
Publ. Math. Debrecen
44 / 1–2 (1994), 79–103

Measurable solutions of a (2,2)–type
nonlinear functional equation

of sum form with several unknown functions

By LÁSZLÓ LOSONCZI (Debrecen)

To the memory of Professor András Rapcsák

Abstract. We determine the measurable solutions of the functional equation

(E) f11(xy) + f12 (x(1− y)) + f21 ((1− x)y) + f22 ((1− x)(1− y)) =

= g(x)h(y) (x, y ∈ ]0, 1[ )

where fij , g, h : ]0, 1[ → C (i, j = 1, 2) are (unknown) functions. In [9] we proved that
the solution of (E) is equivalent to the solution of a system of equations consisting
of 4 equations which are of the above type but their left hand sides contain only one
function. The measurable solution of these individual equations can be found in [8],
[9], [10]. The solution of (E) is obtained by finding the solution of the above mentioned
system. There are 19 solution classes.

1. Introduction

In [9] we proved that the functions fij , g, h : ]0, 1[ → C (i, j=1, 2)
satisfy the functional equation

(E) f11(xy) + f12 (x(1− y)) + f21 ((1− x)y) + f22 ((1− x)(1− y)) =

= g(x)h(y) (x, y ∈ ]0, 1[ )

if and only if the functions Fij , Gi, Hj (i, j = 1, 2) defined by

Fij(x) := 1
4

[
f11(x) + (−1)j+1f12(x)+(1)
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+(−1)i+1f21(x) + (−1)i+j+2f22(x)
]

(x ∈ ]0, 1[ )

Gi(x) := 1
2

[
g(x) + (−1)i+1g(1− x)

]
(x ∈ ]0, 1[ )(2)

Hj(x) := 1
2

[
h(x) + (−1)j+1h(1− x)

]
(x ∈ ]0, 1[ )(3)

satisfy for x, y ∈ ]0, 1[ the following system of equations:

(S)





F11(xy) + F11 (x(1− y)) + F11 ((1− x)y)+

+ F11 ((1− x)(1− y)) = G1(x)H1(y)

F12(xy)− F12 (x(1− y)) + F12 ((1− x)y)−
− F12 ((1− x)(1− y)) = G1(x)H2(y)

F21(xy) + F21 (x(1− y))− F21 ((1− x)y)−
− F21 ((1− x)(1− y)) = G2(x)H1(y)

F22(xy)− F22 (x(1− y))− F22 ((1− x)y)+

+ F22 ((1− x)(1− y)) = G2(x)H2(y)

In possession of the solutions of (S) the solutions of equation (E) can be
obtained by

fij(x) = F11(x) + (−1)j+1F12(x) + (−1)i+1F21(x)+(4)

+ (−1)i+j+2F22(x)

g(x) = G1(x) + G2(x)(5)

h(x) = H1(x) + H2(x) (i, j = 1, 2; x ∈ ]0, 1[ ).(6)

Equation (E) arises as generalization of functional equations of sum form
characterizing information measures having the sum property (see e.g. [1],
[8]; concerning related equations see [2], [3], [4], [5], [6], [7]). Equation (E)
is also of interest from the functional equationist’s point of view because
of its complexity.

2. Solution of the equations of the system (S)

Slightly changing the notations let us write the individual equations
of the sytem (S) in the form

F11(xy) + F11(x(1− y)) + F11((1− x)y)+(A)

+ F11((1− x)(1− y)) = G1(x)H1(y),
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F12(xy)− F12(x(1− y)) + F12((1− x)y)−(B)

− F12((1− x)(1− y)) = K1(x)L2(y),

F21(xy) + F21(x(1− y))− F21((1− x)y)−(C)

− F21((1− x)(1− y)) = K2(x)L1(y),

F22(xy)− F22(x(1− y))− F22((1− x)y)+(D)

+ F22((1− x)(1− y)) = G2(x)H2(y),

where x, y ∈ ]0, 1[.
Supposing the measurability of the functions Fij equations (A), (B),

(C), (D) have been solved in [8], [10], [10], [9] respectively.
Below we give the measurable solutions in the form of two tables.
A1, . . . ,D6 refer to the solutions of equations (A), . . . ,(D) respec-

tively (first column of the tables). The next columns contain the functions
G1 or K1, H1 or L1, G2 or K2, H2 or L2. The solutions Fij can be writ-
ten as
(7) Fij(x) = F ∗ij(x) + F ∗∗ij (x) (i, j = 1, 2; x ∈ ]0, 1[ )

where F ∗ij is the solution of the corresponding homogeneous equation.
Hence fij can also be decomposed as

(8) fij(x) = f∗ij(x) + f∗∗ij (x) (i, j = 1, 2; x ∈ ]0, 1[ )

where f∗ij is the solution of the homogeneous equation

f11(xy) + f12 (x(1− y)) + f21 ((1− x)y) + f22 ((1− x)(1− y)) = 0

corresponding to (E). By a result of Kannappan and Ng [5]

(9) f∗ij(x) = a(x− 1
4
) + (−1)j+1f + (−1)i+1e+

+ (−1)i+j
[
b + c log x + d(x2 − x)

]
(x ∈ ]0, 1[ )

with arbitrary constants a, b, c, d, e, f ∈ C. Further, corresponding to (7),
we have

(10) f∗∗ij (x) = F ∗∗11 (x) + (−1)j+1F ∗∗12 (x)+

+ (−1)i+1F ∗∗21 (x) + (−1)i+jF ∗∗22 (x) (i, j = 1, 2; x ∈ ]0, 1[ ).

In the last column of our second table the functions F ∗∗ij are given.
We use the notations

Ak(x) := xk + (1− x)k Bk(x) := xk − (1− x)k O(x) := 0

L1(x) := log x− log(1− x) Pk(x) := xk (k ∈ C; x ∈ ]0, 1[ ).
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G1 H1

A1 O arb.

A2 arb.6= O O

A3 a1Aα p1Aα

A4 a2A2 + a3A3 p2 [a2A2 + a3A3]

A5 a4A4 + a5A5 p3 [a4A4 + a5A5]

K1

B1 arb.

