# Approximation ratio of the digits in Oppenheim series expansion 

By BAO-WEI WANG (Wuhan) and JUN WU (Wuhan)


#### Abstract

This paper is concerned with the Hausdorff dimensions of some sets determined by the approximation ratio of the digits in Oppenheim series expansion. We give a general characterization on the Hausdorff dimensions of such sets. As it's corollaries, we answer the questions posed by Galambos.


## 1. Introduction

Oppenheim series expansion is a generalized tool to the representation of real numbers by infinite series, including LÜroth [12], Engel, Sylvester expansions [3] and Cantor product [14] as special cases, which is given by the following algorithm. For any $x \in(0,1]$, set

$$
\begin{equation*}
x=x_{1}, d_{n}=\left[1 / x_{n}\right]+1, \quad x_{n}=1 / d_{n}+\gamma_{n} \cdot x_{n+1}, \tag{1}
\end{equation*}
$$

where $\gamma_{n}=\gamma_{n}\left(d_{1}, \ldots, d_{n}\right)$ is some positive rational valued function and $[y]$ denotes the integer part of $y$. Then it leads to an infinite series expansion for each $x \in(0,1]$ with the form

$$
\begin{equation*}
x \sim \frac{1}{d_{1}}+\gamma_{1} \frac{1}{d_{2}}+\cdots+\gamma_{1} \gamma_{2} \ldots \gamma_{n} \frac{1}{d_{n+1}}+\ldots, \tag{2}
\end{equation*}
$$

which is called the Oppenheim expansion of $x$, see [13]. The expansion (2) is termed as the restricted Oppenheim expansion of $x$ if $\gamma_{n}$ depends on the last denominator $d_{n}$ only and the function

$$
\begin{equation*}
h_{n}(d)=\gamma_{n}(d) \cdot d(d-1) \tag{3}
\end{equation*}
$$

Mathematics Subject Classification: Primary: 11K55; Secondly: 28A78, 28A80.
Key words and phrases: Oppenheim series expansion, approximation ratio, Hausdorff dimension.
is integer-valued for all $d \geq 2$ and $n \geq 1$. In this restricted case, a sufficient and necessary condition for the series on the right hand side in (2) to be the expansion of its sum by the algorithm (1) is, see [13],

$$
\begin{equation*}
d_{n+1} \geq \gamma_{n} d_{n}\left(d_{n}-1\right)+1 \quad \text { for all } n \geq 1 \tag{4}
\end{equation*}
$$

In the present paper, we deal with the restricted Oppenheim expansion only.
The representation (2) under (1) was first studied by Oppenheim [13], where he established the arithmetical properties, including the question of rationality of this expansion. The foundations of the metric theory were laid down by Galambos [6], [7], [8], [10], [11], see also the monographs of Galambos [9], Schweiger [15], Vervaat [16], Dajani and Kraaikamp [2]. From [9], Chapter 6, it can be seen that the integer approximations $T_{n}(x)$ to the ratios $d_{n}(x) / h_{n-1}\left(d_{n-1}(x)\right)$ given by

$$
\begin{equation*}
T_{n}(x)<\frac{d_{n}(x)}{h_{n-1}\left(d_{n-1}(x)\right)} \leq T_{n}(x)+1, \quad n \geq 1 \tag{5}
\end{equation*}
$$

where $h_{0} \equiv 1$, plays an important role in the metric theory of Oppenheim expansion. They are stochastically independent and are distributed as the denominators in the Lüroth expansion. Galambos ([9], Chapter 6) showed that

$$
\begin{equation*}
\frac{1}{n \log n}\left(T_{1}(x)+\cdots+T_{n}(x)\right) \rightarrow 1, \quad \text { as } n \rightarrow \infty \tag{6}
\end{equation*}
$$

in probability but it has Lebesgue measure zero where the above convergence actually occurs. Let

$$
\begin{aligned}
\mathbb{B}_{m} & =\left\{x \in(0,1]: 1 \leq T_{n}(x) \leq m \text { for all } n \geq 1\right\}, \quad m \geq 2 \\
\mathbb{D} & =\left\{x \in(0,1]: \frac{1}{n \log n}\left(T_{1}(x)+\cdots+T_{n}(x)\right) \rightarrow 1, \text { as } n \rightarrow \infty\right\},
\end{aligned}
$$

and for any $k>0$, let

$$
\mathbb{D}_{k}=\left\{x \in(0,1]: T_{1}(x)+\cdots+T_{n}(x) \leq k n \log n, \text { for sufficiently large } n\right\} .
$$

Galambos, see [9], page 132-133, posed the questions to calculate the Hausdorff dimension of the sets $\mathbb{B}_{m}, \mathbb{D}$ and $\mathbb{D}_{k}$ above.

In this paper, we give a general characterization on the Hausdorff dimension of the set determined by the approximation ratio $\frac{d_{n+1}(x)}{h_{n}\left(d_{n}(x)\right)}$. More precisely, denote

$$
C=\left\{x \in(0,1]: L_{n}<\frac{d_{n}(x)}{h_{n-1}\left(d_{n-1}(x)\right)} \leq M_{n} \text { for all } n \geq 1\right\}
$$

where $\left\{L_{n}: n \geq 1\right\}$ and $\left\{M_{n}: n \geq 1\right\}$ are two given integer-valued sequences, then what is the Hausdorff dimension of $C$ ? We get the point under some natural restrictions on $L_{n}$ and $M_{n}$. By (5), it is easy to check that

$$
C=\left\{x \in(0,1]: L_{n} \leq T_{n}(x) \leq M_{n}-1 \text { for all } n \geq 1\right\} .
$$

So, as corollaries, we answer the questions posed by Galambos.
Remark 1.1. Since $T_{j}(x) \geq 1$ for all $j \geq 1$, we have $T_{1}(x)+\cdots+T_{n}(x) \geq n$ for all $n \geq 1$. Thus we should modify Galambos' question to calculate the Hausdorff dimension of $E_{k}$ (see [9], page 133) to calculate the Hausdorff dimension of $\mathbb{D}_{k}$, where $E_{k}$ is defined as the set of points with the inequality in $\mathbb{D}_{k}$ holding for all $n \geq 1$.

The Hausdorff dimension of $\mathbb{B}_{m}$ has been considered in [17]. Some other exceptional sets associated with the Oppenheim series expansion were discussed in [18], [20], [21].

We will use $|\cdot|$ to denote the diameter of a set, $\operatorname{dim}_{\mathrm{H}}$ to denote the Hausdorff dimension and ' cl ' the closure of a subset of $(0,1]$ respectively.

## 2. Main results

In this section, we collect some elementary properties on Oppenheim series expansion and state our main results.

