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Sharp Jordan-type inequalities for Bessel functions

By ÁRPÁD BARICZ (Cluj-Napoca) and SHANHE WU (Longyan)

Abstract. In this paper our aim is to establish some sharp Jordan and Kober

type inequalities for Bessel and modified Bessel functions of the first kind by using the

monotone form of l’Hospital’s rule. Moreover, by using the classical Cauchy mean value

theorem inductively we deduce new series expansions for the Bessel and modified Bessel

functions. These results extend and improve many known results in the literature.

1. Introduction

The following inequality is known in literature as Jordan’s inequality [14,
p. 33]

2
π
≤ sin x

x
< 1, 0 < x ≤ π

2
,

while the inequality

1− 2
π

x ≤ cos x ≤ 1− x2

π
, 0 < x ≤ π

2
,

is known as Kober’s inequality [13]. Jordan’s inequality plays an important role
in many areas of mathematics and it has been studied recently by several math-
ematicians in order to sharpen this basic analytic inequality, see [7], [8], [11],
[15]–[19], [21]–[34]. For more details about Jordan’s inequality on refinements,
generalizations, extensions and applications we refer to the reader the interesting
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recent survey paper [18] where more than 40 papers, which contains various im-
proved versions of the above Jordan inequality, were cited. It is worth mentioning
that an interesting approach to deduce sharp Jordan-type inequalities was given
recently in the papers [32], [33], [34]. This paper is motivated by these papers,
mentioned above, and our aim in Section 2 is to extend to Bessel functions all of
the results from [32], [33], [34] regarding Jordan and Kober type inequalities and
the new power series expansion for the sine function. We note that our approach
is similar to those given in the above mentioned papers, however an important
step in the proofs is simplified. Moreover, our approach in each cases gives us
larger intervals of validity. In Section 3 we present the hyperbolic counterpart of
the results of Section 2, namely the sharp Jordan and Kober type inequalities for
the modified Bessel functions. In Section 4 we formulate an equivalent form of
the main results of this paper, namely Theorems 1 and 2, in order to point out
the connection between the results of [15] and [32], [33], [34]. We note also that
the approach in [15] is somewhat different to that given in this paper, and our
range of validity in some cases is much better than in [15].

To achieve our goal first let us recall some basic facts. Suppose that ν > −1
and consider the normalized Bessel function of the first kind Jν : R → (−∞, 1],
defined by

Jν(x) = 2νΓ(ν + 1)x−νJν(x) =
∑

n≥0

(−1/4)n

(ν + 1)nn!
x2n,

where, as usual, (ν + 1)n = Γ(ν + n + 1)/Γ(ν + 1) for each n ≥ 0 is the so-called
Pochhammer (or Appell) symbol, and Jν , defined by [20, p. 40]

Jν(x) =
∑

n≥0

(−1)n(x/2)ν+2n

n!Γ(ν + n + 1)
,

stands for the Bessel function of the first kind of order ν. Note that the following
differentiation formula

J ′ν(x) = − x

2(ν + 1)
Jν+1(x) (1.1)

is valid for all x ∈ R and ν > −1, which can be verified by using the series repre-
sentation of the function Jν . Moreover, it is worth mentioning that in particular
we have

J−1/2(x) =
√

π/2 · x1/2J−1/2(x) = cosx, (1.2)

J1/2(x) =
√

π/2 · x−1/2J1/2(x) =
sin x

x
, (1.3)
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J3/2(x) = 3
√

π/2 · x−3/2J3/2(x) = 3
(

sin x

x3
− cosx

x2

)
, (1.4)

respectively.
Now, for ν > −1 let us consider the normalized modified Bessel function

Iν : R→ [1,∞), defined by

Iν(x) = 2νΓ(ν + 1)x−νIν(x) =
∑

n≥0

(1/4)n

(ν + 1)nn!
x2n,

where Iν is the modified Bessel function of the first kind, defined by [20, p. 77]

Iν(x) =
∑

n≥0

(x/2)ν+2n

n!Γ(ν + n + 1)
.

Analogously with relations (1.2), (1.3) and (1.4) for the function Ip in particular
we have

I−1/2(x) =
√

π/2 · x1/2I−1/2(x) = cosh x, (1.5)

I1/2(x) =
√

π/2 · x−1/2I1/2(x) =
sinhx

x
, (1.6)

I3/2(x) = 3
√

π/2 · x−3/2I3/2(x) = −3
(

sinhx

x3
− coshx

x2

)
, (1.7)

respectively.

2. Jordan-type inequalities for Bessel functions
and a new power series representation of Bessel functions

2.1. The first main result and its proof. Our main result of this section
provides an extension of the main results of [32], [33], [34] concerning Jordan
type inequalities and the new power series expansion of the sine function.