B2 O

B3 s1A1

B4 s2Aδ

B5 k1A1 + k2A2

B6 s3A3

B7 k3A3 + k4A4

L1 K2

C1 O arb.

C2 arb.6= O O

C3 r1A1 c0B1 + 2c1L1

C4 r2Aγ c2Bγ

C5 e1A1 + e2A2 d1B1

C6 r3A3 d2B2 + d3B3

C7 e3A3 + e4A4 d4B4

G2

D1 O

D2 arb.6= O

D3 b1L1

D4 b2Bβ

D5 b3B3 + b4B4

D6 b5B5 + b6B6
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F ∗∗11

A1 O

A2 O

A3 p1a1Pα

A4 p2

h
3a3+2a2

6
(2a3P3 + 3a2P2)− a2a3

24
P0

i
A5

p3

h
5a5+2a4

10
(2a5P5 + 5a4P4)−

−a4a5
30

(40P3 − 15P2 + 1
2
P0)
i

L2 F ∗∗12

B1 O O

B2 arb.6= O O

B3 i0B1 + 2i1L1 s1 [i0P1 + i1 log]

B4 i2Bδ s2i2Pδ

B5 j1B1 j1 [k1P1 + k2P2]

B6 j2B2 + j3B3 s3

h
j3P3 + j2

2
(3P2 − P1)

i
B7 j4B4 j4

h
k4P4 + k3

2
(4P3 − 3P2 + P1)

i
F ∗∗21

C1 O

C2 O

C3 r1 [c0P1 + c1 log]

C4 r2c2Pγ

C5 d1 [e1P1 + e2P2]

C6 r3

h
d3P3 + d2

2
(3P2 − P1)

i
C7 d4

�
e4P4 + e3

2
(4P3 − 3P2 + P1)

�
H2 F ∗∗22

D1 arb. O

D2 O O

D3 q1L1
1
2
q1b1 log2

D4 q2Bβ q2b2Pβ

D5 q3 [b3B3 + b4B4] q3

h
2b4+b3

2
(b4P4 + 2b3P3)− b3b4

2
P1

i
D6 q4 [b5B5 + b6B6]

q4

h
3b6+b5

3
(b6P6 + 3b5P5)−

− b5b6
6

(15P4 − 10P3 + 3P1)
i
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For i ≥ 1 all constants ai, bi, ci, di, ei, ii, ji, hi, pi, qi, ri, si ∈ C are arbitrary
6= 0 while c0, i0 can be zero as well. Further 3a3 + 2a2 6= 0, , 5a5 + 2a4 6=
0, 2b4 + b3 6= 0, 3b6 + b5 6= 0, α, β, γ, δ are arbitrary 6= 0 constants, more-
over β 6= 1 holds too. Due to these restrictions the degree of G1,H1 in
solution A4 is 2, in solution A5 is 4; the degree of G2,H2 in D5 is 3, in D6
is 5; the degree of K1 and L2 (or L1 and H2) in solution B5 (or in C5) is
2 and 1, in B6 (or in C6) is 2 and 3, finally in B7 (or in C7) is 4 and 3.

3. Solution of equation (E)

Each solution of the system (S) can be obtained from a quadruple
(Ai,Bj,Ck,Dl) of solutions of the equations (A), (B), (C), (D) respectively
such that

(11) K1 = G1 L1 = H1 K2 = G2 L2 = H2

hold. Let us call a quadruple (Ai,Bj,Ck,Dl) admissible if (11) holds. Thus,
to find the solutions of the system (S),we have to determine the set of all
admissible quadruples

{(Ai,Bj,Ck,Dl) | i = 1, . . . , 5; j, k = 1, . . . , 7; l = 1, . . . , 6}
and then the solutions of (E) can be obtained by (5), (6), (8), (9), (10).
There are alltogether 5 · 72 · 6 = 1470 quadruples. We divide them into 16
groups according to the symmetry properties of the functions g, h.

In the last column the indices i; j; k and l assume the values of
3, 4, 5; 3, 4, 5, 6, 7; 3, 4, 5, 6, 7 and 3, 4, 5, 6 respectively. We remark that the
number of quadruples in the above table is only 394. The number of
quadruples decreased since we partly took into consideration condition
(11). In groups 1–11 all quadruples are admissible. Let us call a pair
(Ai,Bj) of solutions a good pair if K1 = G1 holds for it (i.e. if the parame-
ters of the solutions are chosen such that K1 = G1 holds). In the opposite
case (when the parameters cannot be chosen such that K1 = G1 holds)
(Ai,Bj) will be called a bad pair. Similarly the pairs (Ai,Ck), (Bj,Dl) and
(Ck,Dl) will be called good pairs if L1 = H1, L2 = H2, and K2 = G2 hold
respectively. In order that the quadruples in groups 12–15 be admissible
it is necessary and sufficient that the pairs (Ck,Dl) (in group 12), (Bj,Dl)
(in group 13), (Ai,Bj) (in group 14), (Ai,Ck) (in group 15) be good.
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G1 H1 G2 H2

Group and and and and Solution

K1 L1 K2 L2

1 O O O O (A1, B1, C1, D1)

2 6= O O O O (A2, B1, C1, D1)

3 O 6= O O O (A1, B1, C2, D1)

4 O O 6= O O (A1, B1, C1, D2)

5 O O O 6= O (A1, B2, C1, D1)

6 O O 6= O 6= O (A1, B2, C1, Dl)

7 O 6= O O 6= O (A1, B2, C2, D1)

8 O 6= O 6= O O (A1, B1, Ck, D2)

9 6= O O O 6= O (A2, Bj, C1, D1)

10 6= O O 6= O O (A2, B1, C1, D2)

11 6= O 6= O O O (Ai, B1, C2, D1)

12 O 6= O 6= O 6= O (A1, B2, Ck, Dl)

13 6= O O 6= O 6= O (A2, Bj, C1, Dl)

14 6= O 6= O O 6= O (Ai, Bj, C2, D1)

15 6= O 6= O 6= O O (Ai, B1, Ck, D2)

16 6= O 6= O 6= O 6= O (Ai, Bj, Ck, Dl)

Bellow we shall determine the solutions of (E) for each of the 16
groups.

