n ≥ 1,

Hn(d̄1) < hn(dn(x)) ≤ Gn(d̄1).

Note that

E(d̄1) =
∞⋂

n=1

⋃

(d1,...,dn)∈Dn(d̄1)

J(d1, . . . , dn),

which follows that

Hs(E(d̄1)) ≤ lim inf
n→∞

∑

(d1,...,dn−1,dn)∈Dn(d̄1)

∣∣J(d1, . . . , dn−1, dn)
∣∣s

= lim inf
n→∞

∑

(d1,...,dn−1)∈Dn−1(d̄1)

∣∣J(d1, . . . , dn−1)
∣∣s

·
∑

Ln< dn
hn−1(dn−1)≤Mn

(
Mn+1 − Ln+1

Mn+1Ln+1

MnLn

Mn − Ln

hn−1(dn−1)
dn(dn − 1)

)s

≤ lim inf
n→∞

∑

(d1,...,dn−1)∈Dn−1(d̄1)

∣∣J(d1, . . . , dn−1)
∣∣s

· ((Mn − Ln)hn−1(dn−1)
)1−s

α2s

(
Mn+1 − Ln+1

M2
n+1

)s

≤ . . .

≤ lim inf
n→∞

n∏

j=2

(
(Mj − Lj)hj−1(dj−1)

)1−s
α2ns

n∏

j=2

(
Mj+1 − Lj+1

M2
j+1

)s

≤ lim inf
n→∞

n∏

j=2

(
(Mj − Lj)Gj−1(d̄1)

)1−s
α2ns

n∏

j=2

(
Mj+1 − Lj+1

M2
j+1

)s

≤ 1. (by (20))

Therefore, dimH E(d̄1) ≤ s. By the arbitrariness of s > s0, we have

dimH C ≤ sup
d̄1≥2

dimH E(d̄1) ≤ β(b− t) + t

(2b− βb + β)(b− t) + t
.
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Now we prove the inverse inequality. Fix d̄1 ≥ 2. Let {tn, n ≥ 1} be an
integer sequence with 3 ≤ tn ≤ (Mn+1 −Ln+1)Gn(d̄1) for all n ≥ 1. It should be
noticed first that

lim
n→∞

∑n
j=1 log(Mj+1 − Lj+1) +

∑n
j=1 log Hj(d̄1)

2
∑n+1

j=1 log Mj + log Mn+2 +
∑n

j=1 log Gj(d̄1)
=

β(b− t) + t

b(b− t) + b
≥ s0.

Thus, for any s′ < s0, there exists k3 ∈ N such that for any n ≥ k3 and
(d1, . . . , dn) ∈ Dn(d̄1), we have

n∏

j=1

1
Mj+1 − Lj+1

1
hj(dj)

≤

 1

Mn+2

n∏

j=0

hj(dj)
dj+1(dj+1 − 1)




s′

. (21)

For any n ≥ 1, denote

Fd̄1
(tn) =

∑n
j=1 log(Mj+1 − Lj+1) +

∑n
j=1 log Hj(d̄1)− log tn

2
∑n+1

j=1 log Mj +
∑n

j=1 log Gj(d̄1)− log tn + log 12
.

Since Fd̄1
(·) is monotonic decreasing with respect to tn, we have

lim inf
n→∞

Fd̄1
(tn) ≥ lim inf

n→∞
Fd̄1

((Mn+1 − Ln+1)Gn(d̄1)) = s0.

Thus, for s′ < s0, there exists k4 ∈ N such that for any n ≥ k4, 3 ≤ tn ≤
(Mn+1 − Ln+1)Gn(d̄1) and (d1, . . . , dn) ∈ Dn(d̄1), we have

tn

n∏

j=1

1
Mj+1 − Lj+1

1
hj(dj)

≤

 tn

12

n∏

j=1

1
M2

j+1hj(dj)




s′

. (22)

We can do as the same way as in the proof of Proposition 3.2 to define a probability
measure µ supported on E(d̄1), i.e., µ(J(d̄1)) = 1, and

µ(J(d1, . . . , dn)) =
n−1∏

j=1

(
1

Mj+1 − Lj+1
· 1
hj(dj)