Definition 2.1. Let $d_{1}, d_{2}, \ldots, d_{n}$ be an admissible sequence, i.e., $d_{1} \geq 2$ and $d_{j+1} \geq h_{j}\left(d_{j}\right)+1$ for all $1 \leq j<n$. We call the set

$$
I\left(d_{1}, \ldots, d_{n}\right):=\left\{x \in(0,1]: d_{1}(x)=d_{1}, \ldots, d_{n}(x)=d_{n}\right\}
$$

an $n$-th order admissible interval.
Proposition 2.2 ([9]). Let $d_{1}, d_{2}, \ldots, d_{n}$ be an admissible sequence. Then the $n$-th order admissible interval $I\left(d_{1}, \ldots, d_{n}\right)$ is the interval with two endpoints

$$
\frac{1}{d_{1}}+\gamma_{1}\left(d_{1}\right) \frac{1}{d_{2}}+\cdots+\gamma_{1}\left(d_{1}\right) \ldots \gamma_{n-1}\left(d_{n-1}\right) \frac{1}{d_{n}}
$$

and

$$
\frac{1}{d_{1}}+\gamma_{1}\left(d_{1}\right) \frac{1}{d_{2}}+\cdots+\gamma_{1}\left(d_{1}\right) \ldots \gamma_{n-1}\left(d_{n-1}\right) \frac{1}{d_{n}}+\gamma_{1}\left(d_{1}\right) \ldots \gamma_{n-1}\left(d_{n-1}\right) \frac{1}{d_{n}\left(d_{n}-1\right)}
$$

Thus

$$
\left|I\left(d_{1}, \ldots, d_{n}\right)\right|=\gamma_{1}\left(d_{1}\right) \ldots \gamma_{n-1}\left(d_{n-1}\right) \frac{1}{d_{n}\left(d_{n}-1\right)}=\prod_{j=0}^{n-1} \frac{h_{j}\left(d_{j}\right)}{d_{j+1}\left(d_{j+1}-1\right)}
$$

Definition 2.3. We call $\left\{h_{n}, n \geq 1\right\}$ is of order $t$, if there exist two constants $0<c_{1} \leq c_{2}$ such that

$$
c_{1} d^{t} \leq h_{n}(d) \leq c_{2} d^{t}
$$

for all $d \geq 2$ and $n \geq 1$.
Let $\left\{L_{n}, n \geq 1\right\}$ and $\left\{M_{n}, n \geq 1\right\}$ be two positive integer sequences which are non-decreasing and satisfy

$$
\begin{equation*}
L_{n}<M_{n}, \quad M_{n} \geq 3, \quad \text { and } \quad \sup _{n \geq 1} \frac{M_{n}}{L_{n}}:=\alpha<\infty \tag{7}
\end{equation*}
$$

Recall that

$$
\begin{aligned}
C & =\left\{x \in(0,1]: L_{n}<\frac{d_{n}(x)}{h_{n-1}\left(d_{n-1}(x)\right)} \leq M_{n} \text { for all } n \geq 1\right\} \\
& =\left\{x \in(0,1]: L_{n} \leq T_{n}(x) \leq M_{n}-1 \text { for all } n \geq 1\right\}
\end{aligned}
$$

Theorem 2.4. Assume $h_{n}(d) \geq d-1$ for all $d \geq 2$ and $n \geq 1$.
(1) When $\left\{M_{n}, n \geq 1\right\}$ is bounded, we have $\operatorname{dim}_{\mathrm{H}} C=1$.
(2) When $M_{n} \rightarrow \infty$ as $n \rightarrow \infty$, we have
(i) If $\lim _{n \rightarrow \infty} \frac{\log M_{n+1}}{\log M_{n}}=1$, then $\operatorname{dim}_{\mathrm{H}} C=1$.
(ii) If $\lim _{n \rightarrow \infty} \frac{\log M_{n+1}}{\log M_{n}}=b>1,\left\{h_{n}, n \geq 1\right\}$ is of order $t$ and $\lim _{n \rightarrow \infty} \frac{\log \left(M_{n}-L_{n}\right)}{\log M_{n}}=\beta$, then $\operatorname{dim}_{\mathrm{H}} C=\frac{\beta(b-t)+t}{(2 b-\beta b+\beta)(b-t)+t}$ if $b>t$ and $\operatorname{dim}_{\mathrm{H}} C=1$ if $b \leq t$.

Remark 2.5. It would become clear from the details of the proof that the assumptions of monotonicity and $\sup _{n \geq 1} \frac{M_{n}}{L_{n}}<\infty$ in (7) is actually not necessary. But, from the dimensional number of $C$ at the case $b>t$, the extra assumption $\lim _{n \rightarrow \infty} \frac{\log \left(M_{n}-L_{n}\right)}{\log M_{n}}=\beta$ is not superfluous.

Corollary 2.6 ([17]). If $h_{n}(d) \geq d-1$ for all $d \geq 2$ and $n \geq 1$, then for any $m \geq 2$,

$$
\operatorname{dim}_{H}\left\{x \in(0,1]: 1 \leq T_{n}(x) \leq m \text { for all } n \geq 1\right\}=1
$$

Proof. This is a direct consequence of Theorem 2.4.

Corollary 2.7. Suppose $h_{n}(d) \geq d-1$ for all $d \geq 2$ and $n \geq 1$. Then we have

$$
\operatorname{dim}_{H}\left\{x \in(0,1]: \lim _{n \rightarrow \infty} \frac{T_{1}(x)+\cdots+T_{n}(x)}{n \log n}=1\right\}=1
$$

Proof. Choose

$$
L_{n}=[\log (n+6)], \quad M_{n}=\left[\log (n+6)+(\log (n+6))^{1-\frac{1}{\sqrt{\log \log (n+6)}}}\right]+2
$$

for all $n \geq 1$. Applying Theorem 2.4, we get the desired result immediately.
Corollary 2.8. Suppose $h_{n}(d) \geq d-1$ for all $d \geq 2$ and $n \geq 1$. Then for any $k>0$,
$\operatorname{dim}_{H}\left\{x \in(0,1]: T_{1}(x)+\cdots+T_{n}(x) \leq k n \log n\right.$, for sufficiently large $\left.n\right\}=1$.
Proof. Choose

$$
L_{n}=\left[\frac{k}{2} \log n\right], \quad M_{n}=\left[\frac{k}{2}\left(\log n+(\log n)^{\left.1-\frac{1}{\sqrt{\log \log n}}\right)}\right]\right.
$$

when $n$ is large enough. Then the desired result is an easy consequence of Theorem 2.4.

