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On the volume of the convex hull of d + 1 segments in Rd

By GENNADIY AVERKOV (Magdeburg) and HORST MARTINI (Chemnitz)

Abstract. Let d ≥ 2, m ≥ d, and u1, . . . , um be non-zero vectors linearly span-

ning Rd. The note is devoted to the problem of minimizing the volume of the polytopes

P := conv(I1 ∪ · · · ∪ Im), where, for j = 1, . . . , m, Ij is a translate of conv{o, uj}. The

solution of this problem for the case m = d was previously known. For the case m = d+1

the minimal volume is evaluated and the class of minimizing polytopes P is studied.

1. Introduction

Let d ≥ 2. The origin in Rd is denoted by o. The abbreviations conv
and vol stand for convex hull and volume, respectively. Let d ≥ 2, m ≥ d,
and u1, . . . , um be non-zero vectors linearly spanning Rd. We consider the class
P(u1, . . . , um) of convex polytopes P in Rd such that P = conv(I1 ∪ · · · ∪ Im),
where, for j = 1, . . . , m, the set Ij is a translate of the segment conv{o, uj}. By
v(u1, . . . , um) we denote the minimum among the volumes of all polytopes from
P(u1, . . . , ud), and by P0(u1, . . . , uk) the subclass of P(u1, . . . , um) minimizing
the volume. It is known that v(u1, . . . , ud) = 1

d! det(u1, . . . , ud). In this note
we evaluate v(u1, . . . , ud+1) and study the properties of P0(u1, . . . , ud+1). For the
case m = d the class P0(u1, . . . , um) and the corresponding quantity v(u1, . . . , um)
were studied in [7] and [5]. In particular, in the above paper it was shown that

v(u1, . . . , ud) =
1
d!
| det(u1, . . . , ud)|, (1)

where det(u1, . . . , ud) denotes the determinant of the matrix with columns
u1, . . . , ud. We perform an analogous study for the case m = d + 1.
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Theorem. Let d ≥ 2, and u1, . . . , ud+1 be non-zero vectors linearly spanning

Rd. Then the following statements hold true.

I. The quantity v(u1, . . . , ud+1) is equal to the maximum of v(u′1, . . . , u
′
d) over

all possible subsets {u′1, . . . , u′d} of {u1, . . . , ud+1}.
II. The class P0(u1, . . . , ud+1) necessarily contains simplices.

III. Every polytope from P0(u1, . . . , ud+1) has at most 2d vertices.

The statement of Theorem can be reformulated in terms of Minkowski geom-
etry (that is, the geometry of finite dimensional normed spaces); see [8] and [6].
In fact, if {±u1, . . . ,±um} is a set of vertices of some o-symmetric d-dimensional
convex polytope B and Md is the normed space whose unit ball is B, then the
class P0(u1, . . . , um) is precisely the class of convex bodies whose minimum width,
measured with respect to Md, is equal to one and whose volume is minimal. It
should also be mentioned that the elements of P(u1, . . . , um) contain all Md-
reduced bodies, which were introduced in [4]. For more information on minimum
width and reduced bodies in Minkowski spaces see [4], [3], and [2].

We ask about possible extensions of Theorem for the case of a larger number
of segments. More precisely, we consider d ≥ 2, m ≥ d, and vectors u1, . . . , um

linearly spanning Rd, and we pose the following problems.

1. Describe m and d such that for all u1, . . . , um the quantity v(u1, . . . , um) is
the maximum of v(u′1, . . . , u

′
d) over all {u′1, . . . , u′d} ⊆ {u1, . . . , um}.

2. Describe m and d such that for all u1, . . . , um ∈ Rd the class P0(u1, . . . , um)
necessarily contains simplices.

3. Describe m and d such that for all u1, . . . , um the class P0(u1, . . . , um) con-
sists of polytopes with at most 2d vertices.