Groups 1-5., 7., and 10. For the quadruples belonging to these
groups we have G1 +G2 = O or H1 +H2 = O hence either g = O or h = O
and thus

(E1)





f∗∗ij (x) = O(x)

g(x) = O(x)
h(x) = arbitrary,

or (E2)





f∗∗ij (x) = O(x)

g(x) = arbitrary, g 6= O

h(x) = O(x).
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Group 6. This group has the quadruples (A1,B2,C1,Dl) (l=3, . . . , 6)
hence





f∗∗ij (x) = (−1)i+j 1
2q1b1 log2 x

g(x) = b1 (log x− log(1− x))

h(x) = q1 (log x− log(1− x)) ,

(E3)





f∗∗ij (x) = (−1)i+jq2b2x
β

g(x) = b2

(
xβ − (1− x)β

)

h(x) = q2

(
xβ − (1− x)β

)
,

(E4)





f∗∗ij (x) = (−1)i+jq3

[
1
2 (2b4 + b3)(b4x

4 + 2b3x
3)− 1

2b3b4x
]

g(x) = b3

(
x3 − (1− x)3

)
+ b4

(
x4 − (1− x)4

)

h(x) = q3

[
b3

(
x3 − (1− x)3

)
+ b4

(
x4 − (1− x)4

)]
,

(E5)





f∗∗ij (x) = (−1)i+jq4

[
1
3 (3b6 + b5)(b6x

6 + 3b5x
5) −

− 1
6b5b6(15x4 − 10x3 + 3x)

]

g(x) = b5

(
x5 − (1− x)5

)
+ b6

(
x6 − (1− x)6

)

h(x) = q4

[
b5

(
x5 − (1− x)5

)
+ b6

(
x6 − (1− x)6

)]
.

(E6)

Group 8. From the quadruples (A1,B1,Ck,D2) (k = 3, . . . , 7) we get





f∗∗ij (x) = (−1)i+1r1 [c0x + c1 log x]

g(x) = c0 (x− (1− x)) + 2c1 (log x− log(1− x))

h(x) = r1 (x + (1− x)) ,

(E7)





f∗∗ij (x) = (−1)i+1r2c2x
γ

g(x) = c2 (xγ − (1− x)γ)

h(x) = r2 (xγ + (1− x)γ) ,

(E8)





f∗∗ij (x) = (−1)i+1d1(e1x + e2x
2)

g(x) = d1 (x− (1− x))

h(x) = e1 (x + (1− x)) + e2

(
x2 + (1− x)2

)
,

(E9)





f∗∗ij (x) = (−1)i+1r3

[
d3x

3 + 1
2d2(3x2 − x)

]

g(x) = d2

(
x2 − (1− x)2

)
+ d3

(
x3 − (1− x)3

)

h(x) = r3

(
x3 + (1− x)3

)
,

(E10)
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



f∗∗ij (x) = (−1)i+1d4

[
e4x

4 + 1
2e3(4x3 − 3x2 + x)

]

g(x) = d4

(
x4 − (1− x)4

)

h(x) = e3

(
x3 + (1− x)3

)
+ e4

(
x4 + (1− x)4

)
.

(E11)

Group 9. The quadruples (A2,Bj,C1,D1) (j = 3, . . . , 7) give that





f∗∗ij (x) = (−1)j+1s1 [i0x + i1 log x]

g(x) = s1 (x + (1− x))

h(x) = i0 (x− (1− x)) + 2i1 (log x− log(1− x)) ,

(E12)





f∗∗ij (x) = (−1)j+1s2i2x
δ

g(x) = s2

(
xδ + (1− x)δ

)

h(x) = i2
(
xδ − (1− x)δ

)
,

(E13)





f∗∗ij (x) = (−1)j+1j1
[
k1x + k2x

2
]

g(x) = k1 (x + (1− x)) + k2

(
x2 + (1− x)2

)

h(x) = j1 (x− (1− x)) ,

(E14)





f∗∗ij (x) = (−1)j+1s3

[
j3x

3 + 1
2j2(3x2 − x)

]

g(x) = s3

(
x3 + (1− x)3

)

h(x) = j2
(
x2 − (1− x)2

)
+ j3

(
x3 − (1− x)3

)
,

(E15)





f∗∗ij (x) = (−1)j+1j4
[
k4x

4 + 1
2k3(4x3 − 3x2 + x)

]

g(x) = k3

(
x3 + (1− x)3

)
+ k4

(
x4 + (1− x)4

)

h(x) = j4
(
x4 − (1− x)4

)
.

(E16)

Group 11. The elements of this group are (Ai,B1,C2,D1) (i = 3, 4, 5)
from which





f∗∗ij (x) = p1a1x
α

g(x) = a1 (xα + (1− x)α)

h(x) = p1 (xα + (1− x)α) ,

(E17)





f∗∗ij (x) = p2

[
1
6 (3a3 + 2a2)(2a3x

3 + 3a2x
2)− 1

24a2a3

]

g(x) = a2

(
x2 + (1− x)2

)
+ a3

(
x3 + (1− x)3

)

h(x) = p2

[
a2

(
x2 + (1− x)2

)
+ a3

(
x3 + (1− x)3

)]
,

(E18)
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



f∗∗ij (x) = p3

[
1
10 (5a5 + 2a4)(2a5x

5 + 5a4x
4) −

− 1
30a4a5(40x3 − 15x2 + 1

2 )
]

g(x) = a4

(
x4 + (1− x)4

)
+ a5

(
x5 + (1− x)5

)

h(x) = p3

[
a4

(
x4 + (1− x)4

)
+ a5

(
x5 + (1− x)5

)]
.

(E19)

Group 12. We have to find those quadruples (A1,B2,Ck,Dl)
(k = 3, . . . , 7; l = 3, . . . , 6) for which (Ck,Dl) are good pairs.