)
,

for any n ≥ 2 and (d1, . . . , dn) ∈ Dn(d̄1).
In fact, by (19), s0 is just the Billingsley dimension of E(d̄1) with respect to

the measure µ defined above. In the following, what we will done is just to check
that dimH E(d̄1) coincides with its Billingsley dimension.(see also [19] for cases
when Hausdorff dimension coincides with its Billingsley dimension.)
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Let k2 = max{k3, k4}. Then for any n ≥ k2 and (d1, . . . , dn+1) ∈ Dn+1(d̄1),
by (21), we have

µ(J(d1, . . . , dn+1)) ≤

 1

Mn+2

n∏

j=0

hj(dj)
dj+1(dj+1 − 1)




s′

. (23)

Now we estimate µ(B(x, r)) for any x ∈ E(d̄1) and r > 0 small enough. For
any x ∈ E(d̄1), there exists a sequence d1, d2, . . . such that (d1, . . . , dn) ∈ Dn(d̄1)
and x ∈ J(d1, d2, . . . , dn) for all n ≥ 1. For any 0 < r < min{G(d1, . . . , dk2),
(d1, . . . , dk2) ∈ Dk2(d̄1)}, choose n ≥ k2 such that

G(d1, . . . , dn+1) ≤ r < G(d1, . . . , dn).

Case I. G(d1, . . . , dn+1) ≤ r < |I(d1, . . . , dn+1)|.
In this case, by (23), we have

µ(B(x, r)) ≤ 6µ(J(d1, . . . , dn+1)) ≤ 6(G(d1, . . . , dn+1))s′ ≤ 6rs′ . (24)

Case II. |I(d1, . . . , dn+1)| ≤ r < G(d1, . . . , dn).
Denote by tn(r) the number of (n + 1)-th order admissible intervals that the ball
B(x, r) can intersect. Then evidently that 1 ≤ tn(r) ≤ (Mn+1 − Ln+1)hn(dn). If
tn(r) ≤ 5, then by (24),

µ(B(x, r)) ≤ 5µ(J(d1, . . . , dn+1)) ≤ 5rs′ . (25)

If tn(r) ≥ 6, then B(x, r) contains at least [ tn(r)
3 ] many (n+1)-th order admissible

intervals, thus

r ≥ tn(r)
12

n−1∏

j=0

hj(dj)
dj+1(dj+1 − 1)

1
M2

n+1hn(dn)
≥ tn(r)

12

n∏

j=1

1
M2

j+1hj(dj)
.

By (22), we have

µ(B(x, r)) ≤ tn(r)
n∏

j=1

1
Mj+1 − Lj+1

1
hj(dj)

≤ rs′ . (26)

Combine (24), (25) (26) and Lemma 2.9, we have dimH E(d̄1) ≥ s′. Since
E(d̄1) ⊂ C and s′ < s0 is arbitrary, we have dimH C ≥ s0.
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Part II. b ≤ t. Choose d̄1 ≥ 2 such that log d̄1
t−1

> log α
c1

, and let

E(d̄1) =
{

x ∈ (0, 1] : d1(x) = d̄1, Ln+1 <
dn+1(x)

hn(dn(x))
≤ Mn+1 for all n ≥ 1

}
.

By the choice of d̄1, we have

lim inf
n→∞

n−1∑
j=1

log Hj(d̄1)

log Mn+1 + 2
n+1∑
j=1

log Mj

≥ lim inf
n→∞

n−1∑
j=1

log(M t
j . . . M tj−1

2 )

log Mn+1 + 2
n+1∑
j=1

log Mj

= ∞. (27)

For any ε > 0, let ε′ = ε
1−ε . By (27), there exists k5 ∈ N such that for any n ≥ k5,

Mn+1

n+1∏

j=1

M2
j ≤

(
n−1∏

j=1

Hj(d̄1)

)ε′

. (28)

As a consequence, for any n ≥ k5 and (d1, . . . , dn) ∈ Dn(d̄1), we have

|J(d1, . . . , dn)| ≥
n+1∏

j=1

1
M2

j

n−1∏

j=1

1
hj(dj)

≥ Mn+1

(
n−1∏

j=1

1
hj(dj)

)1+ε′

. (29)

Combine this and formula (16) in Proposition 3.2, we can get dimH C = 1 by
following the proof in Proposition 3.2 step by step. The proof of Proposition 3.3
is finished. ¤
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[12] H. Jager and C. De Vroedt, Lüroth series and their ergodic properties, Proc. K. Nederl.
Akad. Wet. A72 (1969), 31–42.

[13] A. Oppenheim, The representation of real numbers by infinite series of rationals, Acta
Arith. 18 (1971), 115–124.
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