Theorem 1. Let ν > −1 and let jν,1 be the first positive zero of the Bessel

function of the first kind Jν . Then for all 0 < x ≤ r ≤ jν+1,1 the following sharp

Jordan-type inequalities hold

Sν,n(x) + αν(r)(r2 − x2)n+1 ≤ Jν(x) ≤ Sν,n(x) + βν(r)(r2 − x2)n+1, (2.1)
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where

Sν,n(x) =
n∑

k=0

aν,k(r)(r2 − x2)k,

n is a natural number and the coefficients aν,k(r) are defined explicitly by

aν,k(r) =
Jν+k(r)

4kk!(ν + 1)k

(2.2)

for all k ∈ {0, 1, . . . , n + 1} or recursively by

aν,0(r) = Jν(r), aν,1(r) =
1

4(ν + 1)
Jν+1(r),

aν,k+1(r) =
ν + k

(k + 1)r2
aν,k(r)− 1

4k(k + 1)r2
aν,k−1(r) (2.3)

for all k ∈ {1, 2, . . . , n}. Moreover, the constants

αν(r) = aν,n+1(r) and βν(r) =
1−∑n

k=0 aν,k(r)r2k

r2(n+1)

are the best possible. In addition, there exist ζ ∈ (x, r) depending on n such that

Jν(x) =
n∑

k=0

aν,k(r)(r2 − x2)k +
Jν+n+1(ζ)

4n+1(n + 1)!(ν + 1)n+1

(r2 − x2)n+1, (2.4)

which leads to the power series expansion

Jν(x) =
∑

n≥0

aν,n(r)(r2 − x2)n. (2.5)

Proof. Let m∈{1, 2, . . . , n+1} and consider the functions fm, gm: [0, r]→R,
defined by

f1(x) = Jν(x)−
n∑

k=0

aν,k(r)(r2 − x2)k,

fm(x) =
Jν+m−1(x)

4m−1(ν + 1)m−1

−
n∑

k=m−1

k(k − 1). . .(k −m + 2)aν,k(r)(r2 − x2)k−m+1

for all m ≥ 2 and

g1(x) = (r2 − x2)n+1,

gm(x) = (n + 1)n(n− 1). . .(n−m + 3)(r2 − x2)n−m+2, m ≥ 2.

Now consider the function Q1 : (0, r) → R, defined by Q1(x) = f1(x)/g1(x).
Observe that the inequality (2.1) is equivalent to αν(r) ≤ Q1(x) ≤ βν(r). Thus,
to prove (2.1), in what follows we show that Q1 is decreasing. In view of (1.1) it
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is easy to verify that for all s ∈ {0, 1, 2, . . . , n} we have fs+1(r) = gs+1(r) = 0
and consequently for each x ∈ (0, r) and s ∈ {1, 2, . . . , n} one has

f ′s(x)
g′s(x)

=
fs+1(x)
gs+1(x)

=
fs+1(x)− fs+1(r)
gs+1(x)− gs+1(r)

.

Taking into account the above relation and using the monotone form of l’Hospital’s
rule [2, Lemma 2.2] n + 1 times it is clear that to prove that Q1 is decreasing it
is enough to show that the function

x 7→ f ′n+1(x)
g′n+1(x)

= aν,n+1(r)
Jν+n+1(x)
Jν+n+1(r)

is decreasing on (0, r). But, it is known [9, Theorem 3] that for all ν > −1 the
function x 7→ Jν(x) is decreasing on (0, jν,1). Changing ν with ν+n+1 we obtain
that the function x 7→ Jν+n+1(x) is decreasing on (0, jν+2,1) ⊂ (0, jν+n+1,1) and
with this the monotonicity of Q1 is proved. Here we used the well-known fact
that the function ν 7→ jν,1 is increasing on (−1,∞). To complete the proof of
(2.1) all that remains is to prove that the constants αν(r) and βν(r) in (2.1) are
the best possible. For this observe that

lim
x↘0

Q1(x) =
1−∑n

k=0 aν,k(r)r2k

r2(n+1)
= βν(r)

and by using the l’Hospital’s rule n + 1 times

lim
x↗r

Q1(x) = lim
x↗r

f ′1(x)
g′1(x)

= lim
x↗r

f ′2(x)
g′2(x)

= . . . = lim
x↗r

f ′n+1(x)
g′n+1(x)

= aν,n+1(r) = αν(r).

Finally, to prove the recursive relation for the coefficients aν,k(r), recall the re-
currence relation [20, p. 45]

Jν−1(x) + Jν+1(x) = (2ν/x)Jν(x),

from which we easily obtain

4ν(ν + 1)Jν−1(x) + x2Jν+1(x) = 4ν(ν + 1)Jν(x).

Changing in the above relation ν with ν + k, and using (2.2), we obtain (2.3).
Now, let us focus on (2.4). By the well-known Cauchy mean value theorem

there exist a constant ξ1 ∈ (x, r) such that

Q1(x) =
f1(x)
g1(x)

=
f1(x)− f1(r)
g1(x)− g1(r)

=
f ′1(ξ1)
g′1(ξ1)

,
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but as we have mentioned above we have

f ′1(ξ1)
g′1(ξ1)

=
f2(ξ1)
g2(ξ1)

=
f2(ξ1)− f2(r)
g2(ξ1)− g2(r)

.

