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Hahn–Mazurkiewicz revisited: A generalization

By FRANCISCO GARCÍA ARENAS (Almeŕıa)

and MIGUEL ANGEL SÁNCHEZ-GRANERO (Almeŕıa)

Abstract. We generalize Hahn–Mazurkiewicz theorem from Peano continua to

generalized Peano continua (locally connected, locally compact, connected, separable

metric spaces) replacing the [0, 1] interval by the hedgehog. We also relate the number

of “spines” of the hedgehog with compactifications with a finite remainder.

1. Introduction

One of the greatest achievements in General Topology was Hahn–Mazurkie-

wicz theorem (see [9] and [12]), which can be stated ([29, Theorem 31.5]): A

Hausdorff space is a continuous image of the unit interval [0, 1] if and only if it

is a Peano continuum (compact, connected, locally connected and metrizable).

It characterizes which topological spaces are the continuous image of the unit

interval, giving a generalization of the famous Peano curve. That is the reason

why the spaces that appear in the characterization are known as Peano continua.

Since 1920, several generalizations of this important result have been ob-

tained. But the generalizations have been mainly focused on replacing [0, 1] by

a more general ordered continuum, as in [7], [10], [14]–[21], [24], [22], [23], [25]–

[28]. Only a few attempts has been made in order to extend the theorem to

non-continua (for example [5] and [13]).
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In this paper we generalize the Hahn–Mazurkiewicz theorem to a wider class

of spaces that have every important property of Peano continua except compact-

ness. That is, to locally compact, locally connected, connected, non-compact,

separable metric spaces, called henceforth “generalized Peano continua”. Gener-

alized Peano continua include Euclidean spaces. A very interesting question is

whether or not the Euclidean spaces can be filled by a curve of a certain kind.

Another important question one can ask about the Hahn–Mazurkiewicz the-

orem is which kind of spaces can be obtained as continuous images of ]0, 1[ or

of [0, 1[ (that is to say, of R or of R+
0 ). This is a fairly natural question, since

those images correspond to the idea of “unbounded curves”. But, since none of

those spaces are compact, we think that it is more interesting to consider perfect

images of R+
0 and R (note that Euclidean spaces of dimension greater than one

are perfect images of R+
0 and of R).

Surprisingly, there is a strong connection between both generalizations sug-

gested. In fact, the continuous perfect images of R+
0 and R turn out to be certain

classes of generalized Peano continua. That is, the natural generalization on one

side of the theorem strictly corresponds to a natural generalization on the other

side.

But we would like to obtain generalized Peano continua as a continuous per-

fect image of certain spaces that appear as generalizations (as natural as possible)

of [0, 1], R+
0 and R. These spaces are just the hedgehogs (and other ones that

we call the spiders). The idea underlying the construction of those spaces is very

simple: R+
0 has “one end” and R has “two ends” (or “spines” in the case of the

hedgehog or “legs” in the case of spiders), so we consider spaces with as many

“ends” as needed. We shall show that those spaces are the ones that do the job.

But there is still another surprising connection to explore: the number of

legs (or spines) of the spider (or hedgehog) whose continuous perfect image is the

space, is just the number of points that can be added to the space in order to

obtain a finite compactification of it. In fact, this number becomes a classifying

invariant for the class of generalized Peano continua under what we call “perfect

equivalence”.

It was proved in [5] that a topological space is a generalized Peano continuum

if and only if it is the perfect image of the binary Cantor tree (which is a spider

with infinite many legs). In this paper we focus on the finite case, by character-

izing which spaces are the perfect image of spiders of a finite number of legs and

how this is related with finite compactifications.

This paper is organized as follows. In Section 2 we introduce GF-spaces,

a tool introduced by the authors in [2] which has proved to be very fruitful in
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showing connections among very diverse concepts like fractals, inverse limits,

quasiuniformities or Wallman compactifications, to name a few. In Section 3 we

define the hedgehogs and the spiders in the form we shall need later. In Section 4

we obtain the generalization of the Hahn–Mazurkiewicz theorem. In Section 5 we

show the connections between the results obtained in Section 4 and the n-point

compactifications introduced in [11]. Finally, in Section 6 we show that the role

of the hedgehog and the spider in the preceding results can be performed by any

other generalized Peano continua.

2. GF-spaces

We recall from [2] some definitions and introduce notation that will be useful

in this paper.

Let Γ = {Γn : n ∈ N} be a family of coverings. Recall that St(x, Γn) =
⋃

{An ∈ Γn : x ∈ An}; we also define UΓ

xn = X \
⋃

{An ∈ Γn : x /∈ An} which will

be also noted by Uxn if there is no doubt about the family.

Let Γ be a covering of X . Γ is said to be locally finite if for all x ∈ X there

exists a neighborhood of x which meets only a finite number of elements of Γ. Γ is

said to be a tiling, if all elements of Γ are regularly closed (a subset is regularly

closed ([29, Problem 3.D]) if it is the closure of its interior) and they have disjoint

interiors (see [1]).

Definition 2.1. Let X be a topological space. A pre-fractal structure over X

is a family of coverings Γ = {Γn : n ∈ N} such that {UΓ

xn : n ∈ N} is an open

neighborhood base of x for all x ∈ X .

Furthermore, if Γn+1 is a refinement of Γn, such that for all x ∈ An, with

An ∈ Γn, there is An+1 ∈ Γn+1 such that x ∈ An+1 ⊆ An, we will say that Γ is a

fractal structure over X .

If Γ is a (pre-) fractal structure over X , we will say that (X,Γ) is a generalized

(pre-) fractal space or simply a (pre-) GF-space. If there is no doubt about Γ,

then we will say that X is a (pre-) GF-space.

