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On the density of integers with consecutive divisors

By KATALIN GYARMATI (Budapest)

Abstract. The density of positive integers which have divisors of the form x(x+1)

with x ∈ Z and x ≥ K is near 1/K as K tends to infinity. Different generalizations of

this result are also studied.

1. Introduction

Paul Erdős asked several problems concerning divisors. In particular, P. Er-

dős and R. R. Hall [4] initiated the study of the number of consecutive divisors.

They defined τk(n) by the number of positive divisors of n of the form

x(x + 1) . . . (x + k − 1)

with x ∈ Z. In the case k = 2 an equivalent definition is

τ2(n) = |{i : di+1 − di = 1}| ,

where 1 = d1 < d2 < · · · < dτ(n) = n denote the all positive divisors of n. In [4]

it is proved that

τk(n) > (log n)e1/k−ε

holds for infinitely many n. P. Erdős and R. R. Hall also estimated the average

value of τk(n) for k ≥ 2 by proving

1

x

∑

n≤x

τk(n) =
1

(k − 1)(k − 1)!
+ O(x−(k−1)/k).

Mathematics Subject Classification: 11N25.
Key words and phrases: divisors, Pell-equations.
Research partially supported by Hungarian National Foundation for Scientific Research, Grants

T043631, T043623 and T049693.



2 Katalin Gyarmati

For k = 2, this gives
1

x

∑

n≤x

τ2(n) = 1 + O(x−1/2).

Although the expected value of τ2(n) is 1, it is not true that almost all integers

n have a divisor of the form x(x + 1) with x ∈ Z. It is easy to see that an integer

has such a divisor if and only if it is even. Indeed, x(x + 1) is always even, thus

if x(x + 1) | n, then n is also even. On the other hand if n is even, then n has a

divisor of the form x(x + 1), namely 1 · 2 | n.

In the present paper I will estimate the density of integers n which have at

least one divisor of the form x(x + 1) with x ∈ Z and x ≥ K. Define A(K) by

A(K)
def
= lim

N→∞

1

N
|{n : 1 ≤ n ≤ N, ∃ x ≥ K, such that x(x + 1) | n}| .

As it was shown above A(1) = 0.5. For K ≥ 2 I have not been able to determine

the exact value of A(K), but I will prove that it is near 1/K as K → +∞.

Throughout the paper the number of distinct positive prime divisors of n

will be denoted by ω(n), the number of positive divisors by τ(n).

The first upper bound for τ2(n) is due to Tenenbaum [17, Theorem 2], who

proved that

τ2(n) ≪ τ(n)c (1)

holds with c = 0.93974 . . . . R. de la Bretèche [3, Theorem 2] improved on the

exponent c and obtained (1) with c = 0.91829 . . . . τ2(n) was studied by several

authors, see in [1], [2], [3], [4], [5] and [17]. R. de la Bretèche [2] extended the

problem to other polynomials.

I will also study the question for other polynomials of degree 2.

Definition 1. For P (X) ∈ Z[X ], let

AP (K)
def
= lim

N→∞

1

N
|{n : 1 ≤ n ≤ N, ∃ x ≥ K such that P (x) | n}| .

If P (X) = X(X + 1) then AP (K) = A(K). I will prove the following.

Theorem 1. Let P (X) = a2X
2 + a1X + a0 ∈ Z[X ] be a polynomial of

degree 2 with non-zero discriminant, so a2
1 − 4a2a0 6= 0. Then for K ≥ 1 we have

AP (K) =
1

|a2|K
+ O((log K)(5+2

√
2 )/3K−4/3), (2)

where the implied constant factor in the O(. . . ) term depends only on the poly-

nomial P (X).
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R. de la Bretèche [2] gave upper bound for the maximal number of di-

visors of n of the form P (x). Here, in Theorem 1 I estimate the average value

AP (K).

If K → +∞ then (2) provides a sharp estimate for AP (K), but for fixed K

does not give any bounds for it. When P (X) = X(X + 1), so AP (K) = A(K)

here I give some estimates calculated by a computer program:

0.221 ≤ A(2) ≤ 0.225,

0.166 ≤ A(3) ≤ 0.187,

0.127 ≤ A(4) ≤ 0.153,

0.102 ≤ A(5) ≤ 0.130,

0.088 ≤ A(6) ≤ 0.119,

0.076 ≤ A(7) ≤ 0.110.