(C3,D3) is a good pair if and only if c0 = 0, 2c1 = b1, hold hence




f∗∗ij (x) = (−1)i+1 1
2b1

[
r1 log x + (−1)j+1q1 log2 x

]

g(x) = b1 (log x− log(1− x))

h(x) = q1 (log x− log(1− x)) + r1 (x + (1− x)) .

(E20)

The pairs (C3,D4), (C3,D5), (C3,D6) and (C4,D3), (C5,D3), (C6,D3),
(C7,D3) are bad since the logarithmic term L1 appears in C3 (with coef-
ficient 2c1 6= 0), and it does not in D4, D5, and D6 and similarly, D3 has
logarithmic term L1 while C4, C5, C6, and C7 have not.

(C4,D4) is a good pair since c2Bγ = b2Bβ holds if γ = β and c2 = b2,
or if γ = 1, β = 2 and c2 = b2. These give the next two solutions:





f∗∗ij (x) = (−1)i+1b2x
β

[
r2 + (−1)j+1q2

]

g(x) = b2

(
xβ − (1− x)β

)

h(x) = q2

(
xβ − (1− x)β

)
+ r2

(
xβ + (1− x)β

)
(E21)





f∗∗ij (x) = (−1)i+1b2x
[
r2 + (−1)j+1q2

]

g(x) = b2

(
x2 − (1− x)2

)

h(x) = q2

(
x2 − (1− x)2

)
+ r2 (x + (1− x)) .

(E22)

To check whether some pairs are good or not we shall use the following
propositions.

Proposition 1. The equation

5∑

k=0

βnAn(x) = 0 (x ∈ ]0, 1[ )

holds with some constants βk ∈ C (k = 0, . . . , 5) if and only if

β3 = −4β2 − 10(β1 + 2β0)

β4 = 5β2 + 15(β1 + 2β0)

β5 = −2β2 − 6(β1 + 2β0)
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is satisfied (for example β1+2β0, β2 are arbitrary and β3, β4, β5 are given
by above equations).

Proposition 2. The equation

3∑

k=0

γkAk(x) = 0 (x ∈ ]0, 1[ )

holds with some constants γk ∈ C (k = 0, . . . , 3) if and only if

γ2 = −3(γ1 + 2γ0), γ3 = 2(γ1 + 2γ0) .

is satisfied.

Proposition 3. The equation

6∑

k=1

γkBk(x) = 0 (x ∈ ]0, 1[ )

holds with some constants γk ∈ C k = 1, . . . , 6 if and only if

γ4 = −3γ3 − 5(γ2 + γ1), γ5 = 3γ3 + 6(γ2 + γ1)

γ6 = −γ3 − 2(γ2 + γ1)

is valid.

Proposition 1 can be proved easily by writing the sum
∑

βnAn as a
polynomial and comparing the coefficients of the two sides ( a proof can
also be found in [8]). Proposition 2 is a special case of proposition 1.
Finally the last proposition follows from proposition 1 if we take into con-
sideration the relations B′

k = kAk, Bk( 1
2 ) = 0, Bk(x) =

∫ x

1/2
kAk(t)dt.

(C4,D5) is a bad pair since if c2Bγ = b3B3 + b4B4 were true then
the right hand side would be a polynomial of degree three hence γ = 3
or γ = 4. By proposition 3 we obtain that in the first case b4 = 0 (and
c2 = b3), in the second b3 = 0 (and c2 = b4), which contradicts to our
assumptions on the constants b3, b4.

(C4,D6) is a bad pair again since the equation c2Bγ = b5B5 + b6B6

leads to b6 = 0 or b5 = 0 which is a contradiction.
The pair (C5,D4) is a good one since d1B1 = b2Bβ holds exactly if

β = 2, d1 = b2. This gives the solution

(E23)





f∗∗ij (x) = (−1)i+1b2

[
e1x +

(
e2 + (−1)j+1q2

)
x2

]

g(x) = b2

(
x2 − (1− x)2

)

h(x) = q2

(
x2 − (1− x)2

)
+ e1 (x + (1− x))+

+ e2

(
x2 + (1− x)2

)
.
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The pairs (C5,D5) and (C5,D6) are bad ones since from the equations
d1B1 = b3B3 + b4B4 and d1B1 = b5B5 + b6B6 it follows by proposition 3
that b3 + 2b4 = 0 and b5 + 3b6 = 0 which was excluded.

(C6,D4) is a good pair since from d2B2 + d3B3 = b2Bβ by comparing
the degrees of the two sides β = 3 or β = 4. In the first case proposition
3 gives that d2 = 0, d3 = b2 which is impossible. If β = 4 then we get
d2 = −b2, d3 = 2b2 which supplies the solution





f∗∗ij (x) = (−1)i+1b2

[
1
2r3(4x3 − 3x2 + x) + (−1)j+1q2x

4
]

g(x) = b2

(
x4 − (1− x)4

)

h(x) = q2

(
x4 − (1− x)4

)
+ r3

(
x3 + (1− x)3

)
.

(E24)

(C6,D5) is a good pair again since the equation d2B2+d3B3 = b3B3+b4B4

holds if and only if d2 = −b4, d3 = b3 + 2b4 which gives the solution





f∗∗ij (x) = (−1)i+1r3

[
(2b4 + b3)x3 − 1

2b4(3x2 − x)
]
+

+ (−1)i+jq3

[
1
2 (2b4 + b3)(b4x

4 + 2b3x
3)− 1

2b3b4x
]

g(x) = b3

(
x3 − (1− x)3

)
+ b4

(
x4 − (1− x)4

)

h(x) = q3

[
b3

(
x3 − (1− x)3

)
+ b4

(
x4 − (1− x)4

)]
+

+ r3

(
x3 + (1− x)3

)
.