Note that if Γ is a pre-fractal structure then Γn is a closure preserving closed

covering, for each Γn ∈ Γ (see [3, Proposition 2.4]).

If Γ is a fractal structure over X , and {St(x, Γn) : n ∈ N} is a neighborhood

base of x for all x ∈ X , we will call (X,Γ) a starbase GF-space.

If Γn has the property P for all n ∈ N, and Γ is a fractal structure over X ,

we will say that Γ is a fractal structure over X with the property P , and that X
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is a GF-space with the property P . For example, if Γn is locally finite for all

natural number n, and Γ is a fractal structure over X , we will say that Γ is a

locally finite fractal structure over X , and that (X,Γ) is a locally finite GF-space.

It was proved in [2] that if Γ is a fractal structure over a topological space

X then the family {UΓ

n : n ∈ N} is a transitive base for a quasi-uniformity on

X , where UΓ

n = {(x, y) ∈ X × X : y ∈ UΓ

xn}. We will write Un for UΓ

n and U−1
xn

for (UΓ

n )−1(x) if there is no confusion on the fractal structure Γ. We will also

write U∗
xn for (UΓ

n )∗(x) = UΓ

n (x) ∩ (UΓ

n )−1(x). We will adopt these notations for

pre-fractal structures, too.

The following proposition has an easy proof and it is proved in [2, Proposi-

tion 3.2].

Proposition 2.2. Let (X,Γ) be a pre-GF-space. Then U−1
xn =

⋂

{An ∈ Γn :

x ∈ An}.

The following definition was introduced in [4].

Definition 2.3. Let Γ be a pre-fractal structure over X . We say that Γn is

connected, if for all x, y ∈ X , there exists a finite subfamily {Ai
n : 0 ≤ i ≤ k + 1}

of Γn with x ∈ A0
n, y ∈ Ak+1

n and Ai
n ∩ Aj

n 6= ∅ for all |i − j| ≤ 1 (we call it a

weak chain in Γn joining x and y). We say that Γ is connected if Γn is connected

for all n ∈ N.

3. The hedgehog and the spider

In this section we introduce the two classes of spaces that we shall show

that can replace the unit interval for a generalized version of Hahn–Mazurkiewicz

theorem. First, we show in the next example why R is not the perfect image

of [0, 1[ . We recall that p : X → Y is a perfect map if it is closed, continuous,

surjective and p−1(y) is compact whenever y ∈ Y .

Example 3.1. It is easy to see that [0, 1[ is the perfect image of R. We show

that R is not the perfect image of [0, 1[ .

Suppose that f : [ 0, 1[ → R is a perfect onto map. Then f−1(0) is a compact

space in [ 0, 1[ , let M be its maximum. Since f( ]M, 1[ ) is connected and does not

meet 0, it follows that f( ]M, 1[ ) ⊆ R+ or f( ]M, 1[ ) ⊆ R−. Suppose the former.

Then it is clear that f−1(R−
0 ) ⊆ [0, M ] and it is closed, and hence it is compact,

which contradicts that R−
0 is not compact.
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Now one can guess that R is not the perfect image of [0, 1[ because it has

more ends (two) than [0, 1[ (only one).

The following definition measures the number of ends of a space.

Definition 3.2. Let X be a topological space. We denote by sdeg(X) (the

star-degree of X) the least integer n ∈ N such that for every compact subspace A

of X there exists a continuum K with A ⊆ K and such that X \K has at most n

connected components.

Moreover, let sdeg(X) = ∞ if there exists no such integer and sdeg(X) = 0

if X is compact.

So let us construct a space with n ends. This space is similar to that known

as the hedgehog (see [29, Problem 23A]), so we shall also call it hedgehog.

Definition 3.3. Let n ∈ N and Ii = R+
0 for i = 1, . . . , n. We define in

⊕n
i=1 Ii

the equivalence relation xiRyj with xi ∈ Ii and yj ∈ Ij if and only if xi = yj = 0,

with the distance d(xi, yj) defined by di(xi, 0)+dj(0, yj) if i 6= j and by di(xi, yj)

if i = j (where di is the usual metric in Ii). This space will be denoted by Hn

and will be called the large hedgehog with n spines (or simply the hedgehog with

n spines).

Note that H1 is homeomorphic to R+
0 and H2 is homeomorphic to R. Also

note that Hn is a locally compact, locally connected, connected, separable metric

space for every n ∈ N. Now we extend the argument given in Example 3.1 to see

the relation between the number of “spines” and perfect images.

Proposition 3.4. Hn is not the perfect image of Hm for m < n, but Hm

is the perfect image of Hn.

Proof. It is easy to see that Hn is the perfect image of Hn+1. We need to

show that Hn+1 is not the perfect image of Hn.

Suppose that f : Hn → Hn+1 is a perfect onto map. Then f−1(0) is a

compact space in Hn, let Mi be maximum of it in Ii. Given i ∈ {1, . . . , n}, it

is clear that f( ]Mi,→ [ i) is connected and does not meet 0, so it follows that

there exists j(i) ∈ {1, . . . , n + 1} such that f( ]Mi,→ [ i) ⊆ ]0,→ [ j(i). Let j0 be

such that j0 6= j(i) for any i ∈ {1, . . . , n} (note that it exists, since i ∈ {1, . . . , n}

and j ∈ {1, . . . , n + 1}). Then it is clear that f−1([ 0,→ [ j0) ⊆
⋃n

k=1[ 0, Mk]k
and it is closed, and hence it is compact, which contradicts that [ 0,→ [ j0 is not

compact. �

Note that the previous result is a corollary of the more general Theorem 4.16.
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Now we are going to construct another space that has n-ends. The reader

may wonder if it is not enough with the hedgehog, but proofs will become easier

using this new “animal” called the spider. In fact, we are only going to use the

hedgehog in this section to see that for our purposes it is equivalent to use the

hedgehog instead of the spider.

