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On common fixed point of mappings and setvalued
mappings with some weak conditions of commutativity

By M. IMDAD (Aligarh) and AQEEL AHMAD (Aligarh)

Abstract. Some results on common fixed point of two set-valued and two single-
valued mappings defined on a complete metric space with some weak commutativity
conditions have been proved. Our work generalizes some earlier results due to Khan-
Kubiaczyk, Chang, Singh-Whitefield and others.

1. Introduction

There exists an extensive literature on common fixed point of set-
valued mappings satisfying contractive conditions controlled by a non-
negative real-valued function from [0,∞) to [0,∞). In these results suit-
able conditions on the control function are crucial for the existence of fixed
points. For this kind of work one can be referred to Singh-Meade [9],
Barcz [1] and Khan-Kubiaczyk [6].

The purpose of this paper is to obtain some common fixed point
theorems for two setvalued and two single valued mappings defined on
a complete metric space employing some conditions weaker than commu-
tativity. Our work generalizes several previously known results due to
Khan-Kubiaczyk [6], Chang [2], Singh-Whitefield [8], Khan et al
[5] and others.

2. Preliminaries and notations

Let (X, d) be a metric space, then following [7] we record
(i) B(X) = {A : A is a nonempty bounded subset of X}
(ii) For A,BεB(X) we define
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D(A,B) = inf{d(a, b) : aεA, bεB} and

δ(A,B) = sup{d(a, b) : aεA, bεB}.
If A = {a}, then we write δ(A,B) = δ(a,B) and if B = {b} then

δ(A, b) = d(a, b).
One can easily prove that for A,B, C in B(X)

δ(A,B) = δ(B, A) ≥ 0,

δ(A,B) ≤ δ(A,C) + δ(C, B),

δ(A,A) = sup{d(x, y) : x, yεA} = diamA and

δ(A,B) = 0 implies that A = B = {a}.
We require the following for future use:

Lemma 2.1 [3]. If {An} and {Bn} are sequences of bounded subsets
of (X, d) which converge to bounded subsets A and B respectively, then
the sequence {δ(An, Bn)} converges to {δ(A,B)}.

Lemma 2.2 [4]. Let {An} be a sequence of nonempty bounded subsets
of (X, d) and y be a point in X such that

lim
n→∞

δ(An, y) = 0.

Then the sequence {An} converges to the set {y}.
Definition 2.3. Let F : X → B(X) be a set-valued mapping and

I : X → X a single-valued mapping. Then, following [4,7], we say that
the pair (F, I) is
(a) weakly commuting on X if for any x in X

δ(FIx, IFx) ≤ max{δ(Ix, Fx), diam IFx},
(aa) quasi-commuting on X if for any x in X

IFx ⊆ FIx,

(aaa) slightly commuting on X if for any x in X

δ(FIx, IFx) ≤ max{δ(Ix, Fx), diam Fx}.
Clearly two commuting mappings satisfy (a)–(aaa) but the converse

may not be true. In [4] it is demonstrated by suitable examples that
the foregoing three concepts are mutually independent and none of them
implies the other two.

In accordance with [6], let Φ be the set of all realvalued functions
φ : (R+)5 → R+ which are upper semi-continuous from the right and non-
decreasing in each of the co-ordinate variables such that φ(t, t, t, at, bt) < t



On common fixed point of mappings . . . 107

for each t ≥ 0, a ≥ 0, b ≥ 0, with a + b ≤ 4. Also Ψ is the set of real
valued functions ψ : R+ → R+ which are upper semicontinuous from the
right and nondecreasing with ψ(t) < t for t > 0.

We also require the following lemma due to Singh-Meade [9].

Lemma 2.4. For t > 0, lim
n→∞

ψn(t) = 0.

3. Results

We prove the following
Theorem 3.1. Let F,G be two set-valued mappings of a complete

metric space (X, d) into B(X), and I, J two self-mappings of X. Sup-
pose that (F, I) and (G, J) are slightly commuting so that one of them is
continuous, further

F (X) ⊆ J(X), G(X) ⊆ I(X)

and for all x, y in X and φεΦ

(3.1.1) δ(Fx, Gy) < φ(δ(Ix, Fx), δ(Jy, Gy), δ(Ix, Gy),

δ(Jy, Fx) d(Ix, Jy))

where for ψεΨ t > 0, a ≥ 0, b ≥ 0, a + b ≤ 4

ψ(t) = max

{
φ(t, t, t, at, bt), φ(t, 0, 0, t, 0), φ(0, 0, t, t, t),

φ(0, t, t, 0, 0)

}
< t.