(E25)

(C6,D6) is a bad pair since from the equation d2B2 + d3B3 = b5B5 + b6B6

by proposition 3 it follows that 3b6 + b5 = 0 which has been excluded.
(C7,D4) is however a good pair since d4B4 = b2Bβ holds with β = 4,
b2 = d4 giving the solution





f∗∗ij (x) = (−1)i+1b2

[
1
2e3(4x3 − 3x2 + x) +

(
e4 + (−1)j+1q2

)
x4

]

g(x) = b2

(
x4 − (1− x)4

)

h(x) = q2

(
x4 − (1− x)4

)
+ e3

(
x3 + (1− x)3

)
+

+ e4

(
x4 + (1− x)4

)
.

(E26)

(C7,D5) and (C7,D6) are bad pairs since the equation G2 = K2 leads to
b3 = 0, d4 = b4 and b6 = b5 = d4 = 0 which contradicts to our assumptions
on the constants.

Group 13. Those quadruples (A2,Bj,C1,Dl) belong to this group for
which (Bj,Dl) (j = 3, . . . , 7; l = 3, . . . , 6) are good pairs. The situation
is similar to the group 12 (only the notation of the constants is differ-
ent) hence the good pairs and the corresponding parameter values are the
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following:

(B3,D3) i0 = 0, 2i1 = q1,

(B4,D4) δ = β, i2 = q2,

(B4,D4) δ = 1, β = 2, i2 = q2,

(B5,D4) β = 2, j1 = q2,

(B6,D4) β = 4, j2 = −b2, j3 = 2b2,

(B6,D5) j2 = −q3b4, j3 = q3(b3 + 2b4),

(B7,D4) β = 4, j4 = q2.

From these we obtain the following solutions:





f∗∗ij (x) = (−1)j+1 1
2q1

[
s1 log x + (−1)i+1b1 log2 x

]

g(x) = b1 (log x− log(1− x)) + s1 (x + (1− x))

h(x) = q1 (log x− log(1− x)) ,

(E27)





f∗∗ij (x) = (−1)j+1q2x
β

[
s2 + (−1)i+1b2

]

g(x) = b2

(
xβ − (1− x)β

)
+ s2

(
xβ + (1− x)β

)

h(x) = q2

(
xβ − (1− x)β

)
,

(E28)





f∗∗ij (x) = (−1)j+1q2x
[
s2 + (−1)i+1b2

]

g(x) = b2

(
x2 − (1− x)2

)
+ s2 (x + (1− x))

h(x) = q2

(
x2 − (1− x)2

)
,

(E29)





f∗∗ij (x) = (−1)j+1q2

[
k1x +

(
k2 + (−1)i+1b2

)
x2

]

g(x) = b2

(
x2 − (1− x)2

)
+ k1 (x + (1− x))+

+ k2

(
x2 + (1− x)2

)

h(x) = q2

(
x2 − (1− x)2

)
,

(E30)





f∗∗ij (x) = (−1)j+1q2

[
1
2s3(4x3 − 3x2 + x) + (−1)i+1b2x

4
]

g(x) = b2

(
x4 − (1− x)4

)
+ s3

(
x3 + (1− x)3

)

h(x) = q2

(
x4 − (1− x)4

)
,

(E31)
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



f∗∗ij (x) = (−1)j+1s3q3

[
(2b4 + b3)x3 − 1

2b4(3x2 − x)
]
+

+ (−1)i+jq3

[
1
2 (2b4 + b3)(b4x

4 + 2b3x
3)− 1

2b3b4x
]

g(x) = b3

(
x3 − (1− x)3

)
+ b4

(
x4 − (1− x)4

)
+

+ s3

(
x3 + (1− x)3

)

h(x) = q3

[
b3

(
x3 − (1− x)3

)
+ b4

(
x4 − (1− x)4

)]
,

(E32)





f∗∗ij (x) = (−1)j+1q2

[
1
2k3(4x3 − 3x2 + x)+

+
(
k4 + (−1)i+1b2

)
x4

]

g(x) = b2

(
x4 − (1− x)4

)
+ k3

(
x3 + (1− x)3

)
+

+ k4

(
x4 + (1− x)4

)

h(x) = q2

(
x4 − (1− x)4

)
.

(E33)

Group 14. The elements of this group are the quadruples
(Ai,Bj,C2,D1) where the indices i = 3, 4, 5 and j = 3, . . . , 7 and the pa-
rameters appearing in the solutions Ai and Bj should be choosen such
that (Ai,Bj) be good pairs.

(A3,B3) is a good pair if and only if a1Aα = s1A1, i.e. if α = 1, s1 = a1

(here we omitted the possibility α = 0, s1 = 2a1 since by assumption
α 6= 0). From this we get the solution





f∗∗ij (x) = p1a1x + (−1)j+1a1 [i0x + i1 log x]

g(x) = a1 (x + (1− x))

h(x) = p1 (x + (1− x)) + i0 (x− (1− x)) +

+ 2i1 (log x− log(1− x)) .

(E34)

(A3, B4) is a good pair if and only if a1Aα = s2Aδ that is if δ = α, a1 = s2.
Hence





f∗∗ij (x) = a1

(
p1 + (−1)j+1i2

)
xα

g(x) = a1 (xα + (1− x)α)

h(x) = p1 (xα + (1− x)α) + i2 (xα − (1− x)α) .

(E35)

(A3,B5) is a good pair exactly if a1Aα = k1A1 + k2A2. This holds (by
the equality of the degrees of both sides) if α = 3 and (by proposition 2)



Measurable solutions of a (2,2)–type . . . 93

k1 = −a1
2 , k2 = 3a1

2 . From this we obtain the solution





f∗∗ij (x) = a1

[
p1x

3 + (−1)j+1 j1
2 (3x2 − x)

]

g(x) = a1

(
x3 + (1− x)3

)

h(x) = p1

(
x3 + (1− x)3

)
+ j1 (x− (1− x)) .

(E36)

The pair (A3,B6) is good if a1Aα = s3A3 i.e. if α = 3, s3 = a1. Hence




f∗∗ij (x) = a1

[
p1x

3 + (−1)j+1
(
j3x

3 + j2
2 (3x2 − x)

)]

g(x) = a1

(
x3 + (1− x)3

)

h(x) = p1

(
x3 + (1− x)3

)
+ j2

(
x2 − (1− x)2

)
+

+ j3
(
x3 − (1− x)3

)
.