Definition 3.5. Let n ∈ N, we define the spider with n legs Dn as follows.

Let d∅ =
(

1
2 , 0

)

, d1 =
(

1
22 , 1

)

, d2 =
(

3
22 , 1

)

, and let s(1) = 1, s(2) = 3. In

general let dt1...tk
=

(

s(t1...tk)
2k+1 , k

)

, where s(t1 . . . tk) = 2s(t1 . . . tk−1) + (2tk − 3)

with ti ∈ {1, 2}.

We denote D1
K = {d∅} and S1 = {d∅}, D2

K = [d∅, d1] ∪ [d∅, d2] and S2 =

{d1, d2}, D3
K = D2

K ∪ [d1, d11] ∪ [d1, d12] and S3 = {d11, d12, d2}, D4
K = D3

K ∪

[d2, d21] ∪ [d2, d22] and S4 = {d11, d12, d21, d22}, and so on. Given (x, y) ∈ R2, let

r(x,y) = {(x′, y′) : x′ = x; y′ ≥ y}. We define Dn = Dn
K ∪ {rz : z ∈ Sn}. Dn

K is

called the body of the spider and {rz : z ∈ Sn} are the n legs of the spider.

Let x, y ∈ Dn. We say that y is “above” x if there exists a finite se-

quence t1, . . . , tm with ti ∈ {1, 2} such that x ∈ [dt1,...,tk
, dt1,...,tk+1

] for some

k ∈ {1, . . . , m − 1} and y ∈ [dt1,...,tm−1
, dt1,...,tm

], if x, y ∈ [dt1,...,tm−1
, dt1,...,tm

]

then y2 ≥ x2 with x = (x1, x2) and y = (y1, y2).

Remark 3.6. Note that sdeg(Dn) = sdeg(Hn) = n.

Note moreover that D1 is homeomorphic to [0, 1[ and D2 is homeomorphic

to R. Also note that Dn is a locally compact, locally connected, connected, non-

compact separable metric space for every n ∈ N. It holds that Dn is not the

perfect image of Dm for m < n, but Dm is the perfect image of Dn. In fact we

have the next proposition.

Proposition 3.7. Let n ∈ N. Then Hn is the perfect image of Dn and Dn

is the perfect image of Hn.

Proof. Let Hn be
L

n

i=1
Ii

R
with the relation R as defined in 3.3 (where Ii =

R+
0 ). Let K =

L
n

i=1
Ki

R
with Ki = [0, 1]. It is easy to construct an onto continuous

map f0 : K → Dn
K with f0(1i) = xi, where Sn = {x1, . . . , xn} and 1i = 1 ∈ Ki.

If 1 ≤ k ≤ n, then we can define fk : [ 1,→ [ k → rxk
a homeomorphism with

fk(1) = xk. Then it is clear that the map f : Hn → Dn defined by f0(x) if x ∈ K

and by fk(x) if x ∈ [ 1,→ [ k ⊆ Ik is an onto perfect mapping (note that f0 is

perfect and fk is a homeomorphism).

The converse is similar. �

Note that Hn and Dn are not homeomorphic for n ≥ 3. The aim of the

next definition and the next two propositions is to introduce standard fractal
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structures in the spider and the hedgehog from the standard fractal structure of

the legs and the spines.

Definition 3.8. Let X be a topological space and let {Fi : i ∈ I} be a locally

finite closed covering of X . For each i ∈ I, let Γi be a pre-fractal structure

over Fi. Let Γn =
⋃

i∈I Γi
n and let Γ = {Γn : n ∈ N}. Γ is called the ’weak fractal

structure’ induced on X by the family {(Fi,Γ
i) : i ∈ I}.

Proposition 3.9. Let X be a topological space and let {Fi : i ∈ I} be a

locally finite closed covering of X . For each i ∈ I, let Γi be a locally finite pre-

fractal structure over Fi, and let Γ be the ’weak fractal structure’ induced on X

by the family {(Fi,Γ
i) : i ∈ I}. Then Γ is, in fact, a locally finite pre-fractal

structure over X . If Γi is a fractal structure for each i ∈ I then so is Γ. If Γi is

starbase for each i ∈ I then so is Γ.

Proof. It is clear that Γn is a closed locally finite covering of X . On the

other hand, by using Proposition 2.2 , it is straightforward to check that UΓ

xn =
⋂

i∈I UΓ
i

xn, and since {Fi : i ∈ I} is locally finite, it follows that Γ is a pre-fractal

structure over X . The rest of the proposition is easy to prove. �

The proof of the next proposition is straightforward. The elements of a tiling

fractal structure can be compared with the concept of partitioning of Bing ([6]).

Proposition 3.10. Let X be a topological space and let {Fi : i ∈ I} be

a finite closed covering of X . For each i ∈ I, let Γi be a pre-fractal structure

over Fi, and let Γ be the ’weak fractal structure’ induced on X by the family

{(Fi,Γ
i) : i ∈ I}. Then Γ is a pre-fractal structure over X . If Γi is a fractal

structure for each i ∈ I then so is Γ. If Γi is starbase, finite or locally finite for

each i ∈ I then so is Γ. If {Fi : i ∈ I} is a tiling and Γi are tilings, then so is Γ.

Definition 3.11. We define the usual finite fractal structure over the interval

[0, 1] as Γn =
{[

k
2n , k+1

2n

]

: 0 ≤ k ≤ 2n − 1
}

.

We define the usual finite fractal structure over R+
0 (isometrically in rx) as

Γn =
{[

k
2n , k+1

2n

]

: 0 ≤ k ≤ n2n − 1
}

∪ {[n,→ [ }.