Thus, using again the Cauchy mean value theorem n times we obtain that there
exist ξn+1 ∈ (ξn, r), where ξi ∈ (ξi−1, r) for all i ∈ {2, 3, . . . , n}, such that

Q1(x) =
f ′1(ξ1)
g′1(ξ1)

= . . . =
f ′n(ξn)
g′n(ξn)

=
f ′n+1(ξn+1)
g′n+1(ξn+1)

= aν,n+1(r)
Jν+n+1(ξn+1)
Jν+n+1(r)

.

Now denoting ξn+1 with ζ and by using (2.2) we obtain (2.4). On the other hand
when n tends to infinity ξn+1 tends to r, and thus Jν+n+1(ξn+1)/Jν+n+1(r) tends
to 1. Moreover, it is easy to show that aν,n+1(r) as well as aν,n+1(r)(r2 − x2)n+1

tends to zero as n tends to infinity. With other words, the reminder term in (2.4)
tends to zero as n tends to infinity, which leads to the series expansion (2.5). ¤

2.2. Particular cases and remarks. 1. First let us focus on inequality (2.1)
and suppose that ν = −1/2. Then by using (1.2), (1.3) and the notation

Sν,n(x) =
n∑

k=0

aν,k(r)(r2 − x2)k,

from Theorem 1 we obtain for all 0 < x ≤ r ≤ π the following sharp Kober-type
inequality:

S−1/2,n(x) + α−1/2(r)(r2 − x2)n+1 ≤ cosx

≤ S−1/2,n(x) + β−1/2(r)(r2 − x2)n+1, (2.6)

where

S−1/2,n(x) =
n∑

k=0

a−1/2,k(r)(r2 − x2)k,

n is a natural number and the coefficients a−1/2,k(r) are defined recursively by

a−1/2,0(r) = cos r, a−1/2,1(r) =
sin r

2r
,

a−1/2,k+1(r) =
2k − 1

2(k + 1)r2
a−1/2,k(r)− 1

4k(k + 1)r2
a−1/2,k−1(r)

for all k ∈ {1, 2, . . . , n}. Moreover, the constants

α−1/2(r) = a−1/2,n+1(r) and β−1/2(r) =
1−∑n

k=0 a−1/2,k(r)r2k

r2(n+1)
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are the best possible. This result completes [33, Theorem 13] and improves the
other known results from the literature. For more details on improved Kober’s
inequalities we refer to the paper [18]. It is worth mentioning that although the
technique is similar our approach is much simpler than in [33]. This is because
in [33] there are used spherical Bessel functions instead of Bessel functions, for
which the monotonicity of their higher order derivative requires some complicated
preliminary results. Our proof is based just on the simple monotonicity property
of the function Jν established by the first author [9, Theorem 3].

2. Secondly, suppose that ν = 1/2. Then, by using (1.3) and (1.4), from (2.1)
we obtain for all 0 < x ≤ r ≤ j3/2,1 the following sharp Jordan-type inequality:

S1/2,n(x)+α1/2(r)(r2−x2)n+1 ≤ sin x

x
≤ S1/2,n(x)+β1/2(r)(r2−x2)n+1, (2.7)

where

S1/2,n(x) =
n∑

k=0

a1/2,k(r)(r2 − x2)k,

n is a natural number and the coefficients a1/2,k(r) are defined recursively by

a1/2,0(r) =
sin r

r
, a1/2,1(r) =

sin r − r cos r

2r3
,

a1/2,k+1(r) =
2k + 1

2(k + 1)r2
a1/2,k(r)− 1

4k(k + 1)r2
a1/2,k−1(r)

for all k ∈ {1, 2, . . . , n}. Here j3/2,1 = 4.493409457 in view of (1.4) is in fact the
first positive zero of the equation tan x = x. Moreover, the constants

α1/2(r) = a1/2,n+1(r) and β1/2(r) =
1−∑n

k=0 a1/2,k(r)r2k

r2(n+1)

are the best possible. We note that this result was obtained in [33, Theorem 6]
and [34, Theorem 1], however our approach is simpler than in [33], [34]. Moreover,
it is worth mentioning that in [34] the inequality (2.7) is proved just for the case
when 0 < x ≤ r ≤ j1/2,1 = π, while in [33] just for the case when 0 < x ≤ r ≤
j−1/2,1 = π/2. Thus our result (2.1) not only extend (2.7) to Bessel functions,
but even improves the range of validity. Now, if we choose r = π/2 in (2.7), then
we get the following sharp Jordan-type inequalities

n∑

k=0

bk(π2 − 4x2)k + bn+1(π2 − 4x2)n+1 ≤ sin x

x

≤
n∑

k=0

bk(π2 − 4x2)k +
1−∑n

k=0 bkπ2k

π2(n+1)
(π2 − 4x2)n+1,
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where n is a natural number, as above, and the coefficients bk are defined as
follows

b0 =
2
π

, b1 =
1
π3

, bk+1 =
2k + 1

2(k + 1)π2
bk − 1

16k(k + 1)π2
bk−1

for all k ∈ {1, 2, . . . , n}. These results appear on three different papers of the
same author, namely in [33, Theorem 7], [34, Corollary 1] and [32, Theorem 5].