(E37)

(A3,B7) is a bad pair since in the equality

a1Aα = k3A3 + k4A4

the right hand side is of degree four thus α = 4 or α = 5. In the case α = 4
we have (by proposition 1) k3 = 0, k4 = a1 which contradicts to k3 6= 0.
From α = 5 it would follow that a1 = k3 = k4 = 0 which is impossible.

(A4,B3) is a bad pair again since the equality

a2A2 + a3A3 = s1A1

leads (by proposition 2) to

a3 = −2s1, a2 = 3s1,

hence 3a3 + 2a2 = 0, which has been excluded.
The pair (A4,B5) gives a solution (it is a good pair) since

k1A1 + (k2 − a2)A2 − a3A3 = 0

holds if and only if

k1 = − 1
2a3, k2 = 1

2 (3a3 + 2a2),

hence we get

(E38)





f∗∗ij (x) = p2

[
1
6 (3a3 + 2a2)(2a3x

3 + 3a2x
2)− 1

24a2a3

]
+

+ (−1)j+1j1
[
1
2 (3a3 + 2a2)x2 − 1

2a3x
]

g(x) = a2

(
x2 + (1− x)2

)
+ a3

(
x3 + (1− x)3

)

h(x) = p2

[
a2

(
x2 + (1− x)2

)
+ a3

(
x3 + (1− x)3

)]
+

+ j1 (x− (1− x)) .
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The pair (A4,B6) is bad since the equality a2A2+a3A3 = s3A3 leads to
a3 = s3, a2 = 0 contradicting to the condition a2 6= 0. Similarly, (A4,B7)
is a bad pair since the equality a2A2 + a3A3 = k3A3 + k4A4 leads to
a2 = a3 = k3 = k4 = 0 which is impossible. The pairs (A5,B3), (A5,B5),
(A5,B6) are bad too since the degrees of G1 and K1 are different in the
corresponding solutions. The pairs (A5,B4) and (A5,B7) would be good
only if δ = 4, a4 = s1, a5 = 0, or, if δ = 5, a4 = 0, a5 = s2 and a4 = a5 =
k3 = k4 = 0 but these are not admissible values of the constants.

Group 15. The quadruples (Ai,B1,Ck,D2) (i = 3, 4, 5; k = 3, . . . , 7)
form this group where (Ai,Ck) should be good pairs. The situation is
similar to group 14 only the notation of the constants is different. Hence
the good pairs and the corresponding parameter values are the following:

(A3,C3) α = 1, r1 = p1,

(A3,C4) γ = α, r2 = p1,

(A3,C5) α = 3, e1 = −p1
2 , e2 = 3p1

2 ,

(A3,C6) α = 3, r3 = p1,

(A4,C5) e1 = − 1
2p2a3, e2 = 1

2p2(3a3 + 2a2).

The corresponding solutions are:




f∗∗ij (x) = p1a1x + (−1)i+1p1 [c0x + c1 log x]

g(x) = a1 (x + (1− x)) + c0 (x− (1− x)) +

+ 2c1 (log x− log(1− x))

h(x) = p1 (x + (1− x)) ,

(E39)





f∗∗ij (x) = p1

[
a1 + (−1)i+1c2

]
xα

g(x) = a1 (xα + (1− x)α) + c2 (xα − (1− x)α)

h(x) = p1 (xα + (1− x)α) ,

(E40)





f∗∗ij (x) = p1

[
a1x

3 + (−1)i+1 d1
2 (3x2 − x)

]

g(x) = a1

(
x3 + (1− x)3

)
+ d1 (x− (1− x))

h(x) = p1

(
x3 + (1− x)3

)
,

(E41)





f∗∗ij (x) = p1

[
a1x

3 + (−1)i+1
(
d3x

3 + d2
2 (3x2 − x)

)]

g(x) = a1

(
x3 + (1− x)3

)
+ d2

(
x2 − (1− x)2

)
+

+ d3

(
x3 − (1− x)3

)

h(x) = p1

(
x3 + (1− x)3

)
(E42)
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



f∗∗ij (x) = p2

[
1
6 (3a3 + 2a2)(2a3x

3 + 3a2x
2)− 1

24a2a3

]
+

+ (−1)i+1d1p2

[
1
2 (3a3 + 2a2)x2 − 1

2a3x
]

g(x) = a2

(
x2 + (1− x)2

)
+ a3

(
x3 + (1− x)3

)
+

+ d1 (x− (1− x))

h(x) = p2

[
a2

(
x2 + (1− x)2

)
+ a3

(
x3 + (1− x)3

)]
.

(E43)

Group 16. This group contains 300 quadruples. Fortunately we do
not have to study all of them since if a quadruple (Ai,Bj,Ck,Dl) in group 16
is admissible then the pairs (Ai,Bj), (Bj,Dl), (Dl,Ck), (Ck,Ai) have to be
good. We have determined the possible good pairs i.e those pairs (Ai,Bj),
(Bj,Dl), (Dl,Ck) and (Ck,Ai) (in groups 14, 13, 12 and 15 respectively) for
which the parameters can be chosen such that they are good pairs). The
list of these pairs is:

(A3,B3) (B3,D3) (D3,C3) (C3,A3)

(A3,B4) (B4,D4) (D4,C4) (C4,A3)

(A3,B5) (B5,D4) (D4,C5) (C5,A3)

(A3,B6) (B6,D4) (D4,C6) (C6,A3)

(A4,B5) (B6,D5) (D5,C6) (C5,A4)

(B7,D4) (D4,C7)

The next figure (on page 18) gives an overview on the quadruples to
be investigated. We connected the solutions appearing in possible good
pairs by arrows. The admissible quadruples determine paths consisting of
four arrows such that at the beginning and at the end of the path we have
the same solution (A3 or A4 in our case).

One can see that only 11 quadruples can be admissible in group 16.
We shall study these quadruples one by one. We shall write down the
apropriate part of the table of solutions and check if the condition of
admissibility (for the parameters) can be satisfied or not.