In Dn we define the usual fractal structure as the weak fractal structure

induced by the family {[dt1,...,tk
, dt1,...,tk+1

] : ti ∈ {1, 2}; dt1,...,tk+1
∈ Dn

K} ∪ {rx :

x ∈ Sn} with their usual fractal structures.

It is easy to see that the usual fractal structure Γ of Dn is a finite connected

starbase fractal structure and such that An is connected for all An ∈ Γn.
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4. Generalized Peano continua

The other main concept of the paper is that of a generalized Peano con-

tinuum. In this section we will introduce it and study its main properties as

GF-spaces. First we recall the following result from [4].

Proposition 4.1 ([4, Proposition 3.5]). Let Γ be a fractal structure over a

connected space X . Then Γ is connected.

We name as “generalized Peano continua” those spaces that satisfy all the

interesting properties of Peano continua except being compact.

Definition 4.2. A topological space X is said to be a generalized Peano con-

tinuum (see [5]) if it is a locally compact, locally connected, connected metrizable

space.

Note that a generalized Peano continuum is separable ([5]).

As first examples of generalized Peano continua we have Dn, Hn, as well

as Rn.

Lemma 4.3 ([4, Lemma 3.7]). Let Γ be a starbase fractal structure over X ,

K be a compact subset of X and F be a closed subset of X disjoint from K.

Then there exists n ∈ N such that St(K, Γn) ∩ F = ∅.

Perfect onto mappings can be used to induce a fractal structure on the image.

Proposition 4.4 ([4, Proposition 4.12]). Let (X,Γ) be a starbase GF-space

and Y a topological space. Let f : X → Y be an onto perfect mapping. Let

∆ = f(Γ) be defined by ∆n = {f(An) : An ∈ Γn} for all n ∈ N. Then ∆ is a

starbase fractal structure over Y . If Γ is finite, so is ∆.

Lemma 4.5. Let X be a locally connected, connected metrizable space,

let A be a compact subspace of X and let M be a connected component of X \A.

Then A ∩ M 6= ∅.

Proof. Let d be a compatible metric for X and let us suppose that

A ∩ M = ∅. Since A is compact, ε = d(A, M) > 0. Let x∈A and y ∈M . Since X

is connected and locally connected, there exists a chain (Ci)i=1,...,n of connected

subspaces of X with diameter less than ε which joins x and y. It is clear that

if Ci ∩ A = ∅ and Ci ∩ M 6= ∅, then Ci ⊆ M , and hence there exists Ci with

A ∩ Ci 6= ∅ and Ci ∩ M 6= ∅. But then d(A, M) < ε, a contradiction. �

The following lemma gives a clue for a classification of generalized Peano

continua.
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Lemma 4.6. Let X be a generalized Peano continuum. Then for every

compact subspace A of X , there exists a continuum K with A ⊆ K and such that

X \ K has a finite number of connected components.

Proof. Let A be a continuum subspace of X (we do not say subcontinuum,

because X is not a continuum. Note that we can suppose that A is a continuum,

since we can always get a continuum in X that contains a given compact subspace

of X). Let X∗ = X ∪ {o} be the one-point compactification of X , and d a metric

for X∗ (note that X∗ is metrizable, since X is separable). Let δ = d(o, A) > 0

and {Mi : i ∈ I} the countable number (since X is separable, and Mi is open) of

connected components of X \ A which are not included in Bc

(

A, δ
4

)

= {x ∈ X :

d(a, x) ≤ δ
4 for some a ∈ A}.

Let J = {i ∈ I : Mi is not included in Bc(A, δ
3 )}. Analogously to the proof

of Lemma 4.5, it holds that Mj ∩ Bc

(

A, δ
2

)

\ Bc

(

A, δ
3

)

6= ∅ whenever j ∈ J . For

each j ∈ J , let xj ∈ Mj ∩Bc

(

A, δ
2

)

\Bc

(

A, δ
3

)

. Then (xj) has an adherent point x

in X∗. It is clear by construction that x /∈ Bc

(

A, δ
4

)

and that x ∈ X , and hence,

there exists a connected component M of X \ A such that x ∈ M . Since M is

open, J must be finite (note that (xj) is adherent to x, but xj /∈ M for any j ∈ J

except pherhaps one of them).

Let K = A ∪
⋃

{M ⊆ Bc(A, δ
3 ) : M is a connected component of X \ A}.

Then X \ K has a finite number of connected components. Note that K =

A ∪
⋃

{ClX∗(M) : M ⊆ Bc(A, δ
3 ) is a connected component of X \ A}. Since,

by Lemma 4.5, ClX(M) ∩ A 6= ∅ for any connected component M of X \ A, K

is connected, and since K ⊆ Bc(A, δ
3 ), K is compact. Therefore, K verifies the

thesis of the lemma. �

The next result provides a characterization of generalized Peano continua in

terms of the one point compactification.

Corollary 4.7. Let X be a connected locally compact non-compact Haus-

dorff space. Then X is a generalized Peano continuum if and only if its one point

compactification is a Peano continuum.

Proof. We will only show that, if the space is a generalized Peano contin-

uum, the infinity point of the one point compactification has a neighborhood base

of connected subsets.

Let X be a generalized Peano continuum, and X∗ = X ∪ {o} the one point

compactification of X . Let X∗ \A, with A compact, be a neighborhood of o. By

Lemma 4.6, there exists a continuum K with A ⊆ K and such that X \ K has a

finite number of connected components C1, . . . , Cn.
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We can assume that o ∈ Ci for each i = 1, . . . n, where the closure is taken

in X∗. Indeed, if o /∈ Ci for some i = 1, . . . , n, we can define K ′ = K ∪
⋃

{Cj :

o /∈ Cj}. It holds that K ′ is a compact subspace of X containing K and, since

Ck∩Cj = ∅ for j 6= k (note that each Ck is open in X∗), X\K ′ =
⋃

{Cj : o ∈ Cj},

so we can continue with the argument replacing K with K ′.