The solutions for the case m ≤ d+1 are provided by Theorem and the results
from [7] and [5]. Problems 2 and 3 can be solved for d = 2. Indeed, from the
main result of [1] it follows that for d = 2 the class P0(u1, . . . , um) necessarily
contains triangles and, furthermore, the polygons from P0(u1, . . . , um) distinct
from triangles are necessarily quadrilaterals. To the best of our knowledge, all
the remaining cases of Problems 1–3 are open.
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2. The proof

Proof of Theorem. For every subset {u′1, . . . , u′d} of {u1, . . . , ud+1} the
inequality v(u′1, . . . , u

′
d) ≤ v(u1, . . . , ud+1} is obvious. Let us show that for some

u′1, . . . , u
′
d as above the reverse inequality is fulfilled. Without loss of generality

we assume that the maximum of v(u′1, . . . , u
′
d) over {u′1, . . . , u′d} ⊆ {u1, . . . , ud+1}

is attained when u′i = ui for i = 1, . . . , d.
For i = 1, . . . , d we replace ui by −ui (or equivalently, translate the original

segment conv{o, ui} by −ui) arriving at the representation ud+1 =
∑d

i=1 βiui

with each βi ≥ 0. Moreover, we assume that u1, . . . , ud are ordered so that
β1 ≤ · · · ≤ βd. We have βd ≤ 1, since otherwise v(u1, . . . , ud−1, ud+1) would be
larger than v(u1, . . . , ud). We define the points p1, p2, . . . , pd by

pi :=
d∑

j=i

uj .

Let us show that the simplex T := conv{o, p1, . . . , pd} belongs to P0(u1, . . . , ud+1).
We introduce the values α1, . . . , αd by the formulas

α1 := β1, αi := βi − βi−1 (2 ≤ i ≤ d).

It is easy to verify that for every j = 1, . . . , d we have 0 ≤ αj ≤ 1 and∑j
i=1 αi = βj ≤ 1. Now let us show that ud+1 ∈ T . We have

(
1−

d∑

i=1

αi

)
o +

d∑

i=1

αipi =
d∑

i=1

αipi =
d∑

i=1

αi

d∑

j=i

uj

=
∑

1≤i≤j≤d

αiuj =
d∑

j=1

(
j∑

i=1

αi

)
uj =

d∑

j=1

βjuj = ud+1.

Thus, ud+1 is a convex combination of points o, p1, . . . , pd, and hence ud+1 ∈ T .
Obviously, T can be represented by

T = conv

(
d−1⋃

i=1

conv{pi, pi+1} ∪ conv{o, pd}
)

.

But conv{o, pd} = conv{o, ud}, while, for every i = 1, . . . , d − 1, the segment
conv{pi, pi+1} is a translate of conv{o, ui}. Since conv{o, ud+1} ⊆ T , we see that
T ∈ P(u1, . . . , ud). By construction,

vol(T ) =
1
d!
| det(p1, . . . , pd)| = 1

d!
| det(u1, . . . , ud)| = v(u1, . . . , ud).
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Hence v(u1, . . . , ud) ≥ v(u1, . . . , ud+1). This shows Part I and (since T is a
simplex) also Part II of the theorem.

We prove Part III by contradiction. Assume that P is a polytope from
P0(u1, . . . , ud+1) with at least 2d+1 vertices. Let J1, . . . , Jd+1 be segments in Rd

such that, for i = 1, . . . , d + 1, the segment Ji is a translate of conv{o, ui} and
P = conv(J1 ∪ · · · ∪ Jd+1). Since P has at least 2d + 1 vertices, at least one of
the endpoints of Jd+1 is also a vertex of P . Hence, taking into account (1),

vol(P ) > vol(conv(J1 ∪ · · · ∪ Jd)) ≥ 1
d!
| det(u1, . . . , ud)| = vol(T ),

and we arrive at the contradiction. This finishes the proof of Part III. ¤
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