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On the Diophantine equation X2 − (22m + 1)Y 4 = −22m
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This paper is dedicated to Professor Paulo Ribenboim on the occasion
of his 80th birthday

Abstract. Using a recent result of Akhtari on quartic Thue equations, it is shown

that the quartic equation X2 − (22m + 1)Y 4 = −22m has at most 12 solutions in odd

positive integers X, Y > 1.

1. Introduction

In [3], Ljunggren proved that the quartic equation

X2 − 2Y 4 = −1

has only the positive integer solutions (x, y) = (1, 1), (239, 13). Also, in [4],
Ljunggren proved that the only positive integer solutions to

X2 − 5Y 4 = −4

are (X,Y ) = (1, 1). Since the case m = 1 was already studied, we need to consider
m ≥ 2.
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The goal of the present paper is to consider the family of equations

X2 − (22m + 1)Y 4 = −22m.

It will first shown that a positive integer solution to this equation in positive
integers gives rise to an integer solution to a certain Thue equation equation, and
then apply a recent result of Akhtari [1] in order to deduce an upper bound for
the number of integer solutions to X2−(22m+1)Y 4 = −22m, which is independent
of m. As the specific cases m = 0 and m = 1 have already been dealt with by
Ljunggren, we state our main theorems only for m ≥ 2.

Theorem 1.1. For any integer m ≥ 2, the Diophantine equation

X2 − (22m + 1)Y 4 = −22m (1)

has at most 12 solutions in odd positive integers X, Y > 1.

This result is almost certainly not the best possible. An extensive compu-
tation has only found the integer solution (X,Y ) = (103, 5), with m = 2 and
X > 1.

2. Proof of Theorem 1.1

All coprime integer solutions (x, y) to the quadratic equation

x2 − (22m + 1)y2 = −22m

are given by

x + y
√

22m + 1 = ±
(
±1 +

√
22m + 1

) (
2m +

√
22m + 1

)2i

for some i ≥ 0. We refer to Lemma 2 of [2] for this fact.
For brevity, let a = 2m−1, and let

α = T + U
√

1 + 4a2 = 2m +
√

22m + 1.

For i ≥ 0, define sequences {Ti} and {Ui} by

αi = Ti + Ui

√
1 + 4a2.

Therefore, a positive integer solution to X2 − (22m + 1)Y 4 = −22m is equivalent
to a solution to

Y 2 = T2k ± U2k

for some k ≥ 0. By the well known identities T2k = T 2
k + (1 + 4a2)U2

k and
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U2k = 2TkUk, this gives
Y 2 = (Tk ± Uk)2 + (2aUk)2,

and it is evident that the terms involved in this equality are pairwise coprime.
Thus, there are coprime non-negative integers r and s, of opposite parity, for
which

Y = r2 + s2, Tk ± Uk = r2 − s2, 2aUk = 2rs.

We will assume that r is even, as the argument for the other case is identical.
Letting R = r/a, solving each of these expressions for Tk and Uk, substituting
the result into T 2

k − (1+4a2)U2
k = ±1, and then simplifying leads to the equation

s4 ± 2s3R− 6a2R2s2 ∓ 2a2R3S + a4R4 = ±1.

Now putting x = ±s and y = R gives the Thue equation

x4 − 2x3y − 6a2x2y2 + 2a2xy3 + a4y4 = ±1.

There roots of the dehomogenized quartic polynomial

pa(x) = x4 − 2x3 − 6a2x2 + 2a2x + a4, (2)

are given explicitly by

β1 =
1
2

(
1 + ε +

√
2
√

ε2 + ε
)

,

β2 =
1
2

(
1 + ε−

√
2
√

ε2 + ε
)

,

β3 =
1
2

(
1− ε +

√
2
√

ε2 − ε
)

,

β4 =
1
2

(
1− ε−

√
2
√

ε2 − ε
)

,

where ε =
√

1 + 4a2. We see therefore that pa(x) is irreducible, and that all four
roots of the polynomial pa(x) are real.

The j-invariant of a quartic polynomial a0x
4 + a1x

3 + a2x
2 + a3x + a4, is

defined to be the expression j = 2a3
2 − 9a1a2a3 + 27a2

1a4 − 72a0a2a4 + 27a0a
2
3,

which happens to vanish in the case of pa(x).
We can now apply a recent result of Akhtari (see Theorem 1.1 of [1]),

which that that if F (x, y) is an irreducible homogeneous quartic polynomial with
integer coefficients, whose roots are all real, and for which the j-invariant of the
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dehomogenized quartic of F (x, y) vanishes, then the equation |F (x, y)| = 1 has
at most 12 solutions in integers (x, y), where the solution (−x,−y) is identified
with the solution (x, y). In particular, the equation

x4 − 2x3y − 6a2x2y2 + 2a2xy3 + a4y4 = ±1

has at most 12 solutions in integers x, y (with (−x,−y) identified with (x, y)),
and we note that if a solution (x, y) to this Thue equation gives rise to a positive
integer solution to Y 2 = T2k±U2k, then (−x,−y) gives rise to the same solution.
This completes the proof of Theorem 1.1.
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