Since X∗ \ K =
⋃

{Ci ∪ {o} : i = 1, . . . , n}, and Ci ∪ {o} are connected

subsets (note that Ci ⊆ Ci ∪ {o} ⊆ Ci) with the point o in common, it follows

that X∗ \ K is a connected neighborhood of o contained in X∗ \ A. �

In a Peano continuum, we can get a fractal structure with very good prop-

erties.

Lemma 4.8. Let X be a Peano continuum. Then there exists a finite con-

nected starbase fractal structure over X with An a continuum for each An ∈ Γn

and each n ∈ N.

Proof. Let f : [0, 1] → X be a continuous onto mapping. Let Γn =

{[ k
2n , k+1

2n ] : k = 0, . . . , 2n − 1} and Γ = {Γn : n ∈ N}. Then Γ is the usual

finite fractal structure over [0, 1]. Let ∆ = f(Γ) (see Proposition 4.4). By Propo-

sition 4.4, ∆ is a finite starbase fractal structure over X . Since X is connected,

then ∆ is connected, and it is clear that f([ k
2n , k+1

2n ]) is a continuum for each

k = 0, . . . , 2n − 1 and n ∈ N. �

Definition 4.9. Let Γ be a fractal structure, Γn ∈ Γ and An ∈ Γn. We will

write Γm(An) = {An+m ∈ Γn+m : An+m ⊆ An}.

Using the previous results we get a fractal structure with good properties for

any generalized Peano continuum.

Lemma 4.10. Let X be a generalized Peano continuum. Then there exists

a locally finite connected starbase fractal structure Γ = {Γn : n ∈ N} over X with

An a continuum and Γ1(An) finite for each An ∈ Γn and each n ∈ N and such

that Γn is countable for all n ∈ N.

Proof. By Corollary 4.7, the one point compactification X∗ = X ∪ {o} is a

Peano continuum. By Lemma 4.8, there exists a finite connected starbase fractal

structure Γ over X∗ with An a continuum for each An ∈ Γn and n ∈ N.

Let Γ′
n = {An ∈ Γn : o /∈ An} ∪ {Am ∈ Γm : m > n; o /∈ Am; and Am *

⋃

{B ∈ Γm−1 : o /∈ B}}. It is clear that Γ′
n is a covering of X for each n ∈ N and

that A′
n is a continuum for each A′

n ∈ Γ′
n and n ∈ N. Let Γ′ = {Γ′

n : n ∈ N}.

Let n ∈ N, and let us prove that Γ′
n is locally finite. Let x ∈ X . Since X

is open in X∗ and Γ is starbase, there exists m ∈ N such that o /∈ St(x, Γm). If



Hahn–Mazurkiewicz revisited: A generalization 481

x ∈ Ak with Ak ∈ Γk, k > m, o /∈ Ak and Ak *
⋃

{B ∈ Γk−1 : o /∈ B}, then

there exists Ak−1 ∈ Γk−1 with Ak ⊆ Ak−1, and hence o ∈ Ak−1 ⊆ St(x, Γk−1) ⊆

St(x, Γm), a contradiction. Then given A′
n ∈ Γ′

n, UΓ
′

xm ∩ A′
n 6= ∅ if and only if

A′
n ∈

{

Bn ∈ Γn : o /∈ Bn} ∪ {Ak ∈ Γk : n < k ≤ m; o /∈ Ak; and Ak *
⋃

{B ∈

Γk−1 : o /∈ B}
}

, which is finite, since Γi is finite for each i ∈ N. Therefore Γ′
n is

locally finite. It is clear that Γ′
n is countable.

Let x ∈ X and m ∈ N with o /∈ St(x, Γm). By the previous paragraph,

St(x, Γm) = St(x, Γ′
m), and hence Γ′ is a starbase fractal structure over X . By

Proposition 4.1, Γ′ is connected.

Finally, given A′
n ∈ Γ′

n, then A′
n = Ak for some Ak ∈ Γk with k ≥ n

and o /∈ Ak. Let Ai ∈ Γi with i > k and such that Ai ⊆ Ak. Since o /∈ Ak then

Ai /∈ Γ′
k+1\Γk+1. It follows that Γ1(A

′
n) is finite for each A′

n ∈ Γn and n ∈ N. �

Remark 4.11. Let X be a generalized Peano continuum, and let Γ be as in the

the previous lemma. Note that if A is connected then St(A, Γn) is connected and

also note that if A is a continuum in X then St(A, Γn) is also a Peano continuum

(see the next remark).

Remark 4.12. Let Γ be a locally finite starbase fractal structure over X such

that An is a continuum whenever An ∈ Γn and n ∈ N. Then it is clear that An

is locally connected, since Bm is connected for every Bm ∈ Γm(An). Therefore
⋃

i∈I Ai
n is locally connected and locally compact for any subfamily {Ai

n : i ∈ I}

of Γn and any n ∈ N.

Remark 4.13. Note that since Γ is starbase, it follows from the previous

remark that any generalized Peano continuum has a neighborhood base of Peano

continua.

A step further in the line of Lemma 4.6: if there is only one connected

component, the space is the perfect image of R+
0 .

Lemma 4.14. Let X be a noncompact generalized Peano continuum with

sdeg(X) = 1. Then X is the perfect image of H1 = R+
0 .