3. Now, let focus on the expansions (2.4) and (2.5) and suppose that ν =
−1/2. Then, by using again (1.2), for all 0 < x ≤ r ≤ π we obtain

cos x =
n∑

k=0

a−1/2,k(r)(r2 − x2)k +
Jn+1/2(ζ)

4n+1(n + 1)!(1/2)n+1

(r2 − x2)n+1,

which leads to the new power series expansion of the cosine function

cos x =
∑

k≥0

a−1/2,k(r)(r2 − x2)k,

where the coefficients a−1/2,k(r) are defined recursively by

a−1/2,0(r) = cos r, a−1/2,1(r) =
sin r

2r
,

a−1/2,k+1(r) =
2k − 1

2(k + 1)r2
a−1/2,k(r)− 1

4k(k + 1)r2
a−1/2,k−1(r)

for all k ∈ {1, 2, . . . }. Moreover, in this case β−1/2(r) becomes zero, i.e. the
coefficients a−1/2,k(r) have the following property

n∑

k=0

a−1/2,k(r)r2k = 1.

4. Suppose that ν = 1/2. Then, in view of (1.3), for all 0 < x ≤ r ≤ j3/2,1

we obtain

sin x

x
=

n∑

k=0

a1/2,k(r)(r2 − x2)k +
Jn+3/2(ζ)

4n+1(n + 1)!(3/2)n+1

(r2 − x2)n+1,

which leads to the new power series expansion of the sine function

sin x

x
=

∑

k≥0

a1/2,k(r)(r2 − x2)k,
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where the coefficients a1/2,k(r) are defined recursively by

a1/2,0(r) =
sin r

r
, a1/2,1(r) =

sin r − r cos r

2r3
,

a1/2,k+1(r) =
2k + 1

2(k + 1)r2
a1/2,k(r)− 1

4k(k + 1)r2
a1/2,k−1(r)

for all k ∈ {1, 2, . . . }. Moreover, in this case β1/2(r) becomes zero, i.e. the
coefficients a1/2,k(r) have the following property

n∑

k=0

a1/2,k(r)r2k = 1.

We note here that the above series expansions are in fact equivalent with [33,
Theorem 8] and [33, Theorem 9], however, in [33] the results in the question were
proved just for 0 < x ≤ r ≤ π/2. See also [32, Theorem 7], where [33, Theorem 8]
is reproduced for r = π/2. Now, choose in the above relations r = π/2. Then we
obtain [32, Theorem 8], [33, Theorem 10]:

sin x

x
=

∑

k≥0

bk(π2 − 4x2)k,

where

b0 =
2
π

, b1 =
1
π3

, bk+1 =
2k + 1

2(k + 1)π2
bk − 1

16k(k + 1)π2
bk−1

for all k ∈ {1, 2, . . . }.
5. Finally, choose r = jν,1 in (2.4) and (2.5). Then, for all 0 < x ≤ jν,1, we

obtain the following new expansion of the Bessel functions of the first kind:

Jν(x) =
n∑

k=1

(
x

jν,1

)ν
Jν+k(jν,1)
2kk!jk

ν,1

(j2
ν,1 − x2)k

+
(

x

ζ

)ν
Jν+n+1(ζ)

2n+1(n + 1)!ζn+1
(j2

ν,1 − x2)n+1, (2.8)

where ζ ∈ (x, jν,1). This leads to the new series expansion

Jν(x) =
∑

n≥1

(
x

jν,1

)ν
Jν+n(jν,1)
2nn!jn

ν,1

(j2
ν,1 − x2)n. (2.9)

First observe that this new series expansion is consistent with the fact that jν,1

is a simple zero of Jν . More precisely, from (2.9) it follows that Jν(jν,1) = 0 and
J ′ν(jν,1) = −Jν+1(jν,1) 6= 0, which shows that jν,1 is indeed a simple zero of Jν .
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Here we used the known fact that the zeros of Jν and Jν+1 are interlaced and
then we have Jν+1(jν,1) 6= 0. Secondly, it is worth mentioning here that the new
formulas (2.4) and (2.5), and consequently (2.8) and (2.9), follows easily from
the classical Taylor theorem with Lagrange’s form of the remainder. To see this,
consider the function x 7→ ϕν(x) = Jν(