At the end of this section, we state the Billingsley theorem (see [1], [4], [5], [19]), which will be used to obtain the lower bound of the Hausdorff dimension of a fractal set.

Lemma 2.9. Let $E \subset(0,1]$ be a Borel set and $\mu$ be a measure with $\mu(E)>0$. If for any $x \in E$,

$$
\liminf _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} \geq s
$$

where $B(x, r)$ denotes the open ball with center at $x$ and radius $r$, then $\operatorname{dim}_{H} E \geq s$.

## 3. Proof of Theorem 2.4

We fix some notation at first.
For any admissible sequence $d_{1}, d_{2}, \ldots, d_{n}$, let

$$
J\left(d_{1}, \ldots, d_{n}\right)=\bigcup_{L_{n+1} h_{n}\left(d_{n}\right)<d_{n+1} \leq M_{n+1} h_{n}\left(d_{n}\right)} \operatorname{cl} I\left(d_{1}, \ldots, d_{n}, d_{n+1}\right),
$$

and call $J\left(d_{1}, \ldots, d_{n}\right)$ an $n$-th order basic interval. By Proposition 2.2 , we have

$$
\begin{equation*}
\left|J\left(d_{1}, \ldots, d_{n}\right)\right|=\left(\frac{1}{L_{n+1}}-\frac{1}{M_{n+1}}\right)\left|I\left(d_{1}, \ldots, d_{n}\right)\right| . \tag{8}
\end{equation*}
$$

Fix $k \geq 1$ and $\bar{d}_{1}, \ldots, \bar{d}_{k}$ an admissible sequence. For any $n \geq k$, let

$$
\begin{aligned}
D_{n}\left(\bar{d}_{1}, \ldots, \bar{d}_{k}\right)=\{ & \left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}: d_{j}=\bar{d}_{j}, 1 \leq j \leq k, \\
& \left.L_{j+1}<\frac{d_{j+1}}{h_{j}\left(d_{j}\right)} \leq M_{j+1}, k \leq j<n\right\} .
\end{aligned}
$$

In the following, we shall give a bound estimation of the gap $G^{l}\left(d_{1}, \ldots, d_{n}\right)$ which is the gap between $J\left(d_{1}, \ldots, d_{n}\right)$ and the closest $n$-th order basic interval which lies on the left hand side of $J\left(d_{1}, \ldots, d_{n}\right)$, and give a bound estimation of the gap $G^{r}\left(d_{1}, \ldots, d_{n}\right)$ which is the gap between $J\left(d_{1}, \ldots, d_{n}\right)$ and the closest $n$-th order basic interval, (if it exsits, otherwise we set $G^{r}\left(d_{1}, \ldots, d_{n}\right)=\infty$ ), which lies on the right hand side of $J\left(d_{1}, \ldots, d_{n}\right)$. For $G^{l}\left(d_{1}, \ldots, d_{n}\right)$, it is clear that $G^{l}\left(d_{1}, \ldots, d_{n}\right)$ is not less than the distance between the left endpoint of $J\left(d_{1}, \ldots, d_{n}\right)$ and the left endpoint of $I\left(d_{1}, \ldots, d_{n}\right)$. Thus by Proposition 2.2,

$$
G^{l}\left(d_{1}, \ldots, d_{n}\right) \geq \frac{1}{M_{n+1}}\left|I\left(d_{1}, \ldots, d_{n}\right)\right| .
$$

For $G^{r}\left(d_{1}, \ldots, d_{n}\right)$, let $J\left(\tilde{d}_{1}, \ldots, \tilde{d}_{n}\right)$ be the $n$-th order basic interval which lies on the right hand side of $J\left(d_{1}, \ldots, d_{n}\right)$ and closest to it. Let $j_{0}=\min \{j$ : $\left.d_{j} \neq \tilde{d}_{j}\right\}$. Then $d_{j}=\tilde{d}_{j}$ for $1 \leq j<j_{0}$ and $d_{j_{0}}>\tilde{d}_{j_{0}}$. Moreover, it is clear that $G^{r}\left(d_{1}, \ldots, d_{n}\right)$ is not less than the distance between the left endpoint of $J\left(\tilde{d}_{1}, \ldots, \tilde{d}_{j_{0}}\right)$ and the left endpoint of $I\left(\tilde{d}_{1}, \ldots, \tilde{d}_{j_{0}}\right)$. Thus, by Proposition 2.2, we have

$$
\begin{align*}
G^{r}\left(d_{1}, \ldots, d_{n}\right) & \geq \frac{1}{M_{j_{0}+1}} I\left(\tilde{d}_{1}, \ldots, \tilde{d}_{j_{0}}\right) \geq \frac{1}{M_{j_{0}+1}} I\left(d_{1}, \ldots, d_{j_{0}}\right) \\
& \geq \frac{1}{M_{j_{0}+1}} I\left(d_{1}, \ldots, d_{n}\right) \geq \frac{1}{M_{n+1}} I\left(d_{1}, \ldots, d_{n}\right) . \tag{9}
\end{align*}
$$

Write

$$
\begin{equation*}
G\left(d_{1}, \ldots, d_{n}\right)=\frac{1}{M_{n+1}} I\left(d_{1}, \ldots, d_{n}\right) \tag{10}
\end{equation*}
$$

Now we are in the position to show Theorem 2.4. We divide the proof into three propositions.

Proposition 3.1. Suppose $h_{n}(d) \geq d-1$ for all $d \geq 2$ and $n \geq 1$. If $\left\{M_{n}, n \geq 1\right\}$ is bounded, we have $\operatorname{dim}_{\mathrm{H}} C=1$.

Proposition 3.2. Suppose $h_{n}(d) \geq d-1$ for all $d \geq 2$ and $n \geq 1$. If $M_{n} \rightarrow \infty$, as $n \rightarrow \infty$, and $\lim _{n \rightarrow \infty} \frac{\log M_{n+1}}{\log M_{n}}=1$, we have $\operatorname{dim}_{\mathrm{H}} C=1$.

Proposition 3.3. Assume $h_{n}(d) \geq d-1$ for all $d \geq 2$ and $n \geq 1$. Suppose $M_{n} \rightarrow \infty$, as $n \rightarrow \infty, \lim _{n \rightarrow \infty} \frac{\log M_{n+1}}{\log M_{n}}=b>1,\left\{h_{n}, n \geq 1\right\}$ is of order $t$ and $\lim _{n \rightarrow \infty} \frac{\log \left(M_{n}-L_{n}\right)}{\log M_{n}}=\beta$, then $\operatorname{dim}_{\mathrm{H}} C=\frac{\beta(b-t)+t}{(2 b-\beta b+\beta)(b-t)+t}$ if $b>t$ and $\operatorname{dim}_{\mathrm{H}} C=1$ if $b \leq t$.