Proof. Let Γ be the fractal structure given by Lemma 4.10. Let B1 ∈ Γ1

and let K be a continuum in X which contains St(B1, Γ1) and such that X \ K

has only one connected component M1. Let L1 = St(M1, Γ1), K1 = St(K, Γ1)

and let x1 ∈ K1∩L1 (note that since K1 and L1 are closed, X = K1∪L1 and X is

connected, then it follows that K1∩L1 6= ∅). By Remark 4.11 it follows that K1 is

a Peano continuum and hence there exists a continuous onto map f1 : [0, 1] → K1

with f1(1) = x1.
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On the other hand it holds that L1 is a locally connected (by Remark 4.12),

locally compact (by Remark 4.12), connected (by Remark 4.11) noncompact (if

L1 is compact then X = K1 ∪L1 is compact, which is a contradiction) separable

metric space (that is, a generalized Peano continuum) with sdeg(L1) = 1.

Recursively we construct a sequence (Kn) of Peano continua with Kn ∩

Kn+1 6= ∅, X =
⋃

n∈N
Kn and such that given x ∈ X there exists n ∈ N

with x /∈ Km for m ≥ n; a sequence (Ln) of generalized Peano continua with

sdeg(Ln) = 1, Kn ∩ Ln ⊆ Kn+1 ⊆ Ln and Kn ∩ Ln+1 = ∅, and there ex-

ist a sequence xn ∈ Kn ∩ Kn+1 and a sequence of continuous onto mappings

fn : [n − 1, n] → Kn with fn(n − 1) = xn−1 and fn(n) = xn. Therefore the map

f : R+
0 → X defined as f(x) = fn(x) if x ∈ [n − 1, n] is a continuous mapping

from H1 = R+
0 onto X .

Let see that f is a perfect mapping. Given x ∈ X , there exists n ∈ N such

that x /∈ Km for m ≥ n and hence f−1(x) ⊆ [0, n] so it is compact; on the

other hand, given F a closed set in H1 it is clear that fn(F ∩ [n− 1, n]) is closed

and hence f(F ) = f
(
⋃

n∈N
F ∩ [n − 1, n]

)

=
⋃

n∈N
fn(F ∩ [n − 1, n]). Since the

family {Kn : n ∈ N} is locally finite ( given x ∈ X , there exists n ∈ N such

that x /∈ Km for m ≥ n and hence x only meets Ki for i ∈ {1, . . . , n}), then

{fn(F ∩ [n − 1, n]) : n ∈ N} is a locally finite closed family and hence f(F ) is

closed and then f is a perfect mapping. �

The previous result gives the clue: the number of connected components is

just the number of “ends” of the space, so we call the spider to help us. First, we

need the following proposition.

Proposition 4.15. Let X and Y be generalized Peano continua and f :

X → Y an onto perfect map. Then sdeg(Y ) ≤ sdeg(X).

Proof. Let n = sdeg(X) and A a compact subspace of Y . Then f−1(A)

is a compact subspace of X , so there exists a continuum K ′ in X such that

f−1(A) ⊆ K ′ and X \ K ′ has at most n connected components.

Let K ′′ be a continuum in X with f−1(f(K ′)) ⊆ K ′′ and such that X\K ′′ has

at most n connected components N1, . . . , Nk (with k ≤ n). Given i ∈ {1, . . . , k},

there exists a connected component Mi of Y \ f(K ′) such that f(Ni) ⊆ Mi.

Let K = Y \
⋃k

i=1 Mi. Since K is closed, f−1(K) is closed. On the other

hand, f−1(K) ⊆ K ′′, and hence it is compact (indeed, let x ∈ f−1(K) and

suppose that x /∈ K ′′. Then there exists i ∈ {1, . . . , k} with x ∈ Ni. But then

f(x) ∈ Mi ⊆ Y \K, a contradiction). Therefore K is compact. Furthermore, K =

f(K ′)∪
⋃

{M : M is a connected component of Y \f(K ′) different from Mi for i ∈

{1, . . . , k}}.
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Since f(K ′) is connected, the closure of each component M is connected and,

by Lemma 4.5, f(K ′)∩M 6= ∅ for each component M of Y \ f(K ′) different from

Mi for i ∈ {1, . . . , k}, it follows that K is connected. Therefore K is a continuum

which contains A and Y \ K has k connected components. We conclude that

sdeg(Y ) ≤ n = sdeg(X). �

Theorem 4.16. Let n ∈ N. The following statements are equivalent:

(1) X is the perfect image of Dn (equivalently, of Hn).

(2) X is a generalized Peano continuum with sdeg(X) ≤ n.

Proof. 1) implies 2). Suppose that X is the perfect image of Dn. By [5,

Lemma 1.1], X is a generalized Peano continuum, and by Proposition 4.15 and

Remark 3.6, sdeg(X) ≤ n.

2) implies 1). In order to prove the converse, let X be a generalized Peano

continuum with sdeg(X) ≤ n.

Let Γ be the fractal structure of Lemma 4.10.

For each compact subspace H of X , we define n(H) = min{i ∈ N : there

exists a continuum K(H) with H ⊆ K(H) and such that X \H(K) has exactly i

connected component}, and let m = max{n(H) : H is compact}. Note that

m ≤ n. Let A be a compact subspace of X such that m = n(A), and let K be

a continuum subspace of X with A ⊆ K and such that X \ K has exactly m

connected component M1, . . . , Mm. It is clear that Mi is not relatively compact

for i = 1, . . . , m (if it is, then K ∪ Mi is a continuum containing A and such

that X \ (K ∪Mi) has only m− 1 connected components, which contradicts that

m = n(A)).

Let Ki = St(Mi, Γ1). It is clear that Ki is a locally connected (by Re-

mark 4.12), locally compact (by Remark 4.12), connected (by Remark 4.11),

noncompact (since Mi ⊆ Ki, if Ki is compact then Mi will be relatively compact,

but it is not) separable metric space.

Claim: Let us see that sdeg(Ki) = 1.