Then F, G, I and J have a unique common fixed point z such that
Iz = Jz = z and Fz = Gz = {z}. Also, z is the unique common fixed
point of F and I, and of G and J .

Proof. Let x0εX and y1 be an arbitrary point choosen in X1 = Fx0.
Since F (X) ⊆ J(X), we get a point x1εX such that Jx1 = y1. Now choose
an arbitrary point y2 in X2 = Gx1; as G(X) ⊆ I(X), we get an x2εX with
Ix2 = y2. Thus is general if we choose x2n in X with y2n+1εX2n+1 = Fx2n

then we always get some x2n+1εX satisfying Jx2n+1 = y2n+1. Again, let
y2n+2εX2n+2 = Gx2n+1 be arbitrary then there exists x2n+2εX such that
Ix2n+2 = y2n+2 for n = 0, 1, 2, . . . Let us put Vn = δ(Xn, Xn+1).

We distingush two cases:
Case 1. If V1 = 0, then

V1 = δ(X1, X2) = δ(Fx0, Gx1) = 0,

which means that Fx0 = y1 = Jx1 = Gx1 = y2 = Ix2. Since Gx1 is
a singleton, diam Gx1 = 0 and hence the slight commutativity of (G, J)
gives

(3.1.2) GJx1 = JGx1 = GGx1.
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Now, using (3.1.1), we get

δ(Fx2, Gx1) ≤φ(δ(Fx2, Gx1), 0, 0, δ(Fx2, Gx1), 0)

≤ ψ(δ(Fx2, Gx1) < δ(Fx2, Gx1),

getting thereby Fx2 = Gx1. Again, since Fx2 is a singleton, diamFx2 =
0, and the slight commutativity of (F, I) gives

(3.1.3) IFx2 = FIx2 = FFx2.

Applying (3.1.1) again we can have

δ(FFx2, Fx2) = δ(FFx2, Gx1)

≤ φ(0, 0, δ(FFx2, Fx2), δ(FFx2, Fx2), δ(FFx2, Fx2))

≤ ψ(δ(FFx2, Fx2)) < δ(FFx2, Fx2),

obtaining thereby FFx2 = Fx2. Thus Fx2 is a fixed point of F . It follows
from (3.1.3) that Fx2 is also a fixed point of I. Since Fx2 = Gx1, we can
get

δ(Gx1, GGx1) = δ(Fx2, GGx1)

≤ φ(0, 0, δ(Gx1, GGx1), δ(Gx1, GGx1), δ(Gx1, GGx1))

≤ ψ(δ(Gx1, GGx1) < δ(Gx1, GGx1),

which gives that GGx1 = Gx1. Thus Fx2 = Gx1 is a fixed point of G and
from (3.1.2) it follows that Fx2 = Gx1 is also a fixed point of J . Thus
Fx2 = y1 = Jx1 = Gx1 = y2 = Ix2 = Fx2 is a common fixed point of
F, G I and J .

Case II. Suppose that Vn > 0, n = 1, 2, . . . , then

V2n+1 = δ(X2n+1, X2n+2) = δ(Fx2n, Gx2n+1)

≤ φ(V2n, V2n+1, V2n + V2n+1, 2V2n, V2n+1).

Let us assume that V2n+1 > V2n, then

V2n+1 ≤ φ(V2n+1, V2n+1, 2V2n+1, 2V2n+1, V2n+1) ≤ ψ(V2n+1) < V2n+1,

which is a contradiction. Hence V2n+1 ≤ V2n. Similarly one can show that
V2n+2 ≤ V2n+1. Then {Vn} is a decreasing sequence. Now, since

V2 ≤ φ(V1, V1, V1, 2V1, 2V1) ≤ ψ(V1),

it follows by induction that

V2n+1 ≤
2n

ψ (V1)
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and hence Lemma 2.4 gives that

lim
n→∞

Vn = 0.