These results are obtained by sieve method. In order to get A(K) we

calculated the density of integers which is divisible at least by one number of

K(K + 1), (K + 1)(K + 2), . . . , T (T + 1), where T depends on K. This gives a

lower bound for A(K). In order to obtain an upper bound we need to add to the

lower bound the density of integers which is divisible at least by one number of

(T + 1)(T + 2), (T + 2)(T + 3), . . . . For this number we use the trivial estimate
1

(T+1)(T+2) + 1
(T+2)(T+3) + · · · = 1

T+1 .

In [6] Evertse has proved that S-unit equations have only finite solutions.

In the rational case he obtained that if S = {p1, p2, . . . , ps} is a set of s distinct

primes, λ, µ ∈ Z then the equation

λa + µb = 1

has at most

3 × 72s+3

solutions in a and b such that all prime divisors of a and b are from S. Győry

[9] gave an upper bound for the absolute value of such solutions a and b. More-

over, there are reasonably efficient algorithms to determine these solutions. For

example, de Weger [18] in his thesis determined all solutions of the equation

a + b = 1, where both a, b ∈ {2z13z25z37z411z513z6 : zi ∈ Z}. Using these results,

by computer it is also possible to calculate the density of those integers n which

have a divisor of the form x(x + 1) such that all prime factors of x(x + 1) belong

to a fixed set of primes. Indeed, then writing a = x + 1 and b = x it is clear that
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first we need to find the all solutions of the equation

a − b = 1,

where all prime divisors of a and b are from certain fixed set S containing only

few small fixed primes. Knowing all such solutions, by the exclusion-inclusion

principle we easily could determine the density asked. This method could give

reasonable estimates calculated by computer, but can not be used in the proof of

Theorem 1, which is based on generalized Pell-equations.

Pell-equations have been extensively studied for long time, but on generalized

Pell-equations slightly less is known. S. Lange [13] gave asymptotic formulas

for the number of solutions. Later K. Győry, A. Pethő and recently G. R.

Everest generalized this result to norm form equations, see in [7], [10], [11],

[12], [15] and [16]. In these asymptotics the main term depends on the number of

certain “fundamental solutions”, but usually their number is not given in terms

of the coefficients of the norm form equation. In [10] Győry and Pethő gave

upper and lower bound in terms of the coefficients. Here, in the case of generalized

Pell-equations we need a stronger bound than the one in [10]. I will prove

Theorem 2. Let a, b, c be positive integers. Denote by S the number of

the solutions of the generalized Pell-equation

ax2 − by2 = c (3)

with positive integers x, y and 1 ≤ y ≤ N . Then

a) S < log N
log(4ab/c2) + 1 if c2 < 4ab.

b) Let m | c such that (m, ab) = 1. Then

S ≤
⌈

ec√
abm

⌉

τ(m) (log N + 2) ≪
(

1 +
c√
abm

)

τ(m) log N.

The usual estimates for the number of solutions of the generalized Pell-

equations only handle the case ac <
√

ab, and there are algorithms for finding the

solutions but without estimates for their number.

In fact in the proof of Theorem 1 I need the following sum:

Corollary 1. Suppose that the conditions of Theorem 2 b) hold and A is a

positive number. Then

∑

ax2−by2=c
x≥0, y≥A

1

y2
≪
(

1 +
c√
abm

)

τ(m)

A2
.
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Difficult problem is the estimate of the density of natural numbers which have

at least t distinct divisors of the form x(x + 1) with x ∈ N. A trivial estimate for

this density is 1
[1,2,...,t+1] = 1

e(1+o(1))t , since the numbers n with [1, 2, . . . , t + 1] | n

are divisible by 1 · 2, 2 · 3, . . . , t · (t + 1). By an argument of Erdős and Hall [4]

the exponent can be improved. Namely the density asked is

≫ 1

e

(

t(e
−1/2+ε)

) (4)

as t → +∞. [1, 2, . . . , y] has more than y positive divisors of the form x(x + 1)

with x ∈ N. Indeed, Erdős and Hall in [4, Theorem 2] proved that for A < e1/2

there exists ε > 0 such that n = [1, 2, . . . , y] has at least εyA divisors of the

form x(x + 1). The prime number theorem implies that [1, 2, . . . , y] = e(1+o(1))y,

and writing y =
(

1
ε t
)1/A

, we get that there exists a constant k > 0 such that

n = [1, 2, . . . , y] ≪ ekt1/A

has at least t distinct positive divisors of the form

x(x + 1) with x ∈ N, which leads to (4).