Let B be a compact subspace of Ki. By Lemma 4.6 there exists a continuum

subspace C of Ki containing B and such that Ki\C has a finite number N1, . . . , Nk

of connected components in Ki. It follows that only one of them is not relatively

compact. To see this, since Ki = C ∪
⋃k

j=1 Nj, and Ki is not compact, then it

follows that Nj is not relatively compact for at least one j ∈ {1, . . . , k}. On the

other hand, if N1, N2 are not relatively compact, let C ′ be a continuum (in X)

containing K ∪ C. Then it is clear that X \ C ′ ⊆ X \ (K ∪ C) ⊆ (
⋃

j 6=i Mj) ∪

(
⋃k

j=1 Mi ∩Nj). Let xj ∈ Mj \C ′ (note it is nonempty, since Mj is not relatively
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compact) for j 6= i, and let yj ∈ Mi∩Nj\C ′ for j = 1, 2 (note it is nonempty, since

Mi ∩Nj is not relatively compact. For, note that since Ki \St(K, Γ1) ⊆ Mi, then

Nj = (Mi∩Nj)∪(Nj∩St(K, Γ1)), and since the latter part of the union is relatively

compact, then it follows that the former is not). Let Lj be a connected component

of X \ C ′ that contains xj for j 6= i, and let L′
j be a connected component of

X \ C ′ that contains yj for j = 1, 2. Then {Lj : j 6= i; 1 ≤ j ≤ m} ∪ {L′
1, L

′
2} is

a family of m + 1 different (note that Lj ⊆ Mj for j 6= i and L′
j ⊆ Mi ∩ Nj for

j = 1, 2) connected components of X \ C ′, and hence n(K ∪ B) ≥ m + 1 which

contradicts the choice of m.

Now, suppose that N1 is not relatively compact. It is easy to see that if

we define K ′ = Ki \ N1 = C ∪
⋃k

j>1 Nj = C ∪
⋃k

j>1 Nj, it follows that K ′ is

a continuum containing B and such that Ki \ K ′ = N1 has only one connected

component, what proves the claim.

Now, it is clear that Ki verifies the hypotheses of Lemma 4.14. Therefore

there exist perfect onto mappings fi : rti
→ Ki with f(ti) = zi for 1 ≤ i ≤ m,

for all ti ∈ Sm and for some zi ∈ X . On the other hand, it is easy to construct

(by Hahn–Mazurkiewicz theorem) a (perfect) onto mapping g : Dm
K → St(K, Γ1)

(since St(K, Γ1) is a Peano continuum) such that g(ti) = zi for 1 ≤ i ≤ m, for all

ti ∈ Sm. It is clear that the map f : Dm → X defined by fi(z) if z ∈ rti
with

1 ≤ i ≤ m and ti ∈ Sm and by g(z) if z ∈ Dm
K is a perfect onto map from Dm

onto X . Therefore X is the perfect image of Dm and then of Dn. �

5. Finite compactifications

In this section we give another turn of the screw: the second condition in

Theorem 4.16 resembles a similar one for finite compactifications. Could we find

a relation? The next definition and the corollary show that we can.

Definition 5.1. Let X be a locally compact space. We denote by fcdeg(X)

(the finite compactification degree of X) the greatest integer n ∈ N such that X

has an n-point compactification (that is, a compactification with a remainder of

n points). Moreover, let fcdeg(X) = ∞ if X has an n-point compactification for

all n ∈ N and fcdeg(X) = 0 if X is compact.

Note from the definitions that fcdeg(X) is defined as the maximum of some

integers while sdeg(X) is defined as the minimum of another set of integers. It

would be surprising that both were equal. However that is exactly what happens,

as shown in the next theorem, which is in the spirit of results of [11].
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Theorem 5.2. Let X be a generalized Peano continua. Then sdeg(X) =

fcdeg(X).

Proof. The case when X is compact is clear, so let us suppose that X is

not compact. Suppose that fcdeg(X) = n. Let A be a compact subspace of X ,

and let K be any continuum in X containing A such that its complementary

has k = sdeg(X) (or a finite number k if sdeg(X) = ∞) connected components.

Let M1, . . . , Mk be the connected components of X \ K. Note that Mi is not

relatively compact, since otherwise K ∪Mi is a continuum (note that K ∩Mi 6= ∅

by Lemma 4.5) containing A and such that its complementary has only k − 1

connected components, which contradicts that k = sdeg(X).

Then M1, . . . , Mk are open subsets of X with Mi∩Mj = ∅, X \
⋃k

i=1 Mi = K

is compact, and X \
⋃

i6=j Mi = K ∪Mj is not compact (since Mj is not relatively

compact) for j = 1, . . . , k. Therefore X has a k-point compactification by [11],

and hence n = fcdeg(X) ≥ k. Therefore sdeg(X) ≤ fcdeg(X).

Now, suppose that sdeg(X) = k and let n ∈ N with k < n ≤ fcdeg(X).

Since X has an n-point compactification, by [11] there exist open subsets Gi,

with i = 1, . . . , n, of X such that Gi ∩ Gj = ∅ for i 6= j, X \
⋃

j 6=i Gj is not

compact (and hence Gi is not relatively compact for any i ∈ {1, . . . , n}) and

B = X \
⋃n

i=1 Gi is a compact subset of X . Let K ′ be a continuum containing

B and such that X \K ′ has l (with l ≤ k < n) connected components N1, . . . Nl.

Suppose that Ni ∩ Gj 6= ∅. Then Gj ∩ Ni is a clopen subset of Ni, and hence

Ni ⊆ Gj . We can suppose that Ni ⊆ Gi for i = 1, . . . , l, then Gl+1 ∩ Ni = ∅

for every 1 ≤ i ≤ l, and hence Gl+1 ⊆ K ′, which contradicts that Gl+1 is not

relatively compact. Therefore n ≤ k, that is, sdeg(X) ≥ fcdeg(X).