The table for the quadruple (A3,B3,C3,D3):

G1 (K1) H1 (L1) G2 (K2) H2 (L2)

A3 a1Aα p1Aα

B3 s1A1 i0B1 + 2i1L1

C3 r1A1 c0B1 + 2c1L1

D3 b1L1 q1L1



96 László Losonczi

The quadruple (A3,B3,C3,D3) is admissible if and only if the functions
in all the four columns of the above table are equal. Hence

α = 1, s1 = a1; r1 = p1; c0 = 0, c1 = 1
2b1; i0 = 0, i1 = 1

2q1

which gives the solution

(E44)





f∗∗ij (x) = a1p1x + (−1)j+1 1
2a1q1 log x+

+ (−1)i+1 1
2b1p1 log x + (−1)i+j+2 1

2b1q1 log2 x

g(x) = a1 (x + (1− x)) + b1 (log x− log(1− x))

h(x) = p1 (x + (1− x)) + q1 (log x− log(1− x)) .

We make only one table to the quadruples (A3,B4,C4–6,D4) but the
lines C4, C5, C6 will be studied one by one.
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G1 (K1) H1 (L1) G2 (K2) H2 (L2)

A3 a1Aα p1Aα

B4 s2Aδ i2Bδ

C4 r2Aγ c2Bγ

C5 e1A1 + e2A2 d1B1

C6 r3A3 d2B2 + d3B3

D4 b2Bβ q2Bβ

In case of (A3,B4,C4,D4) the constants have to satisfy the conditions

δ = α, s2 = a1; γ = α, r2 = p1;
γ = β, c2 = b2; δ = β, i2 = q2

which gives the solution

(E45)





f∗∗ij (x) =
(
a1 + (−1)i+1b2

) (
p1 + (−1)j+1q2

)
xα

g(x) = a1 (xα + (1− x)α) + b2 (xα − (1− x)α)

h(x) = p1 (xα + (1− x)α) + q2 (xα − (1− x)α) .

The quadruples (A3,B4,C5,D4) and (A3,B4,C6,D4) do not determine so-
lutions since the conditions for the constants

δ = α, s2 = a1; α = 3, e1 = −p1
2 , e2 = 3p1

2 ;
β = 2, d1 = b2; δ = β, i2 = q2

and

δ = α, s2 = a1; α = 3, r3 = p1;
β = 4, d2 = −c2, d3 = 2c2; δ = β, i2 = q2

lead to 3 = α = β = 2 and 3 = α = β = 4 which is not possible.
The parameters of the admissible quadruples (A3,B5,C4–6,D4) can

be obtained from the table of page 20.
Only the quadruple (A3,B5,C5,D4) gives a solution provided that the

constants satisfy the conditions

α = 3, k1 = −a1
2 , k2 = 3a1

2 ; e1 = −p1
2 , e2 = 3p1

2 ;
β = 2, d1 = b2; β = 2, j1 = q2
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G1 (K1) H1 (L1) G2 (K2) H2 (L2)

A3 a1Aα p1Aα

B5 k1A1 + k2A2 j1B1

C4 r2Aγ c2Bγ

C5 e1A1 + e2A2 d1B1

C6 r3A3 d2B2 + d3B3

D4 b2Bβ q2Bβ

hence

(E46)





f∗∗ij (x) = a1p1x
3 + (−1)j+1 a1q2

2 (3x2 − x)+

+ (−1)i+1 b2p1
2 (3x2 − x) + (−1)i+j+2b2q2x

2

g(x) = a1

(
x3 + (1− x)3

)
+ b2

(
x2 − (1− x)2

)

h(x) = p1

(
x3 + (1− x)3

)
+ q2

(
x2 − (1− x)2

)
.

The quadruples (A3,B5,C4,D4) and (A3,B5,C6,D4) are not admissible
since the conditions for the constants

α = 3, k1 = −a1
2 , k2 = 3a1

2 ; γ = β, c2 = b2;
γ = β, c2 = b2; β = 2, j1 = q2

or

α = 3, k1 = −a1
2 , k2 = 3a1

2 ; γ = β, c2 = b2;
γ = 1, β = 2, c2 = b2; β = 2, j1 = q2

and

α = 3, k1 = −a1
2 , k2 = 3a1

2 ; α = 3, r3 = p1;
β = 4, d2 = −b2, d3 = 2b2; β = 2, j1 = q2

lead to 3 = α = γ = β = 2 or 3 = α = γ = 1 and 4 = β = 2 which are not
allowed values of the constants.

Out of the quadruples (A3,B6,C4–6,D4) only (A3,B6,C6,D4) will be
admissible the other two lead to contradiction.

(A3,B6,C6,D4) is admissible if and only if

α = 3, s3 = a1; α = 3, r3 = p1;
β = 4, d2 = −b2, d3 = 2b2; β = 4, j2 = −q2, j3 = 2q2
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G1 (K1) H1 (L1) G2 (K2) H2 (L2)

A3 a1Aα p1Aα

B6 s3A3 j2B2 + j3B3

C4 r2Aγ c2Bγ

C5 e1A1 + e2A2 d1B1

C6 r3A3 d2B2 + d3B3

D4 b2Bβ q2Bβ

supplying the solution

(E47)





f∗∗ij (x) = a1p1x
3 + (−1)j+1 a1q2

2 (4x3 − 3x2 + x)+

+ (−1)i+1 p1b2
2 (4x3 − 3x2 + x) + (−1)i+j+2b2q2x

4

g(x) = a1

(
x3 + (1− x)3

)
+ b2

(
x4 − (1− x)4

)

h(x) = p1

(
x3 + (1− x)3

)
+ q2

(
x4 − (1− x)4

)
.