2. Proof of Theorem 1

We may suppose that the leading coefficient of P (X) is positive: a2 > 0. We

choose f so that

a2(2f − 1) ≤ a1 < a2(2f + 1)

holds, then f depends only on the polynomial P (X). It is clear that there exists

a constant K0 depending on the polynomial P (X) such that for x > K0 we have

a2(x + f − 1)(x + f) ≤ P (x) ≤ a2(x + f)(x + f + 1). (5)

Throughout the proof of Theorem 1 we may suppose that K > K0 where K0 is a

large enough constant depending only on the polynomial P (X), since for K ≤ K0

the theorem is trivial because of the O(. . . ) term in (2).

For the density of the positive integers divisible by at least one of the numbers

P (K), P (K + 1), P (K + 2), . . . an upper bound is

AP (K) ≤ 1

P (K)
+

1

P (K + 1)
+

1

P (K + 2)
+ . . . .

By (5)

AP (K) ≤ 1

a2(K + f − 1)(K + f)
+

1

a2(K + f)(K + f + 1)
+ . . .
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≤ 1

a2

((

1

K + f − 1
− 1

K + f

)

+

(

1

K + f
− 1

K + f + 1

)

+ . . .

)

=
1

a2(K + f − 1)
=

1

a2K
+ O(K−2).

Next we will give a lower bound for AP (K). For positive integers T and K let

AP (K, T ) the density of positive integers divisible by at least one of the numbers

P (K), P (K + 1), P (K + 2), . . . , P (T ):

AP (K, T )
def
= lim

N→∞

1

N
|{n : 1 ≤ n ≤ N, ∃ K ≤ x ≤ T, such that P (x) | n}| .

Clearly for T ≥ K we have

AP (K) ≥ AP (K, T ). (6)

We will give a lower bound for AP (K, T ) by the exclusion-inclusion principle. For

K ≤ i1 < i2 < · · · < ik ≤ T let

Ni1,i2,...,ik

def
= lim

N→∞

1

N
|{n : 1 ≤ n ≤ N, P (i1), P (i2), . . . , P (ik) | n}|

=
1

[P (i1), P (i2), . . . , P (ik)]
.

Then

AP (K, T ) ≥
∑

K≤i1≤T

Ni1 −
∑

K≤i1<i2≤T

Ni1,i2 . (7)

Here by (5)

∑

K≤i1≤T

Ni1 =
∑

K≤i1≤T

1

P (i1)
≥

∑

K≤i1≤T

1

a2(i1 + f)(i1 + f + 1)

=
1

a2

∑

K≤i1≤T

(

1

i1 + f
− 1

i1 + f + 1

)

=
1

a2(K + f)
− 1

a2(T + f + 1)

=
1

a2K
− 1

a2T
+ O(K−2).

By this, (6) and (7) we have

AP (K) ≥ AP (K, T ) ≥ 1

a2K
− 1

a2T
−

∑

K≤i1<i2≤T

Ni1,i2 + O(K−2). (8)

Thus we need to give an upper bound for
∑

K≤i1<i2≤T Ni1,i2 . Let S be this sum:

S
def
=

∑

K≤i1<i2≤T

Ni1,i2 =
∑

K≤i1<i2≤T

1

[P (i1), P (i2)]
=

∑

K≤i1<i2≤T

(P (i1), P (i2))

P (i1)P (i2)
. (9)



On the density of integers with consecutive divisors 7

We split the sum in S into two parts according to that the greatest common

divisor of P (i1) and P (i2) is less or greater than a fixed integer H . We will give

the exact value of H at the end of the proof (H will depend on K). Let

S1
def
=

∑

K≤i1<i2≤T
(P (i1),P (i2))≤H

(P (i1), P (i2))

P (i1)P (i2)
,

S2
def
=

∑

K≤i1<i2≤T
(P (i1),P (i2))>H

(P (i1), P (i2))

P (i1)P (i2)
.