We now show that {yn} is a Cauchy sequence. For this it is sufficient
to show that {y2n} is a Cauchy sequence. Suppose {y2n} is not Cauchy
sequence. Then there is an ε > 0 such that for an even integer 2k there
exists even integers 2m(k) > 2n(k) > 2k such that

(3.1.4) d(y2n(k), y2m(k)) > ε.

For every even integer 2k, let 2m(k) be the least positive integer ex-
ceeding 2n(k) satisfying (3.1.4) and such that

(3.1.5) d(y2n(k), y2m(k)−2) < ε.

Now
ε ≤ d(y2n(k), y2m(k)) ≤ d(y2n(k), y2m(k)−2) + V2m(k)−2 + V2m(k)−1.

Then by (3.1.4) and (3.1.5) it follows that

(3.1.6) lim
k→∞

d(y2n(k), y2m(k)) = ε.

Also, by the triangle inequality, we have

|d(y2n(k), y2n(k)−1)− d(y2n(k), y2m(k))| < V2m(k)−1

and
|d(y2n(k)+1, y2m(k)−1)− d(y2n(k), y2m(k))| < V2m(k)−1 + V2n(k).

By using (3.1.6) we get d(y2n(k), y2m(k)−1) → ε and d(y2n(k)+1,
y2m(k)−1) → ε as k →∞. Now by (3.1.1) we get

d(y2n(k), y2m(k)) ≤ V2n(k) + δ(Fx2n(k), Gx2m(k)−1)

≤ V2n(k) + φ(V2n(k), V2m(k)−1, d(y2m(k), y2m(k)−1)

+V2m(k)−1, d(y2m(k)−1, y2n(k)+1) + V2n(k), d(y2n(k), y2m(k)−1))

which on letting k →∞ reduces to

ε < φ(0, 0, ε, ε, ε, ) < ε,

giving a contradiction. Thus {y2n} is a Cauchy sequence and converges to a
point z in X. Thus the sequences {y2n} = {Ix2n} and {y2n+1} = {Jx2n+1}
converge to z whereas the sequences of sets {Fx2n} and {Gx2n+1} converge
to the set {z}.

Since (F, I) slightly commute, we have

δ(FIx2n, IFx2n) ≤ max{δ(Ix2n, Fx2n), δ(Fx2n, Fx2n)}
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which on letting n →∞ gives (by Lemma 2.1)

lim
n→∞

δ(FIx2n, IFx2n) = d(z, z) = 0.

Let us assume that I is continuous, then the sequence {Iy2n} =
{I2x2n} converges to Iz. Thus

d(Iy2n+1, y2n+2) ≤ δ(IFx2n, Gx2n+1)

≤ δ(IFx2n, F Ix2n) + δ(FIx2n, Gx2n+1)

≤ δ(IFx2n, F Ix2n) + φ({Iy2n, Iy2n+1) + δ(Iy2n+1, IFx2n)

+δ(IFx2n, F Ix2n)}, δ(y2n+1, Gx2n+1), δ(Iy2n, Gx2n+1),

{δ(y2n+1, IFx2n) + δ(IFx2n, F Ix2n)}, d(Iy2n, y2n+1)).

Letting n →∞ and using Lemma 2.1 and Lemma 2.2 we obtain

d(Iz, z) ≤ φ(0, 0, d(Iz, z), d(Iz, z), d(Iz, z)) ≤ ψ(d(Iz, z)) < d(Iz, z)

which gives that Iz = z.
Similarly, applying condition (3.1.1) to δ(Fz, y2n+2) ≤ δ(Fz, Gx2n+1)

and making n → ∞, we can prove that Fz = {z} which means that z is
in the range of F . Since F (X) ⊆ J(X), there exists a point z′ in X such
that Jz′ = z. Now

δ(z, Gz′) = δ(Fz, Gz′) ≤ φ(0, δ(z, Gz′), δ(z, Gz′), 0, 0)

≤ ψ(δ(z, Gz′)) < δ(z, Gz′),

which gives that Gz′ = {z}.
Since (G, J) is slightly commuting, we can have

δ(Gz, Jz) = δ(GJz′, JGz′) < δ(Jz′, Gz′) = 0,

obtaining thereby Gz = Jz and so

δ(z, Gz) = δ(Fz, Gz) ≤ φ(0, 0, δ(z, Gz), δ(z, Gz), δ(z, Gz))

≤ ψ(δ(z, Gz)) < δ(z, Gz),

which implies that Gz = {z} = Jz. Thus we have shown that Iz = Jz =
Fz = Gz = {z}, hence z is a common fixed point of F,G, I and J .