√
x) = 2νΓ(ν + 1)x−ν/2Jν(

√
x), which

is continuously differentiable n + 1 times on the whole real line and satisfies the
differentiation formula 4(ν + 1)ϕ′ν(x) = −ϕν+1(x) for all x ∈ R and ν > −1,
corresponding to formula (1.1). Then clearly we have

ϕ(n)
ν (x) =

(−1)n

4n(ν + 1)n

ϕν+n(x)

for all x ∈ R, n ∈ {0, 1, 2, . . . } and ν > −1. Consequently, from Taylor’s theorem
with Lagrange’s form of the remainder we conclude that there exists ξ ∈ (x, r)
such that

ϕν(x) =
n∑

k=0

(−1)kϕν+k(r)
4kk!(ν + 1)k

(x− r)k +
(−1)n+1ϕν(ξ)

4n+1(n + 1)!(ν + 1)n+1

(x− r)n+1,

which leads to the power series expansion

ϕν(x) =
∑

n≥0

(−1)nϕν+n(r)
4nn!(ν + 1)n

(x− r)n.

Now, changing x with x2 and r with r2 we reobtain the expansions (2.4) and
(2.5). Since Taylor’s theorem (with the integral formulation of the remainder
term) is also valid if the corresponding function has complex values, from the
above discussion we conclude that the new series expansions (2.5) and (2.9) are
in fact valid for wider range of x and ν, i.e. for x, ν ∈ C such that ν 6= −1,−2, . . ..

3. Jordan-type inequalities for modified Bessel functions
and a new power series representation of modified Bessel functions

3.1. The second main result and its proof. In this section we are going
to present the hyperbolic counterpart of the results from the previous section.
Corresponding to Theorem 1 we have the following results for the function Iν .
We note that the proof of this theorem is similar to that of Theorem 1, however
we have included below its proof only for the sake of completeness.
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Theorem 2. If ν > −1 and 0 < x ≤ r, then the following sharp Jordan-type

inequalities hold

Pν,n(x) + γν(r)(r2 − x2)n+1 ≤ Iν(x) ≤ Pν,n(x) + δν(r)(r2 − x2)n+1, (3.1)

where

Pν,n(x) =
n∑

k=0

cν,k(r)(r2 − x2)k,

n is an even natural number and the coefficients cν,k(r) are defined explicitly by

cν,k(r) =
(−1)kIν+k(r)
4kk!(ν + 1)k

(3.2)

for all k ∈ {0, 1, . . . , n + 1} or recursively by

cν,0(r) = Iν(r), cν,1(r) = − 1
4(ν + 1)

Iν+1(r),

cν,k+1(r) =
ν + k

(k + 1)r2
cν,k(r) +

1
4k(k + 1)r2

cν,k−1(r) (3.3)

for all k ∈ {1, 2, . . . , n}. Moreover, the Jordan-type inequality (3.1) is reversed

when n is odd and in both of cases the constants

γν(r) = cν,n+1(r) and δν(r) =
1−∑n

k=0 cν,k(r)r2k

r2(n+1)

are the best possible. In addition, there exist ζ ∈ (x, r) depending on m such that

Iν(x) =
m∑

k=0

cν,k(r)(r2 − x2)k +
(−1)m+1Iν+m+1(ζ)

4m+1(m + 1)!(ν + 1)m+1

(r2 − x2)m+1, (3.4)

which leads to the power series expansion

Iν(x) =
∑

m≥0

cν,m(r)(r2 − x2)m. (3.5)

Proof. Our strategy is as in the proof of Theorem 1. However, we distin-
guish here two cases. First we suppose that n is even. Let m ∈ {1, 2, . . . , n + 1}
and consider the functions hm, gm : [0, r] → R, defined by

h1(x) = Iν(x)−
n∑

k=0

cν,k(r)(r2 − x2)k,
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hm(x) =
(−1)m−1Iν+m−1(x)

4m−1(ν + 1)m−1

−
n∑

k=m−1

k(k − 1). . .(k−m + 2)cν,k(r)(r2−x2)k−m+1

for all m ≥ 2 and
g1(x) = (r2 − x2)n+1,

gm(x) = (n + 1)n(n− 1). . .(n−m + 3)(r2 − x2)n−m+2, m ≥ 2.

Now consider the function Q2 : (0, r) → R, defined by Q2(x) = h1(x)/g1(x). First
observe that the inequality (3.1) is equivalent to γν(r) ≤ Q2(x) ≤ δν(r). Thus,
to prove (3.1), in what follows we show that Q2 is decreasing. In view of the
differentiation formula

I ′ν(x) =
x

2(ν + 1)
Iν+1(x),

it is easy to verify that for all s ∈ {0, 1, 2, . . . , n} we have hs+1(r) = gs+1(r) = 0
and consequently for each x ∈ (0, r) and s ∈ {1, 2, . . . , n} one has

h′s(x)
g′s(x)

=
hs+1(x)
gs+1(x)

=
hs+1(x)− hs+1(r)
gs+1(x)− gs+1(r)

.