Then

S = S1 + S2.

Throughout the proof we will use the standard notations ≪ and ≫ in the sense

that the implied constant factors only depend on the polynomial P (X).

We will prove the following two lemmas:

Lemma 1. If K(logK)1/2 ≤ H then

S1 ≪ H2(log H)3

K4
.

Lemma 2. For H ≥ K ≥ 1

S2 ≪ (log T )
√

2+1

H
.

From Lemma 1 and Lemma 2 easily follows Theorem 1 since if

K(log K)1/2 ≤ H then

S ≪ H2(log H)3

K4
+

(log T )
√

2+1

H
. (10)

Fix T = K2 and H = K4/3

(log K)(2−
√

2)/3
. Then from (8), (9) and (10) we get the

theorem. It remains to prove Lemma 1 and Lemma 2.

Proof of Lemma 1. Trivially

(P (i1), P (i2)) ≤
∑

d|P (i1),P (i2)
d>0

d,
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since d in the sum also takes (P (i1), P (i2)). Thus

S1 ≤
∑

K≤i1<i2≤T

∑

d|P (i1),P (i2)
d≤H

d

P (i1)P (i2)
≤ 1

2

H
∑

d=1

d

(

∑

K≤i1≤T
d|P (i1)

1

P (i1)

)(

∑

K≤i2≤T
d|P (i2)

1

P (i2)

)

≤ 1

2

H
∑

d=1

d

(

∑

K≤i≤T
d|P (i)

1

P (i)

)2

. (11)

The congruence

P (x) ≡ 0 (mod d)

has at least 2ω(d) solutions in x modulo d, denote them by s1, s2, . . . , sr where

r ≤ 2ω(d). (12)

Thus
∑

K≤i≤T
d|P (i)

1

P (i)
=

r
∑

j=1

∑

K≤i≤T
i≡sj (mod d)

1

P (i)
. (13)

By (5) for x ≥ K0

P (x) ≥ a2(x + f − 1)(x + f) ≥ a2(x + f − d)(x + f)

for all positive integer d. Then for fixed sj we have

∑

K≤i≤T
i≡sj (mod d)

1

P (i)
≤ 1

P (K)
+

∑

K+d≤i≤T
i≡sj (mod d)

1

P (i)

≪ 1

(K + f − 1)(K + f)
+

∑

K+d≤i≤T
i≡sj (mod d)

1

(i + f − d)(i + f)

≪ 1

K2
+

1

d

∑

K+d≤i≤∞
i≡sj (mod d)

(

1

i + f − d
− 1

i + f

)

≪ 1

K2
+

1

d(K + f)
≪ 1

K2
+

1

dK
.
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By this, (12) and (13) we have:

∑

K≤i≤T
d|P (i)

1

P (i)
≪ 2ω(d)

K2
+

2ω(d)

dK
.

By the condition of the lemma H ≥ K so by (11) we have

S1 ≪
H
∑

d=1

d

(

2ω(d)

K2
+

2ω(d)

dK

)2

≪
K
∑

d=1

d

(

2ω(d)

dK

)2

+

H
∑

d=K+1

d

(

2ω(d)

K2

)2

=
1

K2

K
∑

d=1

4ω(d)

d
+

1

K4

H
∑

d=K+1

d4ω(d). (14)

Here the first sum can be written as a product over primes. By this, 1 + x ≤ ex,

using an explicit form of Mertens’ theorem [14] and K(log K)1/2 ≤ H we have

1

K2

K
∑

d=1

4ω(d)

d
≪ 1

K2

∏

2≤p≤K
prime p

(

1 +
4

p
+

4

p2
+

4

p3
+ . . .