The proof of Proposition 3.1 is the same as that in Proposition 3.2, except some minor modifications. Also it can be done with the ideas given in [17]. So, we show Proposition 3.2 and 3.3 in details only.

In the sequel, the following Stolz's formula is used several times, so we state it as a lemma here.

Lemma 3.4. Let $\left\{a_{n}, b_{n}, n \geq 1\right\}$ be two real sequences. If $a_{n}$ tends to infinity increasingly as $n \rightarrow \infty$ and there exists $-\infty \leq \alpha \leq \infty$ such that

$$
\lim _{n \rightarrow \infty} \frac{b_{n}-b_{n-1}}{a_{n}-a_{n-1}}=\alpha
$$

Then $\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=\alpha$.
Proof of Proposition 3.2. By (7), the assumptions on $M_{n}$ and Stolz's formula, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sum_{j=1}^{n-1} \log \left[\left(\frac{1}{2 \alpha}\right)^{j} \prod_{i=1}^{j} M_{i}\right]}{\sum_{j=1}^{n+1} 2 \log M_{j}+\log M_{n+1}}=\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \log M_{i}-n \log 2 \alpha}{3 \log M_{n+2}-\log M_{n+1}}=\infty . \tag{11}
\end{equation*}
$$

For any $0<\epsilon<1$, let $\epsilon^{\prime}=\frac{\epsilon}{1-\epsilon}$. By (11), there exists $k_{1} \in \mathbb{N}$ such that for any $n \geq k_{1}$, we have

$$
\begin{equation*}
\prod_{j=1}^{n-1}\left(\frac{1}{(2 \alpha)^{j}} \prod_{i=1}^{j} M_{i}\right)^{\epsilon^{\prime}} \geq \prod_{j=1}^{n+1} M_{j}^{2} \cdot M_{n+1} \tag{12}
\end{equation*}
$$

Set

$$
E\left(M_{1}\right)=\left\{x \in(0,1]: d_{1}(x)=M_{1}, L_{n+1}<\frac{d_{n+1}(x)}{h_{n}\left(d_{n}(x)\right)} \leq M_{n+1} \text { for all } n \geq 1\right\}
$$

It is easy to see $E\left(M_{1}\right) \subset C$. From the definition of $D_{n}\left(\bar{d}_{1}, \ldots, \bar{d}_{k}\right)$ and $J\left(d_{1}, \ldots, d_{n}\right)$, we have

$$
E\left(M_{1}\right)=\bigcap_{n=1}^{\infty} \bigcup_{\left(d_{1}, \ldots, d_{n}\right) \in D_{n}\left(M_{1}\right)} J\left(d_{1}, \ldots, d_{n}\right)
$$

Set $\mu\left(J\left(M_{1}\right)\right)=1$. For any $n \geq 2$ and $J\left(d_{1}, \ldots, d_{n}\right) \in D_{n}\left(M_{1}\right)$, set

$$
\begin{equation*}
\mu\left(J\left(d_{1}, \ldots, d_{n}\right)\right)=\prod_{j=1}^{n-1}\left(\frac{1}{M_{j+1}-L_{j+1}} \cdot \frac{1}{h_{j}\left(d_{j}\right)}\right) \tag{13}
\end{equation*}
$$

Then $\mu$ is a probability mass distribution supported on $E\left(M_{1}\right)$, because

$$
\begin{aligned}
& \quad \sum_{L_{n+1} h_{n}\left(d_{n}\right)<d_{n+1} \leq M_{n+1} h_{n}\left(d_{n}\right)} \mu\left(J\left(d_{1}, \ldots, d_{n}, d_{n+1}\right)\right) \\
& =\mu\left(J\left(d_{1}, \ldots, d_{n}\right)\right) \times \sum_{L_{n+1} h_{n}\left(d_{n}\right)<d_{n+1} \leq M_{n+1} h_{n}\left(d_{n}\right)} \frac{1}{M_{n+1}-L_{n+1}} \cdot \frac{1}{h_{n}\left(d_{n}\right)} \\
& \quad=\mu\left(J\left(d_{1}, \ldots, d_{n}\right)\right) .
\end{aligned}
$$

In order to apply Lemma 2.9 to give a lower bound estimation on $\operatorname{dim}_{H} E\left(M_{1}\right)$, we will estimate the measure of arbitrary balls.

We claim first that, for any $\left(d_{1}, \ldots, d_{n}\right) \in D_{n}\left(M_{1}\right)$,

$$
\begin{equation*}
\left|J\left(d_{1}, \ldots, d_{n}\right)\right| \geq M_{n+1}\left(\mu\left(J\left(d_{1}, \ldots, d_{n}\right)\right)\right)^{1+\epsilon^{\prime}} \tag{14}
\end{equation*}
$$

which, in fact, is the essential point in getting the desired result. Note that for any $\left(d_{1}, \ldots, d_{n}\right) \in D_{n}\left(M_{1}\right)$,

$$
\begin{equation*}
h_{n}\left(d_{n}\right) \geq \frac{1}{2} d_{n} \geq \frac{1}{2} L_{n} h_{n-1}\left(d_{n-1}\right) \geq \cdots \geq \frac{1}{2^{n}} \prod_{j=1}^{n} L_{j} \geq \frac{1}{(2 \alpha)^{n}} \prod_{j=1}^{n} M_{j} \tag{15}
\end{equation*}
$$

Combine (12) and (15), we have,

$$
\begin{equation*}
\left|J\left(d_{1}, \ldots, d_{n}\right)\right| \geq \frac{1}{M_{n+1}^{2}} \prod_{j=1}^{n} \frac{1}{M_{j}^{2}} \prod_{j=1}^{n-1} \frac{1}{h_{j}\left(d_{j}\right)} \geq M_{n+1}\left(\prod_{j=1}^{n-1} \frac{1}{h_{j}\left(d_{j}\right)}\right)^{1+\epsilon^{\prime}} \tag{16}
\end{equation*}
$$

So, we get the claims.
Let $r_{0}=\min \left\{G\left(d_{1}, \ldots, d_{k_{1}}\right),\left(d_{1}, \ldots, d_{k_{1}}\right) \in D_{k_{1}}\left(M_{1}\right)\right\}$. Now we estimate $\mu(B(x, r))$ for any $x \in E\left(M_{1}\right)$ and $0<r<r_{0}$. For any $x \in E\left(M_{1}\right)$, there exists
a sequence $d_{1}, d_{2}, \ldots$ such that $\left(d_{1}, \ldots, d_{n}\right) \in D_{n}\left(M_{1}\right)$ and $x \in J\left(d_{1}, \ldots, d_{n}\right)$ for all $n \geq 1$. Choose $n \geq k_{1}$ such that

$$
G\left(d_{1}, \ldots, d_{n+1}\right) \leq r<G\left(d_{1}, \ldots, d_{n}\right)
$$