Using again the monotone form of l’Hospital’s rule [2, Lemma 2.2] n + 1 times it
is clear that to show that Q2 is decreasing it is enough to prove that the function

x 7→ h′n+1(x)
g′n+1(x)

= −cν,n+1(r)
Iν+n+1(x)
Iν+n+1(r)

is decreasing on (0, r). But, it is well-known that for all ν > −1 the function
x 7→ Iν(x) is increasing on (0,∞). Now changing ν with ν + n + 1 we obtain
that the function x 7→ Iν+n+1(x) is increasing too on (0,∞) and with this the
monotonicity of Q2 is proved.

To complete the proof of (3.1) all that remains is to prove that the constants
γν(r) and δν(r) in (3.1) are the best possible. For this observe that

lim
x↘0

Q2(x) =
1−∑n

k=0 cν,k(r)r2k

r2(n+1)
= δν(r)

and by using the l’Hospital’s rule n + 1 times

lim
x↗r

Q2(x) = lim
x↗r

h′1(x)
g′1(x)

= lim
x↗r

h′2(x)
g′2(x)

= . . . = lim
x↗r

h′n+1(x)
g′n+1(x)

= cν,n+1(r) = γν(r).
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Now, suppose that n is odd. A similar argument to that presented above
yields that in this case that the function

x 7→ h′n+1(x)
g′n+1(x)

= cν,n+1(r)
Iν+n+1(x)
Iν+n+1(r)

is increasing on (0, r). Consequently Q2 is increasing, and thus we have γν(r) ≥
Q2(x) ≥ δν(r) for all ν > −1 and 0 < x ≤ r, i.e. the inequality (3.1) is reversed.

Finally, to prove the recursive relation for the coefficients cν,k(r) recall the
formula [20, p. 79]

Iν−1(x)− Iν+1(x) = (2ν/x)Iν(x),

from which we easily obtain

4ν(ν + 1)Iν−1(x)− x2Iν+1(x) = 4ν(ν + 1)Iν(x).

Changing in the above relation ν with ν+k and using (3.2) we easily obtain (3.3).
Now, let us focus on (3.4). Using the Cauchy mean value theorem there exist

a constant ξ1 ∈ (x, r) such that

Q2(x) =
h1(x)
g1(x)

=
h1(x)− f1(r)
g1(x)− g1(r)

=
h′1(ξ1)
g′1(ξ1)

,

but as we have mentioned above we have

h′1(ξ1)
g′1(ξ1)

=
h2(ξ1)
g2(ξ1)

=
h2(ξ1)− h2(r)
g2(ξ1)− g2(r)

.

Thus using again the Cauchy mean value theorem m times we obtain that there
exist ξm+1 ∈ (ξm, r), where ξi ∈ (ξi−1, r) for all i ∈ {2, 3, . . . ,m}, such that

Q2(x) =
h′1(ξ1)
g′1(ξ1)

=
h′2(ξ2)
g′2(ξ2)

= . . . =
h′m(ξm)
g′m(ξm)

=
h′m+1(ξm+1)
g′m+1(ξm+1)

= (−1)m+1cν,m+1(r)
Iν+m+1(ξm+1)
Iν+m+1(r)

.

Now denoting ξm+1 with ζ and by using (3.2) we obtain (3.4). On the other hand
when m tends to infinity ξm+1 tends to r, and thus Iν+m+1(ξm+1)/Iν+m+1(r)
tends to 1. Moreover, it is easy to show that the expression (−1)m+1cν,m+1(r)
as well as (−1)m+1cν,m+1(r)(r2 − x2)m+1 tends to zero as m tends to infinity.
With other words, the reminder term in (3.4) tends to zero as m tends to infinity,
which leads to the series expansion (3.5). ¤
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3.2. Particular cases and remarks. 1. First let us focus on inequality (3.1)
and suppose that ν = −1/2. Then by using (1.5), (1.6) and the notation

Pν,n(x) =
n∑

k=0

cν,k(r)(r2 − x2)k,

from Theorem 2 for all 0 < x ≤ r we get the following Kober-type inequality:

P−1/2,n(x) + γ−1/2(r)(r2 − x2)n+1 ≤ coshx

≤ P−1/2,n(x) + δ−1/2(r)(r2 − x2)n+1, (3.6)

where

P−1/2,n(x) =
n∑

k=0

c−1/2,k(r)(r2 − x2)k,

n is an even natural number and the coefficients c−1/2,k(r) are defined recursively
by

c−1/2,0(r) = cosh r, c−1/2,1(r) = − sinh r

2r
,

c−1/2,k+1(r) =
2k − 1

2(k + 1)r2
c−1/2,k(r) +

1
4k(k + 1)r2

c−1/2,k−1(r)

for all k ∈ {1, 2, . . . , n}. Moreover, the constants

γ−1/2(r) = c−1/2,n+1(r) and δ−1/2(r) =
1−∑n

k=0 c−1/2,k(r)r2k

r2(n+1)

are the best possible. Note that, when n is odd, the inequality (3.6) is reversed.
2. Secondly, suppose that ν = 1/2. Then, by using (1.6) and (1.7) from