)

≤ 1

K2

∏

2≤p≤K
prime p

e

(

4
p + 4

p2 +...
)

≪ 1

K2
e

( P
2≤p≤K
prime p

4
p

)

≪ (log K)4

K2
≪ H2

K4
(log H)3. (15)

Next we estimate the second sum in S1:

1

K4

H
∑

d=K+1

d4ω(d) ≤ H

K4

H
∑

d=1

4ω(d) ≤ H

K4

H
∑

d=1

(τ(d))2 ≤ H

K4

H
∑

d=1

∑

x|d

∑

y|d
1

≤ H

K4

H
∑

x=1

H
∑

y=1

H
∑

d=1
[x,y]|d

1 ≤ H

K4

H
∑

a=1

[H/a]
∑

p=1

[H/a]
∑

q=1
(p,q)=1

H
∑

d=1
[ap,aq]|d

1

≤ H

K4

H
∑

a=1

H
∑

p=1

H
∑

q=1

H

apq
≤ H2

K4

H
∑

a=1

1

a

H
∑

p=1

1

p

H
∑

q=1

1

q
≪ H2

K4
(log H)3. (16)

By (14), (15) and (16) we get

S1 ≪ H2(log H)3

K4

which was to be proved.



10 Katalin Gyarmati

Proof of Lemma 2. Let K ≤ i1 < i2 ≤ T such that (P (i1), P (i2)) =

d > H . Then (P (i1),P (i2))
P (i1)P (i2) is a term in S2. So there exist integers b < a such that

(a, b) = 1 and

P (i1) = bd, (17)

P (i2) = ad. (18)

By the definition of d we may assume that

(a, b) = 1. (19)

Then

b < a =
P (i2)

d
≤ P (i2)

H
≪ T 2

H
.

So there exist a constant c2 only depending on the polynomial P (x) such that

b < a ≤ c2T
2

H
.

From (17) and (18) follows

(P (i1), P (i2))

P (i1)P (i2)
=

1

abd
.

Let

H(a, b) = {d > H : ∃ K ≤ i1 < i2 ≤ T with P (i1) = bd, P (i2) = ad}.

Then

S2 ≤
∑

1≤b<a≤ c2T2

H

1

ab

∑

d∈H(a,b)

1

d
. (20)

First we need an upper bound for

∑

d∈H(a,b)

1

d
.

Again we suppose that d ∈ H(a, b), so there exist K ≤ i1 < i2 ≤ T with (17) and

(18). P (X) is a polynomial of degree 2, so write it of the form

P (X) = a2X
2 + a1X + a0.
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Then

4a2P (X) = (2a2X + a1)
2 + 4a2a0 − a2

1.

Write

x1 = 2a2i1 + a1, y1 = 2a2i2 + a1,

c = (a2
1 − 4a2a0)(a − b).

By this, (17) and (18) we have

4a2bd = 4a2P (i1) = x2
1 − c/(a − b),

4a2ad = 4a2P (i2) = y2
1 − c/(a − b).

So

ax1
2 − by1

2 = c. (21)

Since the discriminant of P (X) is non-zero, c 6= 0. Here c can be both positive

and negative. If c is negative in place of (21) we consider

by1
2 − ax1

2 = −c. (22)

Using (17) and (18)

d =
P (i2)

a
=

y2
1 − c

a−b

4a2a
=

P (i1)

b
=

x2
1 − c

a−b

4a2b
.

From d > H follows that there exists a constant c3 only depending on the poly-

nomial P (X) such that

y1 ≥ c3

√
Ha

x1 ≥ c3

√
Hb.

So
∑

d∈H(a,b)

1

d
≤

∑

y1≥c3

√
Ha:∃x1

ax1
2−by1

2=c

4a2a

y2
1 − c

a−b

≪
∑

y1≥c3

√
Ha:∃x1

ax1
2−by1

2=c

a

y2
1

, (23)

and similarly

∑

d∈H(a,b)

1

d
≤

∑

x1≥c3

√
Hb:∃y1

ax1
2−by1

2=c

4a2b

x2
1 − c

a−b

≪
∑

x1≥c3

√
Hb:∃y1

ax1
2−by1

2=c

b

x2
1

. (24)
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Using Corollary 1 for (23) if c is positive and for (24) if c is negative, for all m | c,

(m, ab) = 1 we obtain

∑

d∈H(a,b)

1

d
≪
(

1 +
|c|√
abm

)

τ(m)

H
. (25)

We would like to choose m so that we obtain an optimal estimate for
∑

d∈H(a,b)
1
d

in (25).