We conclude that sdeg(X) = fcdeg(X). �

We present a very neat characterization of perfect images of [0, 1[.

Corollary 5.3. A generalized Peano continua is the perfect image of [0, 1[

if and only if its only finite compactification is the one-point compactification.

6. Perfect equivalence

In this final section we prove that the role of the hedgehog or the spider in the

characterization and classification of generalized Peano continua can be played by

any generalized Peano continuum of the same class.

We first begin checking that the role of [0, 1] in the classical Hahn–Mazurkie-

wicz theorem can be played by any other Peano continua.
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Remark 6.1 ([29, Problem 31.A]). Let X , Y be Peano continua with more

than one point. Then X is the image of Y and Y is the image of X .

The next two lemmas are of technical nature, but they are needed for the

characterization theorem.

Lemma 6.2. Let X be a noncompact generalized Peano continuum, and

let A be any compact subspace of X . Then there exist n ∈ N (n = sdeg(X) if

sdeg(X) is finite), P a Peano continuum containing A and Ki generalized Peano

continua with sdeg(Ki) = 1 for i = 1, . . . , n, such that X = P ∪
⋃n

i=1 Ki and

Ki ∩ Kj ⊆ P for i 6= j.

Proof. It follows from a reasoning similar to the proof of Theorem 4.16.

Just take P = St(K, Γ1). �

Lemma 6.3. Let X be a generalized Peano continuum with sdeg(X) = 1.

Then there exists a sequence of continua Ck and a sequence of Peano continua Hk

such that X =
⋃

k∈N
Ck, Ck∩Cl 6= ∅ if and only if |k−l| ≤ 1 and Hk ⊆ Ck\

⋃

l 6=k Cl

for k ∈ N.

Proof. Let Kn be a sequence of compact subspaces of X with Kn ⊆ K◦
n+1

for n ∈ N and X =
⋃

n∈N
Kn (see [8, Example 3.8.C.b]).

Let x ∈ K◦
1 . By Remark 4.13, there exists a Peano continuum H1 with

x ∈ H1 ⊆ K◦
1 . Let C1 = K1.

Suppose that we have constructed Cn and Hn and let us go to construct

Cn+1 and Hn+1. For, let y ∈ K◦
n+1 \ Kn. By Remark 4.13, there exists a Peano

continuum Hn+1 with y ∈ Hn+1 ⊆ K◦
n+1 \ Kn. Let Cn+1 = Kn+1 \ K◦

n.

Since
⋃n

i=1 Ci = Kn, then
⋃

i∈N
Ci = X . If z ∈ Cn ∩ Cn+2 then z ∈ Kn ∩

(Kn+2 \ K◦
n+1) ⊆ Kn \ K◦

n+1 = ∅, a contradiction, and hence Ck ∩ Cl 6= ∅ if and

only if |k − l| ≤ 1. Finally, it is clear that Hn ∩ Cn−1 ⊆ Hn ∩ Kn−1 = ∅ and

Hn ∩ Cn+1 ⊆ K◦
n ∩ Cn+1 = ∅, and hence Hk ⊆ Ck \

⋃

l 6=k Cl for k ∈ N. �

In the next proof we will use the hedgehog instead of the spider.

Theorem 6.4. Let X , Y be generalized Peano continua with sdeg(X) =

sdeg(Y ) finite. Then X is the perfect image of Y and Y is the perfect image

of X .

Proof. Clearly, by Theorem 4.16, it is enough to show that if X is a gen-

eralized Peano continuum then Hsdeg(X) is the perfect image of X .

Suppose that n = 1. By Lemma 6.3, there exist a sequence Ck of continua

such that X =
⋃

k∈N
Ck, Ck ∩ Cl 6= ∅ if and only if |k − l|s ≤ 1 and a sequence

of Peano continua Hk with Hk ⊆ Ck \
⋃

l 6=k Cl. By Remark 6.1, there exist
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fk : Hk → [k − 1, k] onto mappings for each k ∈ N.

Let gk : Hk ∪ (Ck ∩Ck−1) ∪ (Ck ∩Ck+1) → [k, k + 1] be the continuous map

defined by gk(x) = fk(x) if x ∈ Hk, gk(x) = k−1 if x ∈ Ck ∩Ck−1 and gk(x) = n

if x ∈ Ck ∩ Ck+1.

By Tietze extension Theorem, there exists a continuous extension Fk : Ck →

[k − 1, k] which is onto, since gk is. Then it is clear that F : X → R+
0 = H1

defined by Fk(x) if x ∈ Ck is a perfect (note that F−1(x) ⊆ Ck−1 ∪Ck ∪Ck+1 for

x ∈ [k − 1, k]) onto (continuous) mapping.

Suppose that n > 1. Let A be any compact subspace of X and let P and Ki

with i = 1, . . . , n be as in Lemma 6.2. Let H1
i (i = 1, . . . , n) be the n spines of

Hn and let o be the intersection of them. Let fi : P ∩ Ki → H1
i be the constant

map fi(x) = o for any x ∈ P ∩ Ki. Since P ∩ Ki is compact, following the proof

of case n = 1, there exists an onto perfect extension Fi : Ki → H1
i . Now, the

map F : X → Hn defined by Fi(x) if x ∈ Ki and o if x ∈ P is an onto perfect

map. �

This final result can be understood as a classifying result: among the class

of generalized Peano continua, the equivalence relation “X is perfectly equivalent

to Y if and only if X is the perfect image of Y and vice versa” is completely

determined by a numerical invariant, sdeg. It is interesting to ask if this equiva-

lence relation can be also determined by a numerical invariant outside the class

of generalized Peano continua.
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