If we now assume that F is continuous, then the sequence {Fy2n} =
{FIx2n} converges to Fz. Since Iy2n+1εIFx2n, the inequality (3.1.1)
yields

δ(Gx2n+1, Fy2n+1) ≤ φ({δ(Fx2n, F Ix2n) + δ(FIx2n, IFx2n)},
δ(Fx2n, FFx2n), {δ(IFx2n, F Ix2n) + δ(FIx2n, Fx2n)}

δ(Jx2n+1, Gx2n+1), {δ(IFx2n, F Ix2n) + δ(FIx2n, FFx2n)}).
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Making n →∞, we obtain

δ(z, Fz) ≤ φ(δ(z, Fz), δ(z, Fz), δ(z, Fz), 0, 2 δ(z, Fz))

≤ ψ(δ(z, Fz) < δ(z, Fz),

which gives that Fz = {z}. Since F (X) ⊆ J(X), there exists a point z′ in
X such that Jz′ = z.

Similarly, using (3.1.1) on δ(Gz′, Fx2n) and making n → ∞ one can
prove that Gz′ = {z}. Now, by the slight commutativity of (G, J) we find

δ(Gz, Jz) ≤ δ(GJz′, JGz′) ≤ δ(Jz′, Gz′) = 0,

which gives that Gz = Jz. Further, applying (3.1.1) to δ(Fx2n, Gz) and
letting n → ∞, we can show that Gz = {z}. Thus it is established that
Jz = Gz = {z}.

Since G(X) ⊆ I(X) there exists a point z′′ in X such that Iz′′ = z.
Thus

δ(Fz′′, z) = δ(Fz′′, Gz)

≤ φ(δ(Fz′′, z), 0, 0, δ(Fz′′, z), 0) ≤ ψ(δFz′′, z) < δ(Fz′′, z),

implying thereby Fz′′ = {z}.
By the slight commutativity of (F, I), we can have

δ(Fz, Iz) = δ(FIz′′, IFz′′) < δ(Iz′′, F z′′) = 0,

which yields that Fz = Iz. Thus we have shown that

Fz = Gz = Iz = Jz = {z}.
If we assume the mapping J (or G) to be continuous instead of I (or

F ), then the proof is similar, hence it is omitted.
For uniqueness, let w be another fixed point of (F, I), then

d(w, z) = d(Fw, Gz) ≤ φ(0, 0, d(w, z), d(w, z), d(w, z))

≤ ψ(d(w, z)) < d(w, z),

which gives that w = z. Similarly, one can show that z is a unique common
fixed point of G and J . This completes the proof.

The following theorem is immediate.

Theorem 3.2. Theorem 3.1 holds good if we replace the condition
(3.1.1) by

δ(Fx,Gy) ≤ φ(δ(Ix, Fy), δ(Jy,Gy), D(Ix,Gy), D(Jy, Fx), d(Ix, Jy)).

Remark 1. A careful observation of the proof reveals that the condi-
tion required on the constants a and b in Theorem 3.2 is merely a+ b ≤ 2.
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Remark 2. By setting I = J in Theorem 3.2, we get an improved
version of Theorem 3 of Khan-Kubiaczyk [6] as we require the continuity
of any one of the mappings instead of all three. Also, the commutativity
condition is replaced by slight commutativity.

Remark 3. By setting I = J = Identity mappings, we get Theorem 1
of Khan-Kubiaczyk [6].

As has already been remarked in [4], if the slight commutativity is
replaced by weak commutativity in Theorem 3.1, then the continuity of
anyone of the singlevalued mappings I or J is necessary. Thus we have
the following result:

Theorem 3.3. Theorem 3.1 holds good if we replace the slight com-
mutativity with weak commutativity and the continuity of any one of the
four mappings with the continuity of any one of the two single valued
mappings.