For (A3,B6,C4,D4) and (A3,B6,C5,D4) the conditions of admissibility are:

α = 3, s3 = a1; γ = α, r2 = p1;
γ = β, c2 = b2; β = 4, j2 = −q2, j3 = 2q2

or

α = 3, s3 = a1; γ = α, r2 = p1;
γ = 1, β = 2, c2 = b2; β = 4, j2 = −q2, j3 = 2q2

and

α = 3, s3 = a1; α = 3, e1 = −p1
2 , e2 = 3p1

2 ;
β = 2, d1 = b2; β = 4, j2 = −q2, j3 = 2q2

leading to contradictions 3 = α = γ = β = 4 or 3 = α = γ = 14 and
2 = β = 4.

The table of the last quadruple (A4,B5,C5,D4) is on page 22.
Here the constants have to satisfy the conditions

k1 = −a3
2 , k2 = 1

2 (3a3 + 2a2); e1 = − 1
2p2a3, e2 = 1

2p2(3a3 + 2a2);
β = 2, d1 = b2; β = 2, j1 = q2
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G1 (K1) H1 (L1) G2 (K2) H2 (L2)

A4 a2A2 + a3A3 p2a2A2 + p2a3A3

B5 k1A1 + k2A2 j1B1

C5 e1A1 + e2A2 d1B1

D4 b2Bβ q2Bβ

giving the solution

(E48)





f∗∗ij (x) = p2

[
1
6 (3a3 + 2a2)(2a3x

3 + 3a2x
2)− a2a3

24

]
+

+ 1
2

[
(−1)j+1q2 + (−1)i+1b2p2

] ·
· [(3a3 + 2a2)x2 − a3x

]
+ (−1)i+j+2b2q2x

2

g(x) = a2

(
x2 + (1− x)2

)
+ a3

(
x3 + (1− x)3

)
+

+ b2

(
x2 − (1− x)2

)

h(x) = p2

[
a2

(
x2 + (1− x)2

)
+ a3

(
x3 + (1− x)3

)]
+

+ q2

(
x2 − (1− x)2

)
.

Theorem. Suppose that fij , g, h : ]0, 1[ → C (i, j = 1, 2) and fij

(i, j = 1, 2) are measurable on ]0, 1[. Then all solutions of the functional
equation

(E) f11(xy) + f12(x(1− y)) + f21((1− x)y)+

+ f22((1− x)(1− y)) = g(x)h(y) (x, y ∈ ]0, 1[ )

are given by

fij(x) = f∗ij(x) + f∗∗ij (x) (i, j = 1, 2; x ∈ ]0, 1[ )

where

f∗ij(x) = a(x− 1
4
) + (−1)j+1f+

+ (−1)i+1e + (−1)i+j
[
b + c log x + d(x2 − x)

]
(x ∈ ]0, 1[ )

and the functions f∗∗ij , g, h are given by the formulae (E1), (E2),
(E6), (E19), (E23), (E25), (E26), (E30), (E32), (E33), (E34), (E37),
(E39), (E42), (E44), (E45), (E46), (E47), (E48) where a, b, c, d, e, f ;
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α; a1, . . . , a5; b2, . . . , b6; c0, c1; d2, d3; e1, . . . , e4; i0, i1; j2, j3; k1, . . . , k4;
p1, p2, p3; q2, q3; r3; s3 are arbitrary complex constants.

Proof. We have seen that all measurable solutions of (E) are given
by (E1)–(E48). These solution classes are pairwise disjoint if the constants
satisfy the conditions given in Section 2. To complete the proof we show
that from the 19 solutions listed in the theorem we can obtain all solutions
(E1)–(E48) by special choice of the constants. In the next table we give
how this can be done.

The function systems (Ei) listed in our theorem give solutions of equa-
tion (E) for all (even 0) values of the parameters since these functions
depend continuously from the parameters.

We remark that the inhomogeneous parts of the solutions contain
3,4 or 5 arbitrary parameters.The only 5 parameter family of solutions is
(E48). The solutions have the following symmetry property. If we ex-
change the indices i and j on the right hand side of fij and exchange the
functions g and h as well we get a solution of (E) again. f∗ij is symmet-
ric in the indices i, j (if we exchange the notation of the constants e, f).
Corresponding to this symmetry the inhomogeneous parts f∗∗ij of the so-
lution and g, h of (E2), (E30), (E32), (E33), (E39), (E42) can be obtained
from the solutions (E1), (E23), (E25), (E26), (E34), (E37) respectively
(by exchanging i and j and g and h and in some cases by introducing new
constants). The remaining solutions (E6), (E19), (E44), (E45), (E46),
(E47), (E48) also have this symmetry property but these transform into
theirselves provided that the constants are redenoted in a suitable way.

Solution
Special case of By which values

the solution of the parameters

E3 E44 a1 = p1 = 0

E4 E45 a1 = p1 = 0, α = β

E5 E32 s3 = 0

E7 E39 a1 = 0, p1 = r1

E8 E45 a1 = q2 = 0, p1 = r2, b2 = c2, α = γ

E9 E23 b2 = d1, q2 = 0

E10 E42 a1 = 0, p1 = r3

E11 E26 b2 = d4, q2 = 0

E12 E34 a1 = s1, p1 = 0

E13 E45 a1 = s2, b2 = p1 = 0, q2 = i2, α = δ

E14 E30 b2 = 0, q2 = j1
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E15 E37 a1 = s3, p1 = 0

E16 E33 b2 = 0, q2 = j4

E17 E45 b2 = q2 = 0

E18 E48 b2 = q2 = 0

E20 E44 a1 = 0, p1 = r1

E21 E45 a1 = 0, p1 = r2, α = β

E22 E45 a1 = 0, p1 = r2, α = 1

E24 E47 a1 = 0, p1 = r3

E27 E44 a1 = s1, p1 = 0

E28 E45 a1 = s2, p1 = 0, α = β

E29 E45 a1 = s2, p1 = 0, α = 1

E31 E47 a1 = s3, p1 = 0

E35 E45 b2 = 0, q2 = i2

E36 E48 a2 = b2 = 0, a3 = a1, q2 = j1, p2a3 = p1

E38 E48 b2 = 0, q2 = j1

E40 E45 b2 = c2, q2 = 0

E41 E46 b2 = d1, q2 = 0

E43 E48 b2 = d1, q2 = 0
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