By the definition of $G\left(d_{1}, \ldots, d_{n}\right)$, we know that $B(x, r)$ can intersect only one $n$-th order basic interval which is $J\left(d_{1}, \ldots, d_{n}\right)$. For the number of $(n+1)$-th basic intervals that $B(x, r)$ can intersect, we distinguish two cases.

$$
\text { Case I. } G\left(d_{1}, \ldots, d_{n+1}\right) \leq r<\left|I\left(d_{1}, \ldots, d_{n+1}\right)\right|
$$

In this case, $B(x, r)$ can intersect at most six $(n+1)$-th order admissible intervals $I\left(d_{1}, \ldots, d_{n}, d_{n+1}+i\right),-1 \leq i \leq 4$. This is because

$$
r \leq \min \left\{\left|I\left(d_{1}, \ldots, d_{n+1}-1\right)\right|, \sum_{i=1}^{4}\left|I\left(d_{1}, \ldots, d_{n+1}+i\right)\right|\right\}
$$

for $d_{n+1} \geq h_{n}\left(d_{n}\right)+1 \geq d_{n} \geq M_{1} \geq 3$. Thus, by (14), we get

$$
\begin{align*}
\mu(B(x, r)) & \leq 6 \mu\left(J\left(d_{1}, \ldots, d_{n+1}\right)\right) \leq 6\left(\frac{1}{M_{n+2}}\left|J\left(d_{1}, \ldots, d_{n+1}\right)\right|\right)^{1-\epsilon} \\
& \leq 6\left(\frac{1}{M_{n+2}}\left|I\left(d_{1}, \ldots, d_{n+1}\right)\right|\right)^{1-\epsilon}=6\left|G\left(d_{1}, \ldots, d_{n+1}\right)\right|^{1-\epsilon} \leq 6 r^{1-\epsilon} \tag{17}
\end{align*}
$$

Case II. $\left|I\left(d_{1}, \ldots, d_{n+1}\right)\right| \leq r<G\left(d_{1}, \ldots, d_{n}\right)$.
By Proposition 2.2, we have for any $\left(d_{1}, \ldots, d_{n}, d_{n+1}^{\prime}\right) \in D_{n+1}\left(M_{1}\right)$,

$$
\begin{aligned}
\left|I\left(d_{1}, \ldots, d_{n}, d_{n+1}^{\prime}\right)\right| & =\left|I\left(d_{1}, \ldots, d_{n}\right)\right| \cdot \frac{h_{n}\left(d_{n}\right)}{d_{n+1}^{\prime}\left(d_{n+1}^{\prime}-1\right)} \\
& \geq\left|I\left(d_{1}, \ldots, d_{n}\right)\right| \cdot \frac{1}{M_{n+1}^{2} h_{n}\left(d_{n}\right)}
\end{aligned}
$$

thus $B(x, r)$ can intersect at most

$$
\ell:=4 r M_{n+1}^{2} h_{n}\left(d_{n}\right) \cdot\left|I\left(d_{1}, \ldots, d_{n}\right)\right|^{-1}
$$

$(n+1)$-th order basic intervals. Therefore

$$
\mu(B(x, r)) \leq \min \left\{\mu\left(J\left(d_{1}, \ldots, d_{n}\right)\right), \sum_{i} \mu\left(J\left(d_{1}, \ldots, d_{n}, i\right)\right)\right\}
$$

where the sum is over all $i$ such that $\max \left\{d_{n+1}-\ell, h_{n}\left(d_{n}\right)+1\right\} \leq i \leq d_{n+1}+\ell$. By (13) and (14), we have

$$
\mu(B(x, r)) \leq \mu\left(J\left(d_{1}, \ldots, d_{n}\right)\right)
$$

$$
\begin{align*}
& \cdot \min \left\{1,8 r M_{n+1}^{2} h_{n}\left(d_{n}\right)\left|I\left(d_{1}, \ldots, d_{n}\right)\right|^{-1} \frac{1}{M_{n+1}-L_{n+1}} \frac{1}{h_{n}\left(d_{n}\right)}\right\} \\
& \leq 8\left(\frac{1}{M_{n+1}}\left|J\left(d_{1}, \ldots, d_{n}\right)\right|\right)^{1-\epsilon} \\
& \cdot 1^{\epsilon}\left(r M_{n+1}^{2}\right)^{1-\epsilon}\left|I\left(d_{1}, \ldots, d_{n}\right)\right|^{-(1-\epsilon)}\left(\frac{1}{M_{n+1}-L_{n+1}}\right)^{1-\epsilon} \\
& =8\left(\frac{1}{L_{n+1}}\right)^{1-\epsilon} r^{1-\epsilon} \leq 8 r^{1-\epsilon} . \tag{18}
\end{align*}
$$

By (17), (18) and Lemma 2.9, we have

$$
\operatorname{dim}_{\mathrm{H}} E\left(M_{1}\right) \geq 1-\epsilon
$$

Since $\epsilon>0$ is arbitrary and $E\left(M_{1}\right) \subset C$, we have

$$
\operatorname{dim}_{\mathrm{H}} C=1
$$

Proof of Proposition 3.3. For any $n \geq 1$ and $\bar{d}_{1} \geq 2$, let

$$
\begin{aligned}
& H_{n}\left(\bar{d}_{1}\right)=\left[\left(\frac{c_{1}}{\alpha}\right)^{1+t+\cdots+t^{n-1}} M_{n}^{t} M_{n-1}^{t^{2}} \ldots M_{2}^{t^{n-1}} \bar{d}_{1}^{t^{n}}\right] \\
& G_{n}\left(\bar{d}_{1}\right)=\left[c_{2}^{1+t \cdots+t^{n-1}} M_{n}^{t} M_{n-1}^{t^{2}} \ldots M_{2}^{t^{n-1}} \bar{d}_{1}^{t^{n}}\right]+1
\end{aligned}
$$

We divide the proof into two parts.
Part I. $b>t$. Write $s_{0}=\frac{\beta(b-t)+t}{(2 b-\beta b+\beta)(b-t)+t}$. For this case, we know