Lemma 3. Let g ∈ N. Then for 1 ≤ x < τ(g), there exist positive integers

m1, m2 | g such that

τ(m1) ≤ x, τ(m2) ≤
4τ(g)

x
,

and every d | g can be written of the form d = d1d2 with d1 | m1 and d2 | m2.

Proof of Lemma 3. This is Lemma 4 in [8]

Let g = a − b in Lemma 3. For x = 2τ(g)1/2 we obtain τ(m1), τ(m2) ≤
2τ(g)1/2. If d = |g| in Lemma 3 we see that |g| = d1d2 ≤ m1m2 so for m =

max{m1, m2} we get m ≥ |g|1/2. By (19) we also have (ab, m) ≤ (ab, g) =

(ab, a − b) = 1. For this m (25) gives

∑

d∈H(a,b)

1

d
≪
(

1 +
|c|√

abg1/2

)

τ(g)1/2

H
≪
(

1 +
|c|

√

ab(a − b)

)

τ(a − b)1/2

H
(26)

Here by (2)

|c|
√

ab(a − b)
≪ a − b
√

ab(a − b)
≪
√

a − b

ab
≪
√

a

ab
≪ 1.

By this and (26) we have

∑

d∈H(a,b)

1

d
≪ τ(a − b)1/2

H
.

By this and (20) we have

S2 ≪ 1

H

∑

b<a≤ c1T2

H

τ(a − b)1/2

ab
≪ 1

H

∑

b,s≤ c1T2

H

τ(s)1/2

b(b + s)
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≪ 1

H

∑

s≤ c1T2

H

τ(s)1/2
∑

b<∞

1

b(b + s)

≪ 1

H

∑

s≤ c1T2

H

τ(s)1/2

s

∑

b<∞

(

1

b
− 1

b + s

)

=
1

H

∑

s≤ c1T2

H

τ(s)1/2

s

(

1

1
+

1

2
+ · · · + 1

s

)

≪ 1

H

∑

s≤ c1T2

H

τ(s)1/2

s
log s ≪ log T

H

∑

s≤ c1T2

H

τ(s)1/2

s
.

Here the last sum can be estimated by a product over primes.

S2 ≪ log T

H

∏

p≤ c1T2

H

(

∑

ν≥0

(ν + 1)1/2

pν

)

≪ log T

H

∏

p≤ c1T2

H

(

1 +
21/2

p

)

(

∑

ν≥0
ν 6=1

ν + 1

pν

)

≪ log T

H

∏

p≤ c1T2

H

(

1 +
21/2

p

)(

1 +
3

(p − 1)2

)

≪ (log T )1+
√

2

H

which was to be proved.

Proof of Theorem 2. Denote the positive integer solutions of (3) by

(x1, y1), (x2, y2), . . . , (xS , yS) where 1 ≤ y1 < y2 < y3 < · · · < yS ≤ N . Then for

1 ≤ i < j ≤ S we have

axi
2 − byi

2 = c, (27)

axj
2 − byj

2 = c. (28)

Multiplying (27) by y2
j , (28) by y2

i and taking the difference we get

a (xiyj − xjyi) (xiyj + xjyi) = c
(

y2
j − y2

i

)

. (29)

The right-hand-side of (29) is positive, so the left-hand-side is also positive. It

follows from this that

1 ≤ xiyj − xjyi, 2xjyi ≤ xiyj + xjyi. (30)

Using this and (29) we get

2axjyi < cy2
j . (31)
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From (28)

axj
2 = c + byj

2 ≥ byj
2, xj ≥

√

b

a
yj .

By this and (31) we get

2
√

ab · yiyj < cy2
j ,

√

4ab

c2
yi < yj. (32)

For j = i + 1 we obtain
√

4ab

c2
yi < yi+1.

Thus
(

√

4ab

c2

)S−1

y1 < yS ≤ N,

from which part a) follows.