(3.1), we obtain for all 0 < x ≤ r the following sharp Jordan-type inequality:

P1/2,n(x) + γ1/2(r)(r2 − x2)n+1 ≤ sinhx

x
≤ P1/2,n(x)

+δ1/2(r)(r2 − x2)n+1, (3.7)

where

P1/2,n(x) =
n∑

k=0

c1/2,k(r)(r2 − x2)k,

n is an even natural number and the coefficients c1/2,k(r) are defined recursively
by

c1/2,0(r) =
sinh r

r
, c1/2,1(r) =

sinh r − r cosh r

2r3
,
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c1/2,k+1(r) =
2k + 1

2(k + 1)r2
c1/2,k(r) +

1
4k(k + 1)r2

c1/2,k−1(r)

for all k ∈ {1, 2, . . . , n}. Moreover, the constants

γ1/2(r) = c1/2,n+1(r) and δ1/2(r) =
1−∑n

k=0 c1/2,k(r)r2k

r2(n+1)

are the best possible. We note that when n is odd then the inequality (3.7) is
reversed.

3. Finally, choose r = jν,1 in (3.4) and (3.5). Then, for all 0 < x ≤ jν,1, we
obtain the following new expansion of the modified Bessel functions of the first
kind:

Iν(x) =
m∑

k=0

(
x

jν,1

)ν (−1)kIν+k(jν,1)
2kk!jk

ν,1

(j2
ν,1 − x2)k

+
(

x

ζ

)ν (−1)m+1Iν+m+1(ζ)
2m+1(m + 1)!ζm+1

(j2
ν,1 − x2)m+1,

where ζ ∈ (x, jν,1). This leads to the new series expansion

Iν(x) =
∑

m≥0

(
x

jν,1

)ν (−1)mIν+m(jν,1)
2mm!jm

ν,1

(j2
ν,1 − x2)m. (3.8)

Observe that, analogously to the results of the previous section, (3.4), (3.5) and
the above formulas are valid for all x, ν ∈ C such that ν 6= −1,−2, . . .. This
is an immediate consequences of Taylor’s theorem with Lagrange’s form of the
remainder applied to the function x 7→ γν(x) = Iν(

√
x) = 2νΓ(ν+1)x−ν/2Iν(

√
x).

We note that this simple idea to use instead of Iν the function γν is also useful in
the problem of finding a finite sum formula for the probability density function
of the non-central chi-squared distribution [3].

4. Jordan-type inequalities for generalized Bessel functions
and a new power series representation of generalized Bessel functions

In this section, motivated by the work [15] we reformulate the main results
of the previous section for generalized Bessel functions of the first kind. The
generalized Bessel function of the first kind vν is defined [10] as a particular
solution of the generalized Bessel differential equation

x2y′′(x) + bxy′(x) +
[
cx2 − ν2 + (1− b)ν

]
y(x) = 0,
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where b, ν, c ∈ R, and vν has the infinite series representation

vν(x) =
∑

n≥0

(−1)n
cn

n!Γ
(
ν + n + b+1

2

) ·
(x

2

)2n+ν

for all x ∈ R.

This function permits us to study the classical Bessel function Jν , the modified
Bessel function Iν , the spherical Bessel function and the modified spherical Bessel
functions together. For b = c = 1 the function vν reduces to the function Jν , while
for b = 1 and c = −1 reduces to Iν . Now the generalized and normalized (with
conditions uν(0) = 1 and u′ν(0) = −c/(4κ)) Bessel function of the first kind is
defined [10] as follows

uν(x) = 2νΓ (κ) · x−ν/2vν(x1/2) =
∑

n≥0

(−c/4)n

(κ)n

xn

n!
for all x ∈ R,

where κ := ν + (b + 1)/2 6= 0,−1,−2, . . . . This function is related in fact to an
obvious transform of the well-known hypergeometric function 0F1, i.e. uν(x) =
0F1(κ,−cx/4), and satisfies the following differential equation

xy′′(x) + κy′(x) + (c/4)y(x) = 0.

Now let us consider the function λν : R→ R, defined by

λν(x) = uν(x2) =
∑

n≥0

(−c/4)n

(κ)n

x2n

n!
.

It is worth mentioning that if c = b = 1, then λν reduces to the function Jν ,
while uν reduces to ϕν , moreover, if c = −1 and b = 1, then λν becomes Iν and
uν becomes γν . For more details on the function λν , like geometric properties,
inequalities and integral representations the interested reader is referred to the
papers [4], [5], [6], [7], [8], [10], [12].