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sum_{j=2}^{n} \log \left(M_{j}-L_{j}\right)+\sum_{j=2}^{n} \log G_{j-1}\left(\bar{d}_{1}\right)}{2 \sum_{j=2}^{n} \log M_{j+1}+\sum_{j=2}^{n} \log G_{j-1}\left(\bar{d}_{1}\right)-\log \left(M_{n+1}-L_{n+1}\right)}=s_{0} \tag{19}
\end{equation*}
$$

which gives, for any $s>s_{0}$ and $n$ large enough,

$$
\begin{equation*}
\prod_{j=2}^{n}\left(\left(M_{j}-L_{j}\right) G_{j-1}\left(\bar{d}_{1}\right)\right)^{1-s} \alpha^{2 n s} \prod_{j=2}^{n}\left(\frac{M_{j+1}-L_{j+1}}{M_{j+1}^{2}}\right)^{s} \leq 1 \tag{20}
\end{equation*}
$$

For any $\bar{d}_{1} \geq 2$, let

$$
E\left(\bar{d}_{1}\right)=\left\{x \in(0,1]: d_{1}(x)=\bar{d}_{1}, L_{n+1}<\frac{d_{n+1}(x)}{h_{n}\left(d_{n}(x)\right)} \leq M_{n+1}, \text { for all } n \geq 1\right\}
$$

Then

$$
C=\bigcup_{\bar{d}_{1}=2}^{\infty} E\left(\bar{d}_{1}\right)
$$

For any $\bar{d}_{1} \geq 2, x \in E\left(\bar{d}_{1}\right)$ and $n \geq 1$, since $\left\{h_{n}, n \geq 1\right\}$ is of order $t$, then

$$
h_{n}\left(d_{n}(x)\right) \leq c_{2} d_{n}^{t}(x) \leq c_{2} M_{n}^{t} h_{n-1}^{t}\left(d_{n-1}(x)\right)
$$

By iteration, we have for any $x \in E\left(\bar{d}_{1}\right)$ and $n \geq 1$,

$$
H_{n}\left(\bar{d}_{1}\right)<h_{n}\left(d_{n}(x)\right) \leq G_{n}\left(\bar{d}_{1}\right)
$$

Note that

$$
E\left(\bar{d}_{1}\right)=\bigcap_{n=1}^{\infty} \bigcup_{\left(d_{1}, \ldots, d_{n}\right) \in D_{n}\left(\bar{d}_{1}\right)} J\left(d_{1}, \ldots, d_{n}\right)
$$

which follows that

$$
\begin{aligned}
\mathbf{H}^{s}\left(E\left(\bar{d}_{1}\right)\right) \leq & \liminf _{n \rightarrow \infty} \sum_{\left(d_{1}, \ldots, d_{n-1}, d_{n}\right) \in D_{n}\left(\bar{d}_{1}\right)}\left|J\left(d_{1}, \ldots, d_{n-1}, d_{n}\right)\right|^{s} \\
= & \liminf _{n \rightarrow \infty} \sum_{\left(d_{1}, \ldots, d_{n-1}\right) \in D_{n-1}\left(\bar{d}_{1}\right)}\left|J\left(d_{1}, \ldots, d_{n-1}\right)\right|^{s} \\
& \cdot \sum_{L_{n}<\frac{d_{n}}{h_{n-1}\left(d_{n-1}\right)} \leq M_{n}}\left(\frac{M_{n+1}-L_{n+1}}{M_{n+1} L_{n+1}} \frac{M_{n} L_{n}}{M_{n}-L_{n}} \frac{h_{n-1}\left(d_{n-1}\right)}{d_{n}\left(d_{n}-1\right)}\right)^{s} \\
\leq & \liminf _{n \rightarrow \infty} \sum_{\left(d_{1}, \ldots, d_{n-1}\right) \in D_{n-1}\left(\bar{d}_{1}\right)}\left|J\left(d_{1}, \ldots, d_{n-1}\right)\right|^{s} \\
& \cdot\left(\left(M_{n}-L_{n}\right) h_{n-1}\left(d_{n-1}\right)\right)^{1-s} \alpha^{2 s}\left(\frac{M_{n+1}-L_{n+1}}{M_{n+1}^{2}}\right)^{s} \leq \ldots \\
\leq & \liminf _{n \rightarrow \infty} \prod_{j=2}^{n}\left(\left(M_{j}-L_{j}\right) h_{j-1}\left(d_{j-1}\right)\right)^{1-s} \alpha^{2 n s} \prod_{j=2}^{n}\left(\frac{M_{j+1}-L_{j+1}}{M_{j+1}^{2}}\right)^{s} \\
\leq & \liminf _{n \rightarrow \infty} \prod_{j=2}^{n}\left(\left(M_{j}-L_{j}\right) G_{j-1}\left(\bar{d}_{1}\right)\right)^{1-s} \alpha^{2 n s} \prod_{j=2}^{n}\left(\frac{M_{j+1}-L_{j+1}}{M_{j+1}^{2}}\right)^{s} \\
\leq & 1 .
\end{aligned}
$$

Therefore, $\operatorname{dim}_{H} E\left(\bar{d}_{1}\right) \leq s$. By the arbitrariness of $s>s_{0}$, we have

$$
\operatorname{dim}_{\mathrm{H}} C \leq \sup _{\bar{d}_{1} \geq 2} \operatorname{dim}_{\mathrm{H}} E\left(\bar{d}_{1}\right) \leq \frac{\beta(b-t)+t}{(2 b-\beta b+\beta)(b-t)+t}
$$

Now we prove the inverse inequality. Fix $\bar{d}_{1} \geq 2$. Let $\left\{t_{n}, n \geq 1\right\}$ be an integer sequence with $3 \leq t_{n} \leq\left(M_{n+1}-L_{n+1}\right) G_{n}\left(\bar{d}_{1}\right)$ for all $n \geq 1$. It should be noticed first that

$$
\lim _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} \log \left(M_{j+1}-L_{j+1}\right)+\sum_{j=1}^{n} \log H_{j}\left(\bar{d}_{1}\right)}{2 \sum_{j=1}^{n+1} \log M_{j}+\log M_{n+2}+\sum_{j=1}^{n} \log G_{j}\left(\bar{d}_{1}\right)}=\frac{\beta(b-t)+t}{b(b-t)+b} \geq s_{0}
$$

Thus, for any $s^{\prime}<s_{0}$, there exists $k_{3} \in \mathbb{N}$ such that for any $n \geq k_{3}$ and $\left(d_{1}, \ldots, d_{n}\right) \in D_{n}\left(\bar{d}_{1}\right)$, we have

$$
\begin{equation*}
\prod_{j=1}^{n} \frac{1}{M_{j+1}-L_{j+1}} \frac{1}{h_{j}\left(d_{j}\right)} \leq\left(\frac{1}{M_{n+2}} \prod_{j=0}^{n} \frac{h_{j}\left(d_{j}\right)}{d_{j+1}\left(d_{j+1}-1\right)}\right)^{s^{\prime}} \tag{21}
\end{equation*}
$$