Proof. As proved in Theorem 3.1, {Vn} is a decreasing sequence and
Vn → 0 as n → ∞. Thus for ε > 0 there exists a positive integer p such
that for m, n > p we have

δ(Fx2m, Fx2n) < ε, δ(Fx2m, Gx2n+1) < ε, δ(Gx2m+1, Gx2n+1) < ε.

To show that {y2n} is a Cauchy sequence, choose z2n arbitrary in Fx2n

for n = 0, 1, 2, . . . . Then

(3.3.1) d(z2m, z2n) ≤ δ(z2m, Fx2n) ≤ δ(Fx2m, Fx2n) < ε

for m,n > p. Thus {z2n} is a Cauchy sequence hence it converges to a
point z in X.

We now assume I to be continuous, then depending on ε, one can
find σ > 0 such that d(Iz2m, Iz2n) < ε whenever d(z2m, z2n) < σ. Hence
there exists an integer q with m,n > q such that d(z2n z2m) < σ. For
m,n > q we have

(3.3.2) d(Iz2m, Iz2n) < ε.

Since the inequality (3.3.2) holds for arbitrary z2nεFx2n we have

(3.3.3) d(Iz2m, IFx2n) < ε.

We now set z2n = y2n+1 = Jx2n+1εFx2n. It folows that the sequence
{y2n+1} = {Jx2n+1} converges to z. Similarly one can also show that the
sequence {y2n} = {Ix2n} converges to z. So from (3.3.1) and (3.3.3), for
m,n > max{p, q}, we have

δ(y2m+1, Fx2n) < ε, δ(Iy2m+1, IFx2n) < ε.

Similarly it can be argued that for m,n > max{p, q}
δ(y2m+2, Gx2n+1) < ε, δ(Iy2m+2, IG2n+1) < ε.
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Now, using inequality (3.1.1), for n > max{p, q} we obtain

d(Iy2n+1, y2n+2) ≤ δ(IFx2n, Gx2n+1)

≤ δ(IFx2n, F Ix2n) + δ(FIx2n, Gx2n+1)

≤max{δ(y2n, Fx2n), diamIF2n}+ δ(FIx2n, Gx2n+1)

≤max{d(y2n, y2n+1) + ε, 2δ(y2n+1, IFx2n)}+ φ(δ(Iy2n, F Ix2n),

δ(y2n+1, Gx2n+1), δ(Iy2n, Gx2n+1), δ(y2n+1, F Ix2n), δ(Iy2n, y2n+1))

≤max{d(y2n, y2n+1) + ε, 2ε}+ φ(d(Iy2n, Iy2n+1)

+ ε + max{d(y2n, y2n+1) + ε, 2ε}, {d(y2n, y2n+1) + ε},
{d(Iy2n, y2n+2) + ε}, {d(y2n+1, Iy2n+1) + ε

+ max{d(y2n, y2n+1) + ε, 2ε}, d(Iy2n, y2n+1)).

Making n →∞, we obtain

d(Iz, z) ≤ 2ε + φ(3ε, ε, {d(Iz, z) + ε}, d(Iz, z) + 3ε, d(Iz, z))

which for ε → 0+ reduces to

d(Iz, z) ≤ φ(0, 0, d(Iz, z), d(Iz, z), d(Iz, z))

≤ ψ(d(Iz, z)) < d(Iz, z),

giving thereby Iz = z.
The remaining part of the proof is similar to that of Theorem 3.1

hence it is omitted.
As has already been noted in [4], if the slight commutativity is replaced

by quasi-commutativity in Theorem 3.1, then the continuity of any one of
the two set-valued mappings is necessary. Thus, we get the following result:

Theorem 3.4. Theorem 3.1 holds good if we replace the slight com-
mutativity with quasi commutativity, and the continuity of any one of
the four mappings with the continuity of any one of the two set valued
mappings.

Proof. The proof is similar to that of Theorem 3.1 except for some
minor changes, hence it is omitted.

Remark 4. Results analogous to Theorem 3.3 and Theorem 3.4 and
similar to Theorem 3.2, can be stated which also include Theorem 1 and
Theorem 3 of Khan-Kubiaczyk [6].

Remark 5. By suitably restricting the four mappings one can derive
a multitude of fixed point theorems which were proved while generalizing
the results of Singh–Meade [9].
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