The main results of the above sections, namely Theorems 1 and 2, can be
unified as follows, which improves significantly [7, Theorem 14] and [11, Theo-
rem 2.2]. We note that when b = c = 1 then Theorem 3 reduces to Theorem 1,
while for b = 1 and c = −1 Theorem 3 becomes Theorem 2.

Theorem 3. Let κ > 0. Then for all c ∈ [0, 1] and 0 < x ≤ r ≤ jκ,1 the

following sharp Jordan-type inequalities hold

Gν,m(x) + ςν(r)(r2 − x2)m+1 ≤ λν(x) ≤ Gν,m(x) + τν(r)(r2 − x2)m+1, (4.1)
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where

Gν,m(x) =
m∑

i=0

dν,i(r)(r2 − x2)i,

m is a natural number and the coefficients dν,i(r) are defined explicitly by

dν,i(r) =
( c

4

)i λν+i(r)
i!(κ)i

for all i ∈ {0, 1, . . . , m + 1} or recursively by

dν,0(r) = λν(r), dν,1(r) =
c

4κ
λν+1(r),

dν,i+1(r) =
κ + i− 1
(i + 1)r2

dν,i(r)− c

4i(i + 1)r2
dν,i−1(r)

for all i ∈ {1, 2, . . . , n}. Moreover, if c ≤ 0, 0 < x ≤ r and m is even, then the

Jordan-type inequality (4.1) holds true, while if c ≤ 0, 0 < x ≤ r and m is odd,

then the Jordan-type inequality (4.1) is reversed. In each of cases the constants

ςν(r) = dν,m+1(r) and τν(r) =
1−∑m

k=0 dν,k(r)r2k

r2(m+1)

are the best possible. In addition, for all c ≤ 1 there exist ζ ∈ (x, r) depending

on m such that

λν(x) =
m∑

i=0

dν,i(r)(r2 − x2)i +
cm+1λν+m+1(ζ)

4m+1(m + 1)!(κ)m+1

(r2 − x2)m+1,

which leads to the power series expansion

λν(x) =
∑

m≥0

dν,m(r)(r2 − x2)m.

Proof. First observe that if c ≥ 0, then Jκ−1(t
√

c) = λν(t), while for c ≤ 0
we have Iκ−1(t

√−c) = λν(t). Thus, if we suppose that c ∈ [0, 1] and we change
in (2.1) ν with κ−1, x with x

√
c and r with r

√
c, then we obtain (4.1). Similarly,

if we suppose that c ≤ 0 and we change in (3.1) ν with κ− 1, x with x
√−c and

r with r
√−c, then we obtain (4.1). ¤

During the course of writing this paper we have found the work [15], where
among other things, motivated by [7, Theorem 14] the inequality (4.1) is proved
for m = n−1. See also [18] for more details. However, in the case when c ∈ [0, 1],
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it is assumed that κ ≥ 1/2 and r ≤ π/2. As we have seen above these conditions
can be relaxed to κ > 0 and r ≤ jκ,1. Moreover, it is important to note here that
since

1.570796327 = π/2 = j−1/2,1 < 2.4048255577 = j0,1 < jκ,1,

the interval (0, jκ,1] is larger than the interval (0, π/2]. We note that, since in [15]
the approach is somewhat different to that given in the papers [32, 33, 34], and in
this paper, it is not clear what is the connection between the inequality (2.7) and
inequality (4.1) for m = n− 1. This is because in [32, 33, 34] the corresponding
coefficients are defined recursively, while in [15] explicitly. However, from our
discussion it is clear that in fact the inequality (2.7) is a particular case of (4.1),
just taking ν = −1/2 and b = c = 1 in Theorem 3. Finally, note that when b = 2
and c = 1 then vν becomes x 7→ (2/

√
π)jν(x), where

x 7→ jν(x) =
√

π/(2x)Jν+1/2(x)

is the spherical Bessel function of the first kind [1, p. 437], and in this case λν

reduces to the function

x 7→ Jν+1/2(x) = 2ν+1/2Γ(ν + 3/2)x−(ν+1/2)Jν+1/2(x).

Similarly, when b = 2 and c = −1 then vν reduces to x 7→ (2/
√

π)iν(x), where

x 7→ iν(x) =
√

π/(2x)Iν+1/2(x)

is the modified spherical Bessel function of the first kind [1, p. 443] and λν in
this case becomes

x 7→ Iν+1/2(x) = 2ν+1/2Γ(ν + 3/2)x−(ν+1/2)Iν+1/2(x).

If we choose b = 2 and c = ±1 in Theorem 3 then we obtain the corresponding
results to Theorems 1 and 2 for spherical and modified spherical Bessel functions
of the first kind.
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[3] S. András and Á. Baricz, Properties of the probability density function of the non-central
chi-squared distribution, J. Math. Anal. Appl. 346 (2008), 395–402.
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