For any $n \geq 1$, denote

$$
F_{\bar{d}_{1}}\left(t_{n}\right)=\frac{\sum_{j=1}^{n} \log \left(M_{j+1}-L_{j+1}\right)+\sum_{j=1}^{n} \log H_{j}\left(\bar{d}_{1}\right)-\log t_{n}}{2 \sum_{j=1}^{n+1} \log M_{j}+\sum_{j=1}^{n} \log G_{j}\left(\bar{d}_{1}\right)-\log t_{n}+\log 12} .
$$

Since $F_{\bar{d}_{1}}(\cdot)$ is monotonic decreasing with respect to $t_{n}$, we have

$$
\liminf _{n \rightarrow \infty} F_{\bar{d}_{1}}\left(t_{n}\right) \geq \liminf _{n \rightarrow \infty} F_{\bar{d}_{1}}\left(\left(M_{n+1}-L_{n+1}\right) G_{n}\left(\bar{d}_{1}\right)\right)=s_{0} .
$$

Thus, for $s^{\prime}<s_{0}$, there exists $k_{4} \in \mathbb{N}$ such that for any $n \geq k_{4}, 3 \leq t_{n} \leq$ $\left(M_{n+1}-L_{n+1}\right) G_{n}\left(\bar{d}_{1}\right)$ and $\left(d_{1}, \ldots, d_{n}\right) \in D_{n}\left(\bar{d}_{1}\right)$, we have

$$
\begin{equation*}
t_{n} \prod_{j=1}^{n} \frac{1}{M_{j+1}-L_{j+1}} \frac{1}{h_{j}\left(d_{j}\right)} \leq\left(\frac{t_{n}}{12} \prod_{j=1}^{n} \frac{1}{M_{j+1}^{2} h_{j}\left(d_{j}\right)}\right)^{s^{\prime}} \tag{22}
\end{equation*}
$$

We can do as the same way as in the proof of Proposition 3.2 to define a probability measure $\mu$ supported on $E\left(\bar{d}_{1}\right)$, i.e., $\mu\left(J\left(\bar{d}_{1}\right)\right)=1$, and

$$
\mu\left(J\left(d_{1}, \ldots, d_{n}\right)\right)=\prod_{j=1}^{n-1}\left(\frac{1}{M_{j+1}-L_{j+1}} \cdot \frac{1}{h_{j}\left(d_{j}\right)}\right)
$$

for any $n \geq 2$ and $\left(d_{1}, \ldots, d_{n}\right) \in D_{n}\left(\bar{d}_{1}\right)$.
In fact, by (19), $s_{0}$ is just the Billingsley dimension of $E\left(\bar{d}_{1}\right)$ with respect to the measure $\mu$ defined above. In the following, what we will done is just to check that $\operatorname{dim}_{H} E\left(\bar{d}_{1}\right)$ coincides with its Billingsley dimension.(see also [19] for cases when Hausdorff dimension coincides with its Billingsley dimension.)

Let $k_{2}=\max \left\{k_{3}, k_{4}\right\}$. Then for any $n \geq k_{2}$ and $\left(d_{1}, \ldots, d_{n+1}\right) \in D_{n+1}\left(\bar{d}_{1}\right)$, by (21), we have

$$
\begin{equation*}
\mu\left(J\left(d_{1}, \ldots, d_{n+1}\right)\right) \leq\left(\frac{1}{M_{n+2}} \prod_{j=0}^{n} \frac{h_{j}\left(d_{j}\right)}{d_{j+1}\left(d_{j+1}-1\right)}\right)^{s^{\prime}} \tag{23}
\end{equation*}
$$

Now we estimate $\mu(B(x, r))$ for any $x \in E\left(\bar{d}_{1}\right)$ and $r>0$ small enough. For any $x \in E\left(\bar{d}_{1}\right)$, there exists a sequence $d_{1}, d_{2}, \ldots$ such that $\left(d_{1}, \ldots, d_{n}\right) \in D_{n}\left(\bar{d}_{1}\right)$ and $x \in J\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ for all $n \geq 1$. For any $0<r<\min \left\{G\left(d_{1}, \ldots, d_{k_{2}}\right)\right.$, $\left.\left(d_{1}, \ldots, d_{k_{2}}\right) \in D_{k_{2}}\left(\bar{d}_{1}\right)\right\}$, choose $n \geq k_{2}$ such that

$$
G\left(d_{1}, \ldots, d_{n+1}\right) \leq r<G\left(d_{1}, \ldots, d_{n}\right)
$$

## Case I. $G\left(d_{1}, \ldots, d_{n+1}\right) \leq r<\left|I\left(d_{1}, \ldots, d_{n+1}\right)\right|$.

In this case, by (23), we have

$$
\begin{equation*}
\mu(B(x, r)) \leq 6 \mu\left(J\left(d_{1}, \ldots, d_{n+1}\right)\right) \leq 6\left(G\left(d_{1}, \ldots, d_{n+1}\right)\right)^{s^{\prime}} \leq 6 r^{s^{\prime}} \tag{24}
\end{equation*}
$$

Case II. $\left|I\left(d_{1}, \ldots, d_{n+1}\right)\right| \leq r<G\left(d_{1}, \ldots, d_{n}\right)$.
Denote by $t_{n}(r)$ the number of $(n+1)$-th order admissible intervals that the ball $B(x, r)$ can intersect. Then evidently that $1 \leq t_{n}(r) \leq\left(M_{n+1}-L_{n+1}\right) h_{n}\left(d_{n}\right)$. If $t_{n}(r) \leq 5$, then by (24),

$$
\begin{equation*}
\mu(B(x, r)) \leq 5 \mu\left(J\left(d_{1}, \ldots, d_{n+1}\right)\right) \leq 5 r^{s^{\prime}} . \tag{25}
\end{equation*}
$$

If $t_{n}(r) \geq 6$, then $B(x, r)$ contains at least $\left[\frac{t_{n}(r)}{3}\right]$ many $(n+1)$-th order admissible intervals, thus

$$
r \geq \frac{t_{n}(r)}{12} \prod_{j=0}^{n-1} \frac{h_{j}\left(d_{j}\right)}{d_{j+1}\left(d_{j+1}-1\right)} \frac{1}{M_{n+1}^{2} h_{n}\left(d_{n}\right)} \geq \frac{t_{n}(r)}{12} \prod_{j=1}^{n} \frac{1}{M_{j+1}^{2} h_{j}\left(d_{j}\right)}
$$

By (22), we have

$$
\begin{equation*}
\mu(B(x, r)) \leq t_{n}(r) \prod_{j=1}^{n} \frac{1}{M_{j+1}-L_{j+1}} \frac{1}{h_{j}\left(d_{j}\right)} \leq r^{s^{\prime}} \tag{26}
\end{equation*}
$$

Combine (24), (25) (26) and Lemma 2.9, we have $\operatorname{dim}_{\mathrm{H}} E\left(\bar{d}_{1}\right) \geq s^{\prime}$. Since $E\left(\bar{d}_{1}\right) \subset C$ and $s^{\prime}<s_{0}$ is arbitrary, we have $\operatorname{dim}_{\mathrm{H}} C \geq s_{0}$.