We will prove part b) by induction on c. So suppose that c = 1 or we have

verified the statement for 1, 2, . . . , c − 1 in place of c in (3). Then throughout

the proof we may suppose that ab is a perfect square modulo m. So there is an

integer u such that

ab ≡ u2 (mod m). (33)

Indeed, otherwise, there is a prime factor p of m (so p | m | c) such that the

Legendre symbol
(

ab
p

)

= −1. (ab, m) = 1 thus p ∤ a, b, so from
(

ab
p

)

= −1 then

p | x, y and p2 | c follows. Thus from the Pell equation

ax2 − by2 = c

follows that

a

(

x

p

)2

− b

(

y

p

)2

=
c

p2
.

m
(m,p2) | c

p2 , thus by the induction we have

S ≤
⌈

ec/p2

√
abm/(m, p2)

⌉

τ(m/(m, p2)) (log N + 2) ≤
⌈

ec√
abm

⌉

τ(m) (log N + 2) .

and we are done. m is a divisor of c, thus

ax2 − by2 ≡ 0 (mod m).
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Multiplying it by a and using (33) we get

(ax − uy)(ax + uy) ≡ 0 (mod m).

So there is an n | m such that

n | ax − uy and
m

n
| ax + uy. (34)

For n | m let G(n) denote the set the solutions of (3) such that 1 ≤ x,

1 ≤ y ≤ N and (34) holds. Then we get

S =
∑

n|m
|G(n)| = τ(m)max |G(n)| . (35)

Consider a fixed n. We will give an upper bound for G(n). In this case

we denote by (x1, y1), (x2, y2), . . . , (xT , yT ) the all solutions of (3) such that

(xi, yi) ∈ G(n) for 1 ≤ i ≤ T , where

T = |G(n)| .

Again we may assume that 1 ≤ y1 < y2 < · · · < yT ≤ N . For (xi, yi), (xj , yj) ∈
G(n), i < j we have

n | axi − uyi and
m

n
| axi + uyi.

n | axj − uyj and
m

n
| axj + uyj.

Thus

m | (axi − uyi)(axj + uyj) − (axj − uyj)(axi + uyi) = 2au (xiyj − xjyi) .

Here (au, m) ≤ (au2, m) = (a2b, m) = 1. So:

m | 2 (xiyj − xjyi) . (36)

We fix i. The sequence {2 (xiyj − xjyi)}j=i+1,i+2,...,T is strictly monotone in-

creasing since

(xiyj − xjyi) = yiyj

(

xi

yi
− xj

yj

)

= yiyj

(

xi

yi
−
√

b

a
+

c

ay2
j

)
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and here both {yj}j=i+1,...,T ,
{

xi

yi
−
√

b
a + c

ay2
j

}

j=i+1,...,T
are strictly monotone

increasing sequences. By (36) we also know that the elements of the sequence

{2 (xiyj − yjxi)}j=i+1,...,T are divisible by m.

Let t be a positive integer. Thus in place of (30) even

tm

2
≤ xiyi+t − xi+tyi

holds. Similarly to (32) we get

tm

√

ab

c2
yi < yi+t.

Fix

t =

⌈

ce√
abm

⌉

. (37)

Then

eyi < yi+t. (38)

Thus

e[(T−1)/t]y1 < y1+t[(T−1)/t] ≤ yT ≤ N.

So

T = |G(n)| < t log N + t + 1 ≤ t(log N + 2).

Using this, (35) and (37) we get part b).

Proof of Corollary 1. We will use the groups G(n) defined in the proof

of Theorem 2. Again we fix t by (37). By (38) for the solutions (x1, y1), . . . ,

(xT , yT ) ∈ G(n) of (3) with 0 ≤ xi and A ≤ y1 < y2 < · · · < yT we have

1

yi
2

+
1

yi+t
2

+
1

yi+2t
2

+ · · · ≪ 1

A2
.

So

1

y1
2

+
1

y2
2

+
1

y3
2

+ · · · ≪ t

A2
=

⌈

ce√
abm

⌉

A2
.

Since we defined τ(m) groups G(n), the corollary follows.
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[3] R. de la Bretèche, Sur une classe de fonctions arithmétiques liées aux diviseurs d’un
entier, Indag. Mathem. New Ser. 11 (2000), 437–452.
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