Part II. $b \leq t$. Choose $\bar{d}_{1} \geq 2$ such that $\log \bar{d}_{1}^{t-1}>\log \frac{\alpha}{c_{1}}$, and let

$$
E\left(\bar{d}_{1}\right)=\left\{x \in(0,1]: d_{1}(x)=\bar{d}_{1}, L_{n+1}<\frac{d_{n+1}(x)}{h_{n}\left(d_{n}(x)\right)} \leq M_{n+1} \text { for all } n \geq 1\right\}
$$

By the choice of $\bar{d}_{1}$, we have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\sum_{j=1}^{n-1} \log H_{j}\left(\bar{d}_{1}\right)}{\log M_{n+1}+2 \sum_{j=1}^{n+1} \log M_{j}} \geq \liminf _{n \rightarrow \infty} \frac{\sum_{j=1}^{n-1} \log \left(M_{j}^{t} \ldots M_{2}^{t^{j-1}}\right)}{\log M_{n+1}+2 \sum_{j=1}^{n+1} \log M_{j}}=\infty \tag{27}
\end{equation*}
$$

For any $\epsilon>0$, let $\epsilon^{\prime}=\frac{\epsilon}{1-\epsilon}$. By (27), there exists $k_{5} \in \mathbb{N}$ such that for any $n \geq k_{5}$,

$$
\begin{equation*}
M_{n+1} \prod_{j=1}^{n+1} M_{j}^{2} \leq\left(\prod_{j=1}^{n-1} H_{j}\left(\bar{d}_{1}\right)\right)^{\epsilon^{\prime}} \tag{28}
\end{equation*}
$$

As a consequence, for any $n \geq k_{5}$ and $\left(d_{1}, \ldots, d_{n}\right) \in D_{n}\left(\bar{d}_{1}\right)$, we have

$$
\begin{equation*}
\left|J\left(d_{1}, \ldots, d_{n}\right)\right| \geq \prod_{j=1}^{n+1} \frac{1}{M_{j}^{2}} \prod_{j=1}^{n-1} \frac{1}{h_{j}\left(d_{j}\right)} \geq M_{n+1}\left(\prod_{j=1}^{n-1} \frac{1}{h_{j}\left(d_{j}\right)}\right)^{1+\epsilon^{\prime}} \tag{29}
\end{equation*}
$$

Combine this and formula (16) in Proposition 3.2, we can get $\operatorname{dim}_{\mathrm{H}} C=1$ by following the proof in Proposition 3.2 step by step. The proof of Proposition 3.3 is finished.

Acknowledgement. The authors would express their thanks to the referee for constructive suggestions. This work was supported by NSFC (10571138).

## References

[1] P. Billingsley, Ergodic Theory and Information, John Wiley and Sons, Inc., New York - London - Sydney, 1965.
[2] K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, Carus Mathematical Monographs, 29, Mathematical Association of America, Washington, DC, 2002.
[3] P. Erdős, A. Rényi and P. Szüsz, On Engel's and Sylvester's series, Ann. Sci. Budapest Sectio Math. 1 (1958), 7-32.
[4] K. J. Falconer, Fractal Geometry, Mathematical Foundations and Application, Wiley, 1990.
[5] K. J. Falconer, Techniques in Fractal Geometry, Wiley, 1997.
[6] J. Galambos, The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals, Quart. J. Math. Oxford Sec., Series 21 (1970), 177-191.
[7] J. Galambos, Further ergodic results on the Oppenheim series, Quart. J. Math. Oxford Sec., Series 25 (1974), 135-141.
[8] J. Galambos, On the speed of the convergence of the Oppenheim series, Acta Arith. 19 (1971), 335-342.
[9] J. Galambos, Reprentations of Real Numbers by Infinite Series, Lecture Notes in Math. 502, Springer, 1976.
[10] J. Galambos, Further metric results on series expansions, Publ. Math. Debrecen 52, no. 3-4, (1998), 377-384.
[11] J. Galambos, I. Kátai and M. Y. Lee, Metric properties of alternating Oppenheim expansions, Acta Arith. 109 (2003), 151-158.
[12] H. Jager and C. De Vroedt, Lüroth series and their ergodic properties, Proc. K. Nederl. Akad. Wet. A72 (1969), 31-42.
[13] A. Oppenheim, The representation of real numbers by infinite series of rationals, Acta Arith. 18 (1971), 115-124.
[14] A. Rényi, On Cantor's product, Colloq. Math. 6 (1958), 135-139.
[15] F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford, Clarendon Press, 1995.
[16] W. Vervaat, Success Epochs in Bernoulli Trials, Mathematical Center Tracts 42, Amsterdam, Mathematisch Centrum, 1972.
[17] B. W. Wang and J. Wu, A problem of Galambos on Oppenheim series expansions, Publ. Math. Debrecen 70 (2007), 45-58.
[18] B. W. Wang and J. Wu, The growth rates of digits in Oppenheim series expansions, Acta Arith. 121 (2006), 175-192.
[19] H. Wegmann, Über den Dimensionsbegriff in Wahrscheinlichkeitsrumen von P. Billingsley. I, II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1968, 216-221; ibid. 9 (1968), 222-231).
[20] J. Wu, The Oppenheim series expansions and Hausdorff dimensions, Acta Arith. 107 (2003), 345-355.
[21] J. Wu, How many points have the same Engel and Sylvester expansions?, J. Number Theory 103 (2003), 16-26.

BAO-WEI WANG
DEPARTMENT OF MATHEMATICS
HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
WUHAN, HUBEI, 430074
P.R. CHINA

E-mail: bwei_wang@yahoo.com.cn
JUN WU
DEPARTMENT OF MATHEMATICS
HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
WUHAN, HUBEI, 430074, P.R. CHINA
E-mail: wujunyu@public.wh.hb.cn
(Received December 6, 2007; revised April 